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A consistent third-order propagator method for electronic excitation
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A propagator method referred to as third-order algebraic—diagrammatic const{usia{3)] for

the direct computation of electronic excitation energies and transition moments is presented. This
approach is based on a specific reformulation of the diagrammatic perturbation expansion for the
polarization propagator, and extends the existing second-pkisZ(2)] scheme to the next level of
perturbation theory. The computational scheme combines diagonalization of a Hermitian secular
matrix and perturbation theory for the matrix elements. The characteristic properties of the method
arecompactconfiguration spacesegular perturbation expansions, asdze-consisterntesults. The
configuration space is spanned by singly and doubly excited states, while the perturbation
expansions in the secular matrix extend through third order irptheblock, second order in the
p-h/2p-2h coupling block, and first order in thep22h block. While the simpler ADQ®) method,
representing a counterpart to the MFR2econd-order Miter—Plesset ground-state method,
recommends itself for application to larger molecules, the AYGcheme is aimed at a more
accurate description of molecular excitation spectra. The relationship of thg3\BEheme with
coupled cluster methods is discussed, focusing here in particular on the treatment of transition
moments. ©1999 American Institute of Physids50021-96069)30345-7

I. INTRODUCTION In practice, the resulting computational schemes com-
bine in one form or another the solution of secular equations
As is well known, a central entity in the derivation of (eigenvalue probleiwith perturbation theory in form of
many-body methods for the treatment of electronic excitafinite expansions for the secular matrix elements or related
tions in atoms and molecules is the polarizationquantities. A(not necessarily sufficiepmeasure of the gen-
propagatof3 Among the various computational schemeseral quality of the approximation scheme is the perturbation
based on or related to the polarization propagator one magheoretical consistency of the results for, say, the class of
distinguish between algebraic methods and diagrammatisingle or particle-hole [f-h) excitations. For example, the
methods. Practical computational schemes of the former kinRPA is only a first-order method, as the error introduced here
have been developed in the framework of the equation-ofhoth for the p-h) excitation energies and transition mo-
motion methodEOM),*~” and the essentially equivalent su- ments is of second order. A substantial improvement of the
peroperator formalistfi:*® Following the diagrammatic ap- results was achieved by second-order methods, such as the
proach, based on the diagrammatic perturbation expansion JOPPA (second-order polarization propagator approxima-
the polarization propagator, a general procedure referred tgon) method'*2*3derived within the EOM/superoperator ap-
as algebraic—diagrammatic constructihDC)!! has been proach, or the second-order AR} schemé!!* A third-
used to derive approximation schemes beyond the level ddrder extension of the algebraic EOM)/superoperator
the famous, though unsatisfactory, random-phase approximgormulation has been presented in Ref. 15, but, to the best of
tion (RPA). These many-body methods have two characterour knowledge, this scheme has never been implemented in a
istic features. Firstly, the excitation energies and transitiorcomputer code nor used in actual applications. While the
moments(spectral intensitigsare determined directly, that available second-order schemes are quite practical and effi-
is, without the need of performing separate calculations fogient (the computational effort may be compared to that of
the initial and final states, as is the case in the conventionahe familiar SDCI (configuration interaction including all
wave function approach. Secondly, the methods are potersingle and double excitations on the Hartree—F@4K) ref-
tially size-consistenthere, more specifically, size-intensjve erence stape the accuracy, say, for the-h excitation ener-
which is crucial in the application to larger systems. Whethefies is comparable to that of the widely applied MP2
a method is size-intensive can be seen in the application to @¢ller—Plesset second-order perturbation th@amethod
system consisting of two separateoninteracting frag-  for the ground-state energy. Typically one has to expect an
ments. Here the resulting excitation energies and transitioBrror of =0.5 eV for thep-h excitation energies which is
moments for a local excitation should not depend on whetheglearly inferior to the accuracy standard of the successful
the method is applied to the whole system or to the conCASPT2[complete active space multireference SGEIf-
cerned fragment. consistent field plus second-order perturbation thepry
method'®!” The relative modest performance of second-
dPermanent address: Laboratory of Quantum Chemistry, Computer Cente@,rder methods is a well-known fact in the related field of
Irkutsk State University, 664003 Irkutsk, Russian Federation. electronic ionization, where for a long time third-order
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propagator and related methods have been used with consid- Review of the polarization propagator
erable success®?1The claimed accuracy standard here is
+0.2 eV for the ionic main statetingle hole statgs In

view of this situation the development of a consistent third-

The polarization propagator is defined as a mdjw)
of energy(or time-) dependent functiods

order method for electronic excitations would be highly de- Hrs,r,s,(w)=H:s,r,s,(w)+Hr_s,r,s,(w) (1a
sirable, and one may wonder why such a scheme has not R
emerged as yet. I (@) =(¥olcle (o —H+Eg
In this article we will extend the ADC procedure beyond . A
second-order and derive complete third-ordéfDC(3)] +i7)'Qoc, Cs'|Wo), (1b)

equations for the polarization propagator. The derivation re- _ .
veals a substantial complexity inherent to this level of ap- Mg pg(@) =15, (- ). (10
proximation which apparently has discouraged previous atrere we consider aN-electron system with énondegener-
tempts to develop third-order schemes for electronicyig ground-staté¥ ) and energyE,. Moreover, we assume
excitation. Compared to the electron propagatmre-particle 5 single-particle representation based on the ground-state
Green's functionin the ionization problem, the complexity Hartree—Fock(HF) orbitals |¢,). The associated creation

encountered here is greater by one order of magnitude. Thignnihilation) operators of second quantization are denoted
h_o_lds in particular for the calc_ula_t|on of the_ third-order tran- by cg(cp). A is the Hamiltonian of the system, and

sition moments. For the excitation energies, however, the
situation is more favorable. As will be seen, the ABC Qo=1—|W)(Wy|, i)
expressions for the secular matrix are not at odds with the,

end of devising a both efficient and accurate computationa(lienotes the projection operator onto the orthogonal comple-

scheme. Like at the second-order level, the explicit conﬁgu—ment of the exac'g ground-stafté/ ). The positive ”?f'”'tes"
ration space of the AD@) secular matrix is spanned by the mal », guaranteeing the convergence of the Fourier transfor-

manifold of singly and doubly excited states. An apparentrc?"’lt'onfj k_)et;/;eep ”tlmc_a andhenergy representt_a}lo;]\s, W('j" be
bottleneck is the plethora of 29 distinct third-order contribu- ropped In the foliowing whenever unessential. According

: : : Eqg. (1), the polarization propagator consists of two parts,
tions to thep-h block of the secular matrix leading toN# + - .
scaling in the computation of this block. IT"(w) andIl” (), which are related by E10). There-

The ADC reformulation of the polarization propagator fore, it suffices to confine oneself to the palt (). The

can be introduced in an alternative way as a so-called inte|F—’hy5'C‘5lI conten_t OH+(_‘”) IS explicit in the 0 called spec-
mediate statéISR) representatioit of the (shifted Hamil- tral representatidnreading in a compact matrix notation
tonian H— E,, whereE, is the exact ground-state energy. " (0)=x"(0—Q) x. (3)
This point of view puts the ADC approach directly into the Here O
context of methods extending the successful coupled CIUStedies
(CC) method to the treatment of electronic transitions. Meth-

ods of this type are the multireference coupled cluster won=Eq—Ey, (4)
(MRCC) schemeg3?*the SAC-Cl(symmetry adapted clus-
ter) method?>~2?’the coupled cluster linear respor@CLR)

theory?®=%2 and the equation-of-motion coupled cluster — Xps=(¥y|c/cd¥y). (5)

(EOM-CC) method**~3%For a general discussion of various : . .

: The latter amplitudes enter the calculation of spectral inten-
aspects of these ISR methods, the reader is referred to Resfi‘ties as follows. Let
22. In contrast to the EOM/superoperator and ADC schemes, '
the CC methods are basically nonperturbatitree secular . +
matrix elements here are constructed from terms generated D:rE; drsCrCs, Q)
by a CC ground-state calculatipnHowever, it should be ’
noted, that most CC schemes reported so far are only coflenote a single-particle transition operaterg., thez com-
sistent through second order for the energies and transitioRonent of the dipole operatorwhered,s are the associated
moments. A consistent third-order method referred to as CC8ne-patrticle integralée.g.,d;s={ ¢,|Z| ¢s)). Then the transi-
model has been presented by Christianeenl®® A com-  tion moment for the 8-m transition can be written in the

parison of the ADC approach and CC methods is given irform

is the diagonal matrix ofvertical excitation ener-

andx is the matrix of transition amplitudes

Sec. VB.

Tm:<wm|D|\PO>:§ Xm,rsOrs - (7)
Il. ALGEBRAIC—DIAGRAMMATIC CONSTRUCTION The well-known formalism of diagrammatic perturba-
(ADC) FOR THE POLARIZATION PROPAGATOR tion theory (see, for example, Fetter and Waletkallows

one to construct the perturbation expansion of the polariza-
In the following we will briefly review the polarization tion propagator in terms of the famous Feynman diagrams.
propagator and the general aspects of the ADC approach. Féigures 1 and 2 show the Feynman diagramsAbrikosov
the original derivation and further details the reader is re-or Hugenholz form through second and in third order, re-
ferred to Ref. 11. spectively. According to the diagram rules, ath order
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FIG. 1. Feynman diagrams for the polarization propa-
gator through second order.

)

Feynman diagram introduces arfold energy(or time) in- Here and in the following we adopt the usual convention to
tegration over the arguments of thenner vertices. Explicit designate occupied orbitals byj,k,l, . .., unoccupiedvir-
analytical expressions for the result of the internal integratual) orbitals by a,b,c, ..., andunspecified orbitals by
tions can be obtained from the so-called time-ordered op,q,r, . ... Thesecular matriXX+ C introduced in Eq(8) is
Goldstone diagrams.In nth order each Feynman diagram defined according to

gives rise to (+2)! Goldstone diagramgFor the diagram - -

rules and an example see Appendiy A. (K+C)j3=(¥|[H—Eq| V), 9

The time ordered d|agrams decompose Into two _d'St'nCBs the intermediate state representation of (blkifted
classes, | and ll, corresponding to the two possible time or-

derings of the external verticésandt’. Class | ¢>t') and I—!e}m|lton|a|r1Hd— Eo, while tge matrixf of “effective” tran-

class Il {<t’) contribute exclusively tdI* andII~, re- sition amplitudes is given by

spectively. This establishes a direct diagrammatic perturba- fo= (et

. . ; = C,Cs Vo). 10

tion expansion for the pailli* to be considered below. For rs=(Wilered o) (10

the second-order diagram C the 12 Goldstone diagrams coffhe ADC procedure aims directly at determining the secular

tributing to IT* are shown in Fig. 3. In third order there are matrix K+ C and the effective transition amplitudés as-

already 60 Goldstone diagrams fbF* per Feynman dia- suming that these quantities can be expanded in perturbation

gram[see Fig. 4 displaying the diagrams associated with thgeries

Feynman diagrani7)]. C=C1 @4 cO....

B. General ADC equations f=fO+fD4f@... (19
In the ADC formulation the polarization propagator part

" (w) is written in the general algebraic form with respect to the usual Mer—Plesset partitioningH

=H,+H, of the Hamiltonian. The zeroth-ordésr HF) part
I (w)=f"(@—K-C)"'1. (8 of the secular matrix is given by the diagonal mattiof HF
This nondiagonal representation may be established in @xcitation energies, that is

similar way as thédiagonal spectral representatigiq. (3)]

by inserting a complete set of so-called intermediate states

| W ;) on the right-hand-side of Eqlb) instead of the exact Kabkiabki= €at €p— €x— €1,
excited stategsee Sec. V B These states are labeled like the
usual excitation manifold ofp-h (particle-holg, 2p-2h,
3p-3h ... -excitations, that is

Kak ak= €a— €k

(12

and so forth, where the, denote HF orbital energies. Insert-
ing the expansions of Eq11) in the ADC form[Eq. (8)]
generates a perturbation expansion for the ADC form of
{J}={aj, abij, ...;a<b,i<j;...}. IT" (), which now can be compared with the original dia-

FIG. 2. Third-order Feynman dia-
grams for the polarization propagator.
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FIG. 5. Block structure of the secular matix- C (a) and of the effective
transition amplitude matrix (b) of the third-order ADC scheme.

FIG. 3. Goldstone diagrams associated with the second-order Feynman dia-
gram(C); only diagrams contributing tdI* are shown.

grammatic series fofl* (w). This allows one to determine
the contributions taC andf successively through higher or-
der.

The structure of the secular matrik+ C and of thef
matrix in the third-order ADC approximation scheifnesult-
ing from the comparison through third orglés depicted in
Fig. 5. The explicit configuration space here comprises the
p-h excitations (class wu=1) and the »-2h excitations
(classu=2). The perturbation expansions for the different
blocksC,, ./, u,u"'=1,2 of C are as follows:

[e= N,

& 1o | COKOLO X ED®R

P ——

_ A 2 3
Cyy=Ccf)+c+c?,

e —

Jo9eIO9CD £ | I ICORT

Ci,=C{§+CH. (13)

Coo= C(zlz) :

In a similar way one may distinguish the blocks, u
=1,2, of effective transition amplitudes. Here the perturba-
tion expansions of the AD@) scheme read

—£(0 1 2 3
f=fO+ D+ +£3

f,= 0+ 2. (14
For further reference we also introduce the notafipnand
f,1 for the subblocks of , where the second index pas is
a ph pair (1) or any of the possibilitiesip,hh,pp (1), re-
spectively. The respective terms of highest order in EL3.
and (14) are to be determined at the third-order level of
IT" (w) (see Sec. Il the lower order terms follow from the
ADC procedure through second ordér.

For a given secular matriK+ C the excitation energies
wp, are obtained from the solution of tlielermitian eigen-
value problem

(K+O)Y=YQ, Y'Y=1 (15)

Here Q is the diagonal matrix of eigenvalues,,, andY
denotes the matrix of eigenvectors. The transition moments
[Eq. (7)] are given by the scalar products

10

I S| DI S X
SO | SO D
SHE X (o BB o B

Tm:X(m)TF

(16)

FIG. 4. Goldstone diagrams associated with the third-order Feynman di0f the mth eigenvector and the vector of effective transition
gram(7); only diagrams contributing tbI* are shown. moments
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TABLE I. Second-order contributions in the ADC representafigg. (8)] The ADC quantities to be determined at this level @@

of I (w). cty 2 andf{Y . The terms of Table | have to be compared
(A) 2" 0 4O 4 h.c. to the second-order Feynman diagrams in Fig. 1. Each of the
five second-order Feynman diagraii#s)—(E) gives rise to
(B) 9w Y 12 Goldstone diagrams contributing ¥6" (), so that alto-
(©) #0710 -0 4 hc. gether a manifold of 60 diagrams has to be considered. As an
o example, Fig. 3 shows the Goldstone diagrams for the RPA
(D) 0 o 1cP 0] e w; HO diagram (C), labeled from(1)—(12). For most of the dia-
© (0 1 O grams the assignment to the ADC terms is straightforward,

since their analytical expressions fit directly to corresponding
(F) £ 5 1D terms in Table I. Only 12 diagrams, more specifically, the
Goldstone diagramg&time ordering$ (7)—(10) of Feynman
diagrams(A)—(C) require a simple algebraic transformation
(H) £ 07 1B w0y 1R w; 4O before they assume a compatible form. Let us consider the
diagrams in Fig. 3. Obviously, diagrafi) corresponds to
term(D), and merely repeats quantities already determined at
the first-order level. In the following such diagrams are
F :z (g (17 termed as repetitive diagrams or as diagrams containing re-
V7 &y TdrsTrss petitive terms. The latter also holds for diagra® and its
. . Hermitian conjugate diagrari8) corresponding to terntC),
wherg_drs are the one-particle integrals of the conS|deredas well as for diagrant) being of the form of terniB). The
transition operator. diagrams(5), (11), and their Hermitian conjugated counter-
parts(6), (12) are of the form(A), thus specifying a contri-
I1l. EXPLICIT ADC EXPRESSIONS THROUGH THIRD bution tof(lZ)_
ORDER The remaining four diagram&’)—(10) do not fit indi-

In Ref. 11 the derivation of the explicit ADC equations Vidually to the ADC terms. Obviously, the corresponding
for IT* through second order has been described. In the folRnalytic expressionX(m), m=7-10 differ only in the de-
lowing we will extend this procedure to third ordéBecs. Nnominator product®(m), that is
1B and IlIC). As a preparation to this steps it should be
gfgél:lcg)s(raescall briefly the much simpler first- and second- x(m):% Vagiki Vik/jareg P(M),

)
© 1" 0, 1c0w; 4O+ h.c.

A. First- and second-order ADC schemes where

In zeroth and first order the ADC forfiEq. (8)] reads P(7)=(0+ e — €,) N+ e —e )—1wg1
a ! a’ ’

—OT =160 L ¢(0)T ~1~(1) ~1¢(0)

I (w)=f" o] 1f1 +1i7 w; Cijw; 1f1 P(B):((v+le_Gar)_l(l)G_]'EIl,

+O o O 1 DT~ 10 , (19
o PO P(9)=(w+ e €a) g e,
involving only p-h blocks (u=1) of f andK+ C. Here and
in the following the short hand-notation P(10)= wg te; te, .
0,=(0—K), (29

Here we use the abbreviationsg=(w+ €+ €+ €— €,

is used. The zeroth- and first-order diagra(fg. 1) for IT* —€x—€), €=(ete—ey—e.), and e;= (et €— €,

fit directly to the ADC form[Eq. (18)], so that the quantities —¢.). All four denominator products share the factog*
12, andf{? can simply be read off the analytical ex- arising from the “cut” of three particle and three hole lines
pressions yielding in the diagrams. Clearly the presence of this six-line denomi-

ch __y f0 _s s (20) nator would not be compatible with the ADC scheme where
aka’k’ ak'fa’k] > Takrs™ “arks explicit 3p-3h denominators occur for the first time at fourth
N order. Indeed, the; * factor cancels when the four products
fg()k,a,zw, P(m) are added up, and the simple result is
' €t € — € €r
1) (1) 1) - €11 €
fakark = fakaro = fakk =0, (21) D P(M)=(0+e—€) Yo+ er—€x) >
m=7 €1€2
where V5= Vpars— Vpgsr denote the antisymmetrized
Coulomb integralgin “1212”notation). (ot e—ey) 1
In second order there are eight contributigAs$—(H) for k%l 2ee
the ADC form[Eq. (8)] as listed in Table I. Here the terms
(F)—(H) show that the next higher configuration class, that is, + (0t e —ey) L 1 (22)

the 2p-2h excitations «=2), comes explicitly into play. 2e1€67
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This shows, that the joint contribution of the diagra(ds— TABLE II. Third-order contributions in the ADC representatifdyq. (8)] of

(10) splits into a part being of the forrE) and two further  17(®):

parts being of the forntA). A)
The resulting contributions t6{2 andf{? read

1
9 w; ¥+ h.c.

@ €1+ e ®) 2w O +h.c.
Cacark E VadingVi'[a'el 3¢ (23 © 107 1c0e 4O+ h.c.
y 2 1 (D) 0 07 C@w; HO + h.c.
f ark! = ~ Vac[ik]Vik'[arc] 6162' (24) (E) f(ll)Twl,lc(lll)wl,]_f(ll)
respectively. In a similar way one may analyze the Feynman (F) 0o 0w 'CPw; ¥+ h.c.
diagrams(A) and(B). O 1 10
A remark applies to the signs of @) andf$? contri- © 7 oy 'Coy 'Y
butions. -ObV|ou(szgy, the(lgerméﬂ) apd (F) dq not fix the (H) 10" 7 10@ w7 e w; HO + h.c.
overall sign ofCy3 andf}”, respectively. This is to be ex-
pected as the phases of thp-2h states coming here into o 10w, ' w; 'Chw; 'Cf oy 4O
play negd not be determined. However, the relative.signs are (9 0 C0 0 4O+ he.
not arbitrary, but have to be determined by inspecti@y z Caron
(K) f(zl)rwglC(zlz)wz P w, ¥+ h.c.
B. Third-order ADC: General remarks L 9 w; 'CQw; O +he.
The derivation of the first- and second-order ADC (M) 0" w5 1wy ¥ +h.c.
schemes, as sketched in the preceding subsection, could be +
. . N N D' 1) =11 —16(0)
achieved without undue effort. At the third-order level, how- ™ ) w; "Chlwy "Crjwy M+ he.
ever, the complexity grows by an order of magnitude, which (0) 0 07 1B w0y 1 w; H O+ h.c.
calls for reasonable handling strategies. As shown in Table o e i 1o
ll, the third-order ADC expansion can be broken into 20 P fi? w1 'CRw, 'Cwy "7 +h.c.
individuallte.rms 'Iabele«jA)—(T). Subscrip'gs 1 and 2 will be Q) HO" 1 a3 1P w7 1CW 07 O 4 h.c.
used to distinguish between the term written out in Table II .
and its Hermitian counterpart.c). The first nine terms (R) 0 w7 'CRw; 'CRw; 'CHwp M
(A)=() in Table Il are pu_rep-h parts, the following terms S (@ U 4 e
(J—(R) introduce mixing of the p-h and 2 T2
2p-2h-configurations, while the two remaining ternfS) M 0" 0, 1C w; 1S

and(T) are pure p-2h-contributions. The new quantities to
be determined at third order a@?, c{?,cly, #?, and
f?) . These new quantities arise only in 9 terms of Table I,
namely in(A), (G), (J—(L), (P), (R)—(T). This means that The basic step of generating and drawing the diagrams
the other 11 terms are mere repetitions of the quantities ahas been achieved with the help of a computer program
ready determined at the first- and second-order level. Most dfased on a simple matrix representation of the diagrams. As
the latter terms can be readily assigned to individual third-briefly discussed in Appendix B, the matrix representation
order Goldstone diagrams. allows for a unique algorithmic treatment of the diagrams,
The algebraic terms of Table Il are opposed by an aweguaranteeing in particular their completeness and correct-
some number of third-order diagrams. As shown in Fig. 2ness. The sorted matrices are read by a follow-up program
there are 23 Feynman diagrams, each contributing 60 Goldhat transforms each matrix into a PostScript code and gen-
stone diagrams tbl ", which results in a total of 1380 Gold- erates a graphic output, that is, a “book” of all 1380 dia-
stone diagrams. As an example, Fig. 4 shows the 60 Goldgrams. Moreover, the program prints the corresponding ana-
stone diagrams associated with the third-ord@&PA) lytical expressions up to the sign and sorts the diagrams
diagram(7). For a unique designation of the diagrams we useaccording to their integral type. As explained below, dia-
the conventioni.jx, wherei=1, . .. ,23labels the Feynman grams of the same integral type often have to be combined in
diagrams as in Fig. 2, while the extensipnafter the dot the course of the ADC procedure.
specifies the Goldstone diagrams as in Fig. 4. The first entry Once the diagrams have been generated and drawn in an
j=1,...,10distinguishes the positions of the two outer ver- appropriate order, the ADC analysis is no longer an adamant
tices according to the ten choic¢$,5), (2,5), (1,4), (2,4, endeavor. Many diagrams can be directly assigned to the
1,9, (3,5, (2,3, (3,9, (1,2, and(4,5); for a given position  algebraic terms of Table II, even without the need to write up
of the two outer vertices the second emtry a, . . . ,f speci-  the analytical expressions. The derivation of the new quanti-
fies the six permutations of the three inner verti€g83), ties listed above requires the inspection of relatively few
(132, (321), (213, (312, and(231), where(123) is the or-  “key” diagrams. The number of key diagrams determining
der in the original Feynman diagram. Here the vertex numthe contributioni:(lsl), (2) and C(l) is about 50. About 200
bering runs from the top to the bottom of the diagram. additional diagrams have to be mspected to specify also the
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effective transition amplitude§® andf{? . In Sec. IlIC the ~ +(80). Itis readily seen, the, is of the form(G) specifying
interested reader may find a brief survey of the third-orde C{3 contribution;S, and S; correspond to the Hermitian
ADC analysis. The final expressions fir+ C are listed in  conjugate pair &) and (A;), respectively, yielding afi”
Appendix C. A full list of thef expressions is available by contribution.

request from the authors or can be downloaded from our 2. A common integral structure is found for diagrams

website3® (1e)—(5e), (7e), (1b), and (D). One recipe is as follows.
Form S;=(1e)+(2e)+(3e)+(4e),S,=(1b)+(3b), and
C. Details of the third-order ADC analysis compareS; andS, with the complex repetitive termaH(,)

and (C,) where, of course, only the RPA contributions to

nto ltr;qéhtii:glfgg‘rg ASIEI)XC%&:(r)igergSrZS zﬁ lﬁkr?o?e ct:Iho;earl é%ookc(l? and f{? are to be considered. Straightforward algebra
o . ' . eads to an expression of the for(@®) specifying another
deal of this section will be useful only for a reader mterestejC P (@) specifying

{9 contribution [which incidentally is one-half of what
in repeating the AD@3) derivation. First we consider, in ! ibution [which inci y W

. . would result directly from §;)]. In an analogous way one
Secs. Il C 1-111 C 4 the treatment of different groups of dia- can treat the diagrams {)—(4f), (1d), and (1), and the

grams. Then in Sec. lll C5 and Sec. Il C 6, the perspectlvr-'CR.l.,S (H,) and (C,) vielding a Hermitian conjugat€(131)

changes to the side of the ADC expressions. One may disz_ . . ° . - . :
tinguish three groups of third-order diagrams, namely thecontnbunon. The remaining diagrams, combined a®)(S

diagrams(1)—(6). representing produce@G® of a zeroth +(7e) and (6f) + (8f) yield af;” contribution according to

and a third-order one-particle Green'’s function; the diagraméAZ)ganc.irﬁlr)e’ rrsrif;r:“;/vs(l)y.more sets of diaarams with the
(7)—(15) which are of the forrII{@CcV11? or I COIO; ' 9

) . . same integral structure. For the first set we combine dia-
called recuciep h vertex. I the fatr groups one. may OIS 35 fOlows. Fort,(2b) (4b), S;~(6b) + (8b)
note a topological similarity between the diagrafis)— *+(6e) +(8e), and compars, andsS, with the CRT contri-

(19), (20) and(21), (22) and(23), respectively. As a separate butions .(BZ) and 0y). Stralghtfqrvyard al%e bra Ie_a ds_ to an
special case we will consider the RPA diagr&m in the expression of the formAp) specifying anf;” contribution.

beginning. As a common feature of all Feynman diagramsThe corresponding Hermitian conjugate term A form is

we note that the time orderings &¢f) and their counter- obtained analogously from (8, (4d), (5d), (7d), (5f),

and (7).
parts 106—f) have the form of the ADC termsA;) and . . .
(A,). respectively, in Table II. As a result there are B3 Herewith all Goldstone diagrams of the RPA diagram

=138 trivial contributions to‘(f‘) which can be read off the (7) (Flgigz)l-) have been(se)xhaust_ed._AItogether we ha\{g derived
. . ; three C;7 and threef}” contributions(plus six additional
diagrams in a straightforward way. )
1

trivial 3> contributions.
1. The RPA diagram The recipe used above for the ADC analysis of the RPA
The 60 Goldstone diagrams associated with the RPAliagram(7) is not unique. The nonuniqueness encountered
diagram(7) are shown in Fig. 4. As already mentioned, thehere is reflected by the fact that the ADC ter(Ag and(G)
ADC analysis of the time orderings 8¢f) [and 106—f)] may exchange contributions by applying partial fraction de-
is trivial leading to six distinct{® contributions. The dia- composition(PFD) and its inverse procedure. More specifi-
grams (B)—(8a) and in addition, (5), (7b), (6d), and cally, nondiagonal contributions, sag,; of C;; may be
(8d) are readily identified as repetitive terms of the ADC transferred tof;; as a result of PFD ofG), yielding the
expansion. For example, diagram &)7 is of the form (anti-Hermitiar) contributions
0" w7 1 [term (B,) in Table I1], where thef® contribu- . 1
o i ; fla=(Ki—=Ky) "Cyy, (29
tion is the one arising from the second-order diagré@ikl)
and(C12. in f;1. Conversely, any anti-Hermitian contributions faf
For the remaining diagrams, things become somewhatan be transferred into nondiagoraut Hermitian contri-
more complex, as none of them fits individually to any of thebutions of C,;. Therefore, one arrives at a distinguished
ADC terms, and moreover, some parts of the repetitive term&DC scheme by imposing the symmetry condition
(B), (C), (D), and(H) cannot readily be retrieved in the dia- g (26)
grammatic expressions. The latter applies to repetitions of 1% 11’
the “complex” C{2 andf{? contributions considered in Sec. to the(1,1) block of f. It should be clear that the differences
[l A, for which already at the second-order level no imme- in the results of the symmetrized and nonsymmetrized forms
diate one-to-one relation between diagrams and ADC termef the ADC(3) expressions are of fourth order.
could be established. In the following we describe one pro-
cedure how diagrams and complex repetitive te(@RT) .
can be combined algebraically yielding quite simple expres?- D/agrams (8) —(15)
sions forC{Y andf{¥. The question of uniqueness will be Obviously, the Feynman diagran8), (10), (12), and
addressed further below. (14) can be constructed according to
1. First we consider diagrams ¢)l—(8c). Obviously, X (0 D2,
these diagrams have a common integral structure and, thus, D*(w) =11 )(w)c(ll)n( (), @7
can be combined. A simple way is to for8;=(1c) as the products of the fre@eroth-order propagator, the
+(2¢)+(3c)+(4c),S,=(5¢)+(7c), and S3=(6¢) first-order secular matrif:(lll), and the second-order propa-
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gator partd1>¥(w) wherex=A,B,D,E labels the second- the case of£{?, one must collect either allR;) or all (L,)
order Feynman diagrams in Fig. 1, excluding the RPA diacontributions in order to deducé? (see Sec. IIICH Of
gram (C). Analogously, the Feynman diagrani8), (11),  course, one may equally consider the h.c. terms) (or
(13), and(15) may be formulated as (L,). The remaining 12 diagrams can readily be combined
X _ r(2x 1)yy(0 pairwise: (X)+(7c), (5e)+(7e), (6b)+(8b), (6¢C)

D®(w)=H*(w) T (w), 8 +(8c), (6e)+(8e), and (&)+(8f). Here the first two
where compared to E¢27), the order of the factors is inter- pairs contribute to4,), while the latter four pairs contribute
changed. The total contribution of diagran®—(15) plus  to (A;).

the RPA diagrani{7) can be written as Now let us turn to the diagrams (8)—(11), for which the
15 ADC analysis is somewhat more complicated because, like
DM (w)=T19( )T for diagram(7), complex repetitive termporiginating from
hZ? (@) (@)Ci{ T (@) the second-order diagrant) and (B)] have to be recov-
+ 1P ()COTO(w) ered. Note that dlqgran(aO) and (11) are _“antlpodes” to
(9) and (8), respectively. As a representative let us consider
_H(l)(w)c(lll)n(l)(w)‘ (29) the Goldstone diagrams @) (labeled according to the con-

vention explained in Sec. IlIB It may suffice to discuss
Here the subtracted term on the right-hand-side correspondsnly diagrams bringing up new features, that is here, the 20
to the RPA diagran{7) which is counted twice in the first diagrams (t)—(1f), ..., (4c)—(4f), (5¢), (5€), (7c),
two terms. Equation29) offers an alternative route to the and (7). The common integral structure suggests to com-
ADC analysis of diagram&’)—(15). Instead of inspecting the  pine diagrams () (4f), (1d), and (&). Forming S,
associated Goldstone diagrams one can use the already avail{1f)+ (2f) +(3f)+ (4f) and S,=(1d)+(2d) one gets
able second-order forms fdl" () andIl” () in conjunc-  yeadily rid of the $-3h denominatorwg *. Now one can

tion with the following obvious projection formula: compareS,; and S, with the CRT’s H,) and (C;), where
1 (o) only the C{? andf{? contributions of the second-order dia-
" (w)= 5 ————do’. (300 gram(A) are taken into account. The result is an expression
™) o' -—w—iy of type (G) specifying aC{? contribution. In a similar way

Here the contour integration is to be closed in the lower°"® obtains &;” contribution by comparing (@) + (4d)

complexw’-plane. We have used both the projection method" ith the appropriate CRT contributions of the tyﬂh_z() and
and the Goldstone analysis for mutual checking. (By). For the combination (d)+(3c)+(5¢) straightfor-

In the following we return to the Goldstone analysis of Ward algebra y(lglds an expression of fof@) from which
diagrams(8)—(15). Let us first consider the somewhat sim- one deduces &}7 contribution. In a S|m|lar_ way ontg obtains
pler case$12)—(15). Obviously(12) and(13), (14) and(15) ~ an (A1) term from (Z)+(4c) +(7c), specifying afd con-
form pairs of “antipodes,” that is(13) and(15) are obtained tribution. An analogous procedure applies to the diagrams
by turning upside-down(12) and (14), respectively. The (1€)—(5€) and (7).
treatment of these four diagrams is essentially analogous,
and we may, for example, consider the 60 time orderings of
diagram(15) (labeled according to the convention explained
in Sec. lll B). As above we can disregard the 12 trivia;(;) )
contributions. Further 12 diagrams, namelyaj*(4a), 3- Diagrams (16) —(23)

(6a), (8a), (1d)—(4d), (6d), and (&), can readily be
identified as repetitive ADC terms. An additional eight dia- . : ) .
grams can be directly assigned to one of the ADC terms: Thglagrams(16)—(23) is rather S|mpl.e. There are no repet|t|ye
four diagrams (&), (5b), (5d), and (5) give expressions terlms, anc_i tht_a only new feature is the occurrence of various
of the form (J,). while the diagrams (&), (7b), (7d), and ctY contributions. However, here the assignment of dia-
(7f) contribute to 6,). In the () term thef® contribu-  9rams apd ADC terms is str:.;ughtfo.rward. Moreover, @8
tions to be determined occur in conjunction Wlﬂﬁlz) As  expressions may be determined directly without the nged of
described in Sec. [I1C5 one has to collect alb) [or (J,)]  Inspecting diagramgsee Sec. IIICH Let us take a brief

After the cases considered so far, the ADC analysis of

contributions in order to disentangle the desiféd contri- 100k to one of these diagrams, say(22). The 12 Goldstone
butions from the knowrC{) expressions. Alternatively, one diagrams (&)—(4a), (1b)—(4b), and (Ie)—(4e) corre-
could use the $,) [or (S,)] term. spond toCYY terms in one of the form&K), (R), or (T). The

The remaining 28 diagrams do not fit individually to combination of (F)—(4f) yields aC{? contribution accord-
ADC terms, but the appropriate combinations are rather obing to term(G). Following the procedure described in the
vious. Both (%k)+(2e)+(3e)+(4e) and (Ic)+(2c) case of Feynman diagrath5), the diagrams (&)—(4c) and
+(3c) + (4c) are of the form(G), yielding fourC{? contri-  (1d)—(4d) can be rewritten in the form dP) and(L) terms,
butions. The combinations b} + (3b) and (1f) +(3f) con-  bearing information required to determi@$? . In the same
tribute to (P,), while (2b) + (4b) and (2f) + (4f) are of the  way as described for diagrant8)—(15) the remaining dia-
form (L4). In (P;) and (,) the soughtC‘zzl) contributions  grams contribute to term), (J), or (A) specifyingf(13) and
arise in conjunction withC{) andf$”, respectively. As in 52 contributions.
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4. Diagrams (1) —(6) )
. . . . L E (w_6a+ek)_lcgk)arbrkw(w_fa’_Eb'+6k
This class of diagrams is a special case of contributiong/p’k’’ ’
that in time representation are given by a product of two

- 1) 1
oppositely directed one-particle Green’s functi¢@d): ) Corprionr ane( @ €art ) (36)
~ ) _ ) ) where one has to insert the given first order expression for
pgrs(t,7) = (—1)Gp(1,1") Gsq(t',1), 3D C(l,{),k,,, ak [S€e Eq(C38)]. This allows one to deduce the

Here the factor ¢ i) is needed to reconcile the phase con-constituents oC5? without major difficulties. One may dis-
vention of the one-particle Green’s functions with that of thetinguish contributions tOcak arbrierr With the Kronecker
polarization propagator. After Fourier transformation to en-Symbol 6z, with the Kroneckgr symbabiy , and without
ergy representation E¢31) takes on the form of a convolu- any Kronecker symbol. The diagrams contributing ;)

tion integral may be distinguished according to these three types
Oaar 1(4),(9),(17),(19-21),(23)
| sqi(0)= g7 | GoiGplomCaton=0) 30 50y a,1,20-22
The simple product form of the diagrani®)—(6), in which none(8),(10),(12)(X2),(14)(X2).

the third-order GF-part&®",G(®)~ are combined with the . . -
' - N h 2 14 P
zeroth-order GF part&©~ and GO respectively, sug- ote that diagramél2) and(14) give two (P,) contributions

h. As th h I | f
gests to exploit the recently established third-order ADCC%:) S theasn?;(tbseti&uts emﬂitlnrz:;?w:ﬁt?e:)ir;; Sg?n of
schemes foiG~ (and G*).3 Obviously, diagramg1)—(3) aka’b’k’l’ Y pecero

: : and k’,I", respectively. The antisymmetrized expressions
can be combined according to . . . ) .
g can then be verified by inserting them into Eg6) which
must recover the 20 originalPy) contributions. Alterna-

ﬁpkrk, - _f dwle(?’)*(wl)e(k?f;(wl—w) tively, one could have used the tern®§, (L,), or (L,). In
a similar way, f(22) can be deduced from any set of
=5GP (w+&y). 33  (81).(8).(31), or (J2) contributions.

Analogously we find
6. Derivation of C ()

aa’

- 1
_ = (0)+ (3)— _
Magars(@)= Zwij dw1Gyy (01)Ggg (01~ w) The diagrammatic derivation of$Y using either(R),

(T), or (K) contributions poses no difficulties. The corre-
=(—1)3,2 G (ea—w), (34 sponding Goldstone diagrams of the Feynman diagrdms
for diagramg4)—(6). Inserting now the third-order ADC ex- (2)’.(4)’ (), (16-(23 can Q|rectly be assigned to the algg-

braic terms. However, it is not necessary to refer to dia-

i 3+ @3- iven i i
pressions forG and_G as given in Ref. 39 y|_eld_s grams, because the first-order contributiorﬁ:@ is given by
readily the corresponding ADC terms for the polarization

the well-known configuration interactioi€l) expression

propagator. One should note that here only the nine terms
[(A), (G), (J—(L), (P), (R)—(T)] of Table Il come into play, c® (D |I:|—E (D)|Parpriery ) (37)
namely those without & or C{¥ constituent. For th&€{d aktarrior = (Pank ° brict’)
and f{? contributions, the final expressions can d|rectly beHere |® ) =clcicwe)| o) (a<b,k<I) is a doubly exited
inferred from theG*™ andG™ results. For example, thé{Y  CI configuration andEy(1)=(®o|H|®,) is the first-order
contribution arising from diagramél)—(6) is simply given  ground-state energy. As an obvious extension to the @pC
by scheme, the first-ordelC,, block has been considered
previously!!
€ = Baa (—1)CE "+ 84 CT (35)

aa’ !

(3)- @)
whereCy,, andCy,,~ are specified by EqsAS)-(A9) and |, \\icoF| | ANEOUS ASPECTS OF THE ADC

(B9) in Ref. 39. Of course, one may as well resort to thePOLARIZATlON PROPAGATOR EORMULATION
Goldstone analysis of diagrani¥)—(6). The Goldstone dia-

grams are obtained by a trivial extension of the diagrams for  In the following three subsections we will discuss briefly
GO andGO ™, respectively. some consequences of the ADC approach to the polarization
propagator. First we consider physical quantities related to
the p-h density matrix. As important checks for the quality
of a computional scheme, the dipole sum rule and the
equivalence of the length and velocity forms of the transition

To determine the second-order contributiongie one  moment will be considered in Sec. IV B. Finally, in Sec.
may consider allP,) contributions and compare them to the IVC the ADC reformulation of the RPA equations will
general form briefly be addressed.

5. Derivation of C {2 and f?
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A. Generalized spectral moments and the particle- Since| W) is an eigenfunction of the particle number opera-
hole density matrix tor N, the deviation operator product has a vanishing expec-
A quantity related to the polarization propagator is thetation value, that is

p-h density matrix. s (s 5
wiguae @
pfsh,rrs':<\I’0|CZCrC:ICs’|q’0>_psrpr's’1 (39 J mo e p PP

WherepuV:<‘P0|CICv|\PO> denotes the familiar One_partide for arbit_rary matrix eIementsA,S. The immediate conse-
density matrix. ObviouslyP" can be obtained frorbI* (or ~ quence is that
IT) by the contour integral

1 2 fapp=0, (48)
pPh=— — jg I (w)do, (39 P
2 for any configuratiord. Of course this result could have been
where the integration path closes in the lower complexnferred directly from noting that
w-plane. Inserting fodl* (w) the ADC representatiofEq. -
(8)] yields the relation > fapp={(V,IN[¥e)=0, (49)
P
pPh=£Tf, (40) ~
) o ) as the intermediate stat¢¥ ;) are orthogonal to the exact
The p-h density matrix is a special casen0) of the fol-  4yound state. The relatio@8) holds in any order of pertur-

lowing generalized spectral moments: bation theory and, moreover, does not depend on the under-
= Te (H ¢! lying single particle basis set. It may serve as an important
S, =(Wolcle, (H—Eq)"Qqc, co|Wo) ying single p y 0

check of the complex expressions derived forUnfortu-
nately, only contributions witlpp or hh index pairs are con-

= gb (En— Eo)m<‘1’o|ClCr|‘I’n><‘1’n|C:f°s’ (Vo). cerned.
(41

Here the second line follows by inserting the complete set o
excited states¥,). One may readily derive the relationship

P. The dipole sum rule and the equivalence of length
and velocity form of the transition moments

The well-known Thomas—Reiche—KuhifRK) or di-

m)_¢t m )
s FK+O)™, (42) pole sum rule states that the first moment
by inserting into Eq(41) instead of the exact states the in- A
termediate statelSF' ;) of the ADC representatiofEg. (8)]. SP=2 (Eq—Eo)|(W,|Z|We)[?= 3N, (50)

One may note tha®™ can be calculated directly frofmand "

K-+ C without the need to diagonalize the secular maktix Of the excitation spectrum for threcomponent of the dipole

+C. The relationship operator
— ph N N
Yoap'a’ =~ Pgrp.qp T Saq'Pop' + PoaPap “3) 7= 0= d@cc,, (51)
between the-h density and the more familiar reduced two- =1 =1
particle density matrix equals one-half of the electron numbér This relation fol-
qu,prqr=<‘I’o|CgC$quCpr|‘I’o>, (44) lows from the identity of the explicit form and the double

commutator expression

shows thatp" is not so well suited for representing the 1)1 A~ oA

ground-state expectation value of a two-particle operator. As Sz = 2{Wol[Z,[H,Z]][¥). (52)
is well known! a more natural relationship is found for the Analogous relations hold for the andy components. The
ground-state expectation value of products of two singleADC formulation [Eq. (42)] for the generalized transition
particle operators, sap=3A,.c/cs andB=3Bc/c;. In  moments can be readily transferredSg@’ yielding

particular the compact relation 1 .
SM=F(2)"(K+O)F(2)= iN, (53

A_ B — At php_ Atet
(Wol(A=(A)(B—(B))[¥o)=A'pPB=AT B, (45 whereF (z) is the(column) vector of effective transition mo-

is obtained for the product of “deviation” operatorda  ments[see Eq(17)]
—(A) andB—(B). Here(X)=(¥y|X|¥,) andA(B) is the

matrix of single-particle integrald,s(B,s). Note that forA FSZ):;S f3rsd, (54)
=B, Eq. (45) describes the ground-state fluctuation of a ’ .
single-particle operator. for the transition operataZ. Equation(53) offers an impor-
An interesting conclusion follows for the choice: tant test for the quality of the computational scheme. How-
ever, deviations from the exact result arise not only from
B=R= 2 c:c, . (46) using approximative ADC schemes, but also from the incom-
-

pleteness of the underlying single-particle basis. For a dis-
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cussion of how these two factors can be disentangled to gension. In Ref. 40 the secular mat@®F” and the effective
certain extent, the reader is referred to Ref. 14. transition moment$~PA have been specified through second

Another significant quality test is the agreement betweerrder. Using the results of the present ADC analysis for the
the dipole lengthL) and dipole velocity ¥) forms of the  RPA diagram(7) in Fig. 2 the RPA—ADC scheme can be
transition moments. As is well known, the following identity extended to third order. The third-order contributions to
holds for the exact ground and excited states: CRPA are specified in EqgC21) and (C22).

(Em—Eo)(WilZ|Wo)=—i(Wu| P ¥o). (55)
. V. DISCUSSION
Here P, is thez component of the momentum operator. The

expressions on the left- and right-hand-side are referred to & General ADC properties
(L) and (V) form, respectively, of the transition moment. In  The third-order ADC procedure for the polarization
the ADC formulation the left-hand-side of E(S5) can be  propagator has lead to a structurally simple extension of the
written as existing ADQ?2) scheme. In both the ADQ) and ADQ?3)
_ 2 _ ()t methods the(vertical) electronic excitation energies are
(Em=Eo)(WnlZ|Wo)=Y™ (K+ C)E(2), (56) given directly by the eigenvalues of a Hermitian secular ma-
while the (V) transition moment is given by trix K+ C defined with respect to a configuration space of
A _wmt p-h (single and 2p-2h (double excitations(see Fig. 5.
(Win| P W) =Y"™ E(p,). (57) The corresponding transition moments are obtained as the
HereF(p,) is the vector of effective transition momefg.  dot products of the respective eigenvectors and a véaibr
(17)] for P,. By abstracting the scalar product with the ei- effective transition amplitudes. Both the matrix elements of

genvectorY(m)* both in Egs.(56) and (57), one yields the K+ C andf are given by first-, second-'z and third-order per-
general idgntity turbation expansions of Rayleigh—Sctimmger type. The

. ADC(3) method extends the perturbation-theoretical consis-
(K+C)E(z)=—iE(p,), (58 tency to third order for the single excitations and to first

which is no longer restricted to a particular transitiérs in order for the double excitations, allowing for higher_ accuracy
the dipole sum rule, deviations from this relation reflect boththan at the second-order level though at substantially higher

the approximation level of the ADC scheme and basis sefomputational cost. _ o
insufficiencies. The ADC computational schemes combine matrix diago-
In a similar way the static and dynaniidipole) polariz- nalization and perturbation theofyas little diagonalization

abilities can be expressed in terms of ADC quantities. FofS Necessary, as much perturbation theory as possible”
details the reader is referred to a forthcoming paper. Three basic properties, referred to @gularity, compact-
ness and separability establish the usefulness of these

schemeg?4142

(i) Regularitymeans that the perturbation expansions
for K+C and f behave essentially like the Rayleigh—

As is well known, the subset of Feynman diagrams con-Schralinger series foE, and|¥ ), respectively. There are
stituted by diagrams0), (1), (C) in Fig. 1, diagram(7) in no “dangerous denominators” provided there is a finite en-
Fig. 3 and similarly constructed diagrams of order ergy gap between the occupied and virtual ground-state or-
=4,5,6 ... can besummed exactly leading to the famous bitals.
random-phase approximatiofRPA) for the polarization (i) The explicit configuration spaces are small@ore
propagator. The RPA is an example of an infinite, though compact than those of comparable ClI expansions. For ex-
partial summation of Feynman diagrams. Obviously, the erample, a consistent second- or third-order Cl treatment of
ror introduced by omitting diagrams is of second order,single excitations would require to include&h configu-
which severely restricts the usefulness of the RPA in atomigations. By contrast, the explicit AD@) configuration space
and molecular applications. extends only to the @-2h excitation class.

It should be clear that the ADC procedure applied here (i) The ADC equations arseparable that is, local
to the full polarization propagator could have been specialexcitations in a system of noninteractirigeparatg frag-
ized as well to the class of RPA diagrams. As described irments decouple strictly from nonlocal excitations. This guar-
Ref. 40 this leads to an ADC representation of the RPAantees size-intensive results, i.e., neither excitation energies
polarization propagator part according to nor transition moments of docal) fragment excitation de-

TIRPAG) ¢ RPAT(wl—(KJrC)RPA)*lf RPA (59 {Jheenc;riir;gv:;;?eer;j[he method is applied to the fragment or to
where the configuration space of the secular matx ( While combination of perturbation theory and secular
+C)RPA is spanned by the manifold of single excitations equations is found also in the EOM/superoperator schemes
{J}={aj}. The second index pairs) of the effective tran- such as the SOPPA methdd213the latter schemes differ
sition amplituded ; ¢ is restricted tgp-h andh-p pairs. The  from the ADC approach in two essential points: The EOM
ADC reformulation of the RPA is of some interest as it splitssecular equations are of the non-Hermitian RPA type, and
the RPA pseudo-eigenvalue problem into two equivalenthe explicit secular configuration spaces are twice as large as
and, in general, Hermitian eigenvalue problems of half di-in the ADC case, as they comprise in addition to the physical

C. The random-phase approximation  (RPA) in the ADC
form
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excitations, e.g.p-h and 20-2h excitations, also the corre- ever, it turns out that the original diagrammatic procedure
sponding unphysical excitations, thatlisp and Zh-2p ex-  pursued above is still a much simpler and safer way for de-
citations in the given example. For a discussion of the comriving the explicit working equations.

pactness and separability properties of the EOM schemes the As the main representative of the CC methods we will
reader is referred to Mertinst al*® briefly consider the biorthogonal coupled cluste€C) rep-

It should be noted that the explicit AlI®) expressions resentation used, for example, in the CCLR theory of Koch
reflect the symmetry properties of the Hamiltonian. As a re-and Jogensef’3°and in the EOM-CC method as formulated
sult, the ADC secular equations decouple with respect tdy Stanton and Bartletf. For a more comprehensive discus-
different irreducible representations of the underlying sym-sion the reader is referred to Ref. 22. The bCC formulation is
metry group. In particular, spin-free working equations forpased on a mixed representationtof- E, in terms of two
singlet and triplet excitations can readily be derived for asets of states, namely the CE states
spin-independent Hamiltonian, using standard techniques of . R .
tensorial analysigsee, for example, Ref. 14 W) =Cyexp(T)| Do) =exp T)C;| Do), (64)

on the right-hand-side, and the associated biorthogonal states

1_ At _3
B. Comparison to CC methods (Wi [=(PolC/ exp(—T), (65)

Both the ADC schemes and the various CC based mettn the left-hand-side. Hei€, denote the physical excitation
ods can be discussed in the framework of a general concefPerators as specified in E(3). The familiar CC param-
referred to as intermediate state representatit®R).?? [n  elrization
the ADC case we recall that the secular equations could have |\P§C> _ expn(?)|<1)o>, (66)
been obtained directly as the representation of(#hefted

HamiltonianF — E, is used for the ground state; hefé,) denotes the HF

ground state. The cluster operator
T=>1C,
|

f —(TIf |CTC |¥o) (61) is given as a sum of phy3|cal excitation operators and, thus,
J J

" ® B T commutes with an\C ;- The bCC representation leads to
with respect to a set of “intermediate” staté¥ ;). These the following non-Hermitian secular matrid:

intermediate states are constructed from a set of “correlated EPRSEEE 0

excited(CE) states” M= (W [H = Eo[¥5)

(K+C)1y=(W|A—Eq| ¥ ), (60)

and the generalized transition operator

W0 =G, Wy, 62) =(®o|C exp(—T)[H,Cylexp( T)|dy). (67)
The excitation energies,, are obtained either from the right
where :
or the left eigenvalue problem
{Cy}={clcy;clclec . a<b.k<l; ...}, (63 MX = XQ,

is the manifold of physical excitation operators, by succes- YM=QY", (68)

sive  Gram-Schmidt orthogonalization of the-h, wh the di | matrix of | -~
2p-2h, ..., excitation classes. As a zeroth excitation class'/neree is the diagonal matrix of eigenvalueg,, andX(Y)

the exact ground _stafe ) may be incorporated so that the denotes the matrix of righdeft) eigenvectors. The two ver-
resulting intermediate states are orthogondhitg) sions of the secular equations can be combined according to

YIMX=0, Y'X=1, (69)

so that the right and left eigenvectors are biorthonormal but
As shown in Refs. 22, 41, and 42 the representation based an general not normalized. The corresponding right and left
these “excitation class orthonormalizéECO)” intermedi- eigenstates can be written as follows:
ate states has the basic properties of regularity, compactness,
and separability which establishes the equivalence of the |\pn>22 Xin| ®0),
ADC and ECO-ISR formulation. Here the role of the or- [
thonormalization procedure is essential. Using symmetric or- (70)
thonormalization instead of the ECO Gram—Schmidt proce- (\Ifn|—2 YWy
dure would not lead to a compact and separable
representation. Explicit closed-form expressions for the |t should be noted that the excitation energies are not
blocks of K+C andf for the first three excitation classes affected in the extended representathdh including the ex-

have been given in Ref. 41. This provides an alternativesct and the HF ground statgl’$©) and|d,), respectively
approach for deriving perturbation expansions for the matrix 0
|
. (71)

elements oK+ C andf, namely by using perturbation theory M’ =
for | W) in the closed form expressions. In practice, how- 0 M

(V5| ¥g)=0.
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1p-1h 2p-2h 3p-3h 4p-4h 5p-5h ... bCC matrixM is canonical in the lower triangular part, but
has the typical Cl structure in the upper triangular p@tote
that in the derivation of Ref. 22, the bCC order relations
could have been made more stringéas in Fig. &b)] by

exploiting the fact, thal is a physical operatorAs a result,

p-th | 0 | 1 | 2] 3| 4

226 | 1 0| 1] 2] 3

3p-3h | 2 1 0 1 2 ... the bCC compactness properties are weaker than those of the
ADC. This means, for example, that the usual truncation of
dp-th | 3 | 2 1 0 L the configuration space beyond tpeh and 20-2h excita-

tion manifold, allows for third-order consistency in the ADC
case, but only for a consistent second-order description of
the excitation energies in the truncated bCC scheme.

The second essential property, the size intensivity of the

5p-5h 4 3 2 1 0

(a) results, is fulfilled for the excitation energies as a conse-
1p-1h 2p-2h 3p-3k dp-4h 5p-5h . .. guence of the separability of the characteristic polynomial
(see Refs. 22 and 29
Ip-1h | 0 1 1 - - ... The CCLR and EOM-CC methods differ in the treatment
of spectral intensities. In the latter method the squared tran-
Zp2h | 110 11— sition moments
3p-3h 2 ! 0 ! L |Tn|2=a<q’n||5|\ch><‘Pocc|[3|‘I’n>, (75
dp-4h | 3 | 2 | 1 |0 |1 |.. are obtained as the product of a left and a right transition
moment
5p-5h | 4 | 3 | 2 1 0
T =(¥,|D[¥5S),

. (76)
(b) T =(¥gID|v,).

FIG. 6. Order relations of the secular matrix blocks in the ABEECO-IS  The normalization constant = <\[fgc|\pgc -1 corrects for

representatioria) and in the biorthogonal coupled clust@&CC) represen- : : ot CC ;
tation (b). The numbers in the blocks indicate the lowest nonvanishing orderthe intermediate normalization ¢ﬂr0 > Here and in the

of perturbation theory; empty blocks vanish. following we assume thaW ¢<) and| W) differ by symme-

try so that there is no admixture ¢¥5%) in |¥,) of Eq.
(70). While the left transition momeri{’ is separablésize-
intensive, the right transition moment does not have this
property??** The weaker compactness property leads to a
vi=(®o|[H,C,TexpT)|®y). (720 second-order consistency of botl{) and T (for a single
excitation in the truncated bC(SD) method. In the CCLR
formulation of Koch and fgensef’ one keeps the left tran-

Herev is a row vector with the elements

The left eigenvector oM’ associated with the ground state

(0=0) sition moment as it is but sets out from the following form
v ( 1 ) for the right transition moment
o™ Y — A
= T =(Wo|D[Wy), (77
where .
Xg=—vM’1, 73 where (¥,| is the dual ground state of Eq74). Since

(Wo|¥o)=1 the normalization constant in E¢Z5) can be
can be used to form a representation of the ground state skipped @=1). The lack of separability is circumvented by
_ rewriting T{" as follows:
(Wol=(Pol+ 2 Y{(Wil, (74 —
' T =(Wo/DC, w5

in terms of the biorthogonal states. This is the “dual” state — a4 CO . T A Al CO
designated A | in the work of Koch and fgenserf>*° the =(Wol[D,Cnll W) +(Wo|CD[ W), (78)
row vectorv is their vectory. o con

The analysis of the perturbation-theoreti¢@ll) consis- where[W)=Cy| W) with
tency of approximative methods, obtained, for example, by | .
truncating the configuration space, has to be based on the anzl: XinCy . (79
order relationgthat is the lowest nonvanishing PT orglef
the blocks of the secular matrix. In Fig. 6 we compare theAs an obvious consequence of the commutator, the first term
order relations of the ADCECO-ISR and bCC secular ma- on the right-hand-side of Eq78) is separable. The second
trices as derived in Refs. 22 and 36. While the ADC seculaterm, of course, is not yet separable, but may be rewritten
matrix fulfills the so-called canonical order relations, thefurther by using the identity
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VA E DW= (WA & (A — Bt specified by Eqs(C9)—(C37), there are 29 distinct terms,
(W ol CoD|WG™) =(Wol Col o @n) involving fourfold and partly fivefold summations over or-
X (H—Eq+ wp) D[ ¥Y). (80)  bital indices. The computational cost of this part scaleN’s

. . . _ with the numberN of orbitals (in the rough estimate not
Now (H—Eo+w,) " may be replaced by its biorthogonal djstinguishing between occupied and virtual orbitals

representation more favorableN’ scaling is found for generating the
0 . p-h/2p-2h coupling block. The number of nonvanishing
2 [T M+ wn) XT3 (81)  matrix elements of the latter block and of thp-2h block is

h N®, so that an iteration step in the diagonalization procedure

Note that the use of the extended representation in terms atales adN®, that is, as in the familiar SDCI treatment. The
M’ would make no difference. As a result H§0) becomes  much simpler ADG2) scheme, for example, scalesM3in
the iteration step and as® in the generation of theg-h

(WolCD|WES =2, (WolCo(H—Egt wn) C/| W5 block.
J The different types of matrix elements in the blocksof
X (M + wnml(q,ﬂ mq,gc) suggest to adopt a mixed strategy for the matrix-times-vector

product in the diagonalizer iterations. For thp-2h block,
which is linear in the Coulomb integrals, the adequate choice

- _ wME &1 6 CC
= IZJ (Poll[[H,C1,Crl[¥5™) is adopting the integral driven direct diagonalization tech-
A nigue, as used in direct ClI methods. The second- and third-
X (M+ wp) (5D wSS). (82)  order matrix elements in the other blocks should preferably

be calculated once and stored on disk. According to an ex-
ploratory analysis, their computation can be performed quite

efficiently by splitting the summations into subsequent
— A A CG — A a4 passes through ordered segments of the Coulomb integral

(ol €DIWE) =2 (Woll[H,Ci1.CllWo)Xi(—on)Xns gt

’ (83) A challenge of its own kind is the third-order treatment

of the intensities. Though the scaling behavior here, like for

To make contact with the original formulation of Koch and
Jirgensen Eq(82) may be written as

where the energies, iN® and N’ in the p-h and 2p-2h parts,
o L LA [ GO respectively, the large number of distinct third-order contri-
Xi(—on)= 2 (M+wn)y (W3[D[¥55). (84) butions tof (altogether about 200 termsauses severe prob-

lems even for an error-free implementation in a computer
code. While it would be desirable to have consistent third-
; , order transition moments, e.g., for calculating accurate polar-
tensive. The compactness property, of course, is not changedjiies, in normal applications the second-order treatment

by this procedure. of the intensities is by far sufficient. This suggests to com-

Our findings can be summarized as follows. The bCCyine the transition moments of the ADE scheme with the
representation allows for practical nonperturbative approxi-

. > . eigenvectors of the AD@) secular matrix. Such a scheme
mation schemes which is a very desirable feature. In COMGill be referred to as ADG3/2) scheme
parison with the ADC(ECO-ISR representation, which, '

however, has been used only in combination with perturba.

tion theory (for the secular matrix elements and effective expressions. It seems, however, that what one finds here is

transition momens the CC method has the dIS"’Idv"’mtagesreflecting the intrinsic complexity of the excitation problem

that the secular matr|>.<.|s non—ngmman and that the COMyather than artificial complications of the method, which, to
pactngss and separaplllty propertles_a}re weaker. A relatlVelcl_(mphasize it once more, is structurally utmost simple. How
complicated .form“""?“"” O.f th? tran_S|.t|on moment IS NECeSyaliable are the results presented here? As an effort to cope
sary to obtgm. S|ze-|nten§|ve .|ntens'|t|es. A congstent Fh'rd'vvith this obvious problem, the explicit ADC procedure has
order description of requires inclusion of the triple excita-

tions in the explicit configuration space. A consistent third-been performed independently and individually by each of

order CC method referred to as CC3 model that indeeéhe authors allowing for threefold mutual checks.
considers the triple excitations though with certain simplifi-

cations of the full CC expressions has been developed by

Christianseret al

Indeed, as was shown by Koch andgknsen, the right tran-
sition moment in the form of Eq$83) and (84) is size in-

Finally one may wonder about the considerable com-
plexity of the derivation and the final form of the AD®)
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0001 0100 0100 0100 0010
010 1010 0020 1010 0011 1001 FIG. 7. Matrix representatiorfadja-

01 101 0200 0101 0101 1100 0200 cency matricesof the zeroth-, first-,

10 010 0010 1000 0010 0010 0010 and second-order Feynman diagrams

for the polarization propagator.

() 1) A B c D E

APPENDIX A: DIAGRAMMATIC RULES APPENDIX B: COMPUTER GENERATION OF
DIAGRAMS
The rules for drawing and evaluating Feynman diagrams

(FD) are well documented in textbook$or example, see The matrix representation of Feynman diagra#B) in

Fetter and Walecky The rules for the associated time- Aprikosov (or Hugenholtz notation presented in the follow-
ordered or Goldstone diagrant&D) are less familiarfor  ing is based on the concept of adjacency matrices of graph
the GD rules in the case of the electron propagator Setheory (see, for example, Haral§). The use of adjacency
Cederbaurt?). For the case of the polarization propagatormatrices in the computer generation of Feynman diagrams
the Feynman and Goldstone diagram rules have been amphas peen discussed by Paldus and W8 Using a some-
described in Appendix A of Ref. 11, and for brevity we may \hat different method than the one described below the latter

refer the reader to this source. However, here the followingthors have generated a complete list of third-order dia-
corrections concerning the overall sign of a diagram must bgrams for the polarization propagaffr.

made: According to the following prescription one may map a
The rule(F4) should read: ) . given nth order FD uniquely to a quadratiai ¢ 2) matrix:
(F4) Multiply by a sign factor (-1)-, whereL is the (i) Label then+2 vertices of the FD by the numbers

number of closedFermion loops, and by an additional fac- 1,2, ...n+2, beginning with the togoute vertex and end-
tor (—i) stemming from the definition of the polarization ing with the bottom(oute) vertex.
propagator. When all factors for thenth order diagram are

_ (i) Form a quadraticr{+2) matrix S wheresS;; is the
collected one obtains the overall factor

number ofG(® lines running from vertex to vertexj. All
V(i iy2n+1_in+1 other entries are set to zero.
(=D (=D"(+10) i \

o o o (ili) Optionally an extra symbol can be used as an en-
An additional factor (1) applies if one Fermion line runs try in Sy, to indicate the auxiliary-line connecting the
from the bottom(lower external vertexto the top(upper  wyo outer vertices.
external vertexof the diagram(in this case another Fermion Ei 7 sh the adi " for the EDs th h
line runs from the top to the bottom; this is opposed to the |gured Sd ows the adjacency matrices for the FLS throug
case where the Fermion lines run from top to top and fronpeCONd Order.

bottom to bottom). The following _properties can readily be verified:
(1) The matrix element§;; can assume only the values
In a similar way the GD ruléG4) has to be modified: 0, 1, or 2; Diagonal elements vanisg; =0. For inner ver-
(G4) Each hole line introduces the factor (). Thus, ticesi,j=2,...,n+1, the row sum and the column sum is

multiply by a sign factor -1)-*M, whereL is the number 2. For the(outep vertices 1 anch+2 the row and column

of closed loops an is the number of hole lines. Since each sum is 1.

(innen vertex gives a factor<i) and each cut gives a factor (2) Different diagrams are mapped to different matri-

(+i), one obtains together with the factor-{) from the ces, that is, the mapping is one-to-one for the range of im-

definition (of the polarization propagatothe overall factor ages.

simply as (3) A matrix fulfilling the propertie1) does not nec-
(=)= )+ 1=+ 1 essarily correspond to a FD. For example, the corresponding

‘ diagram may be unlinked; different matrices may belong to

An additional factor ¢-1) applies if one(or two) Fer-  the same FD. _ _

mion ling(s) run between the two external vertices. (4) Time orderings of a FD correspond to simultaneous
For illustration we consider the time ordering @)0of  permutations of rows and columns in the original matrix.

the RPA diagram(7) (Fig. 4). The analytical expression Based on these properties one can readily devise an algo-
reads rithm for generating all FDs of a given order. One simply
710 _ 1 1 constructs all matrices with the properti€l9 and then dis-
Daimp=(~L)(0—€a—e) “(em+ €~ €a™ &) cards any matrix not qualifying for a FD or being only a
. different time ordering of a previous FD. For eaah order
X IE Vaitek VejfdilVapimj) (€m+ €~ €~ €c) FD one obtains a matrix representation of the-Q)! Gold-

e stone diagrams by performing all simultaneous row and col-
umn permutations of the original matrix. Finally each matrix
can be converted into a symbolic form specifying the Cou-
Obviously this term is of the formA,) (Table Il) and one lomb integral products and the-denominators of the corre-
may readily extract the corresponding Contributiorigﬁmb. sponding analytical expressions. This allows one to sort the

X(€m+ Gj_Eb_Gd)_l.
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diagrams into groups of the same integral product type. A -
complete specification of the final analytic expression includ-Cay ark’
ing the overall sign has not been attempted.

APPENDIX C: ADC (3) EXPRESSIONS FOR K+ C

In the following we collect the expressions for the secu-
lar matrix K+ C (effective interaction of the third-order
ADC scheme foll". (A complete list for bottK+ C andf C(ii,k,
is available at our websit®) The explicit ADQ?3) configu-
ration space comprises thé And 2h-1p configurations. For
notational brevity we use the short-hand notation

Vv
pa[rs]
Vogrs=———— —— ——» (Cy
PATS e+ eq— € — € 3.4
whereVyqirs) = Vopqrs— Vpgsr @nd €, denote the antisymme- 2%
trized Coulomb integrals in “1212” notation and HF orbital
energies, respectively. The letters,j,k,I,... and
a,b,c, ... refer to occupied and unoccupied orbitals, re-
spectively. The subscriptp,q,r, ... label both occupied
and unoccupied orbitals.
cB9)
p-h block: aka’'k' —
zeroth through second ord&ee Ref. 11
Kak arkr = (€a— €k) Oaar Ok » (C2
1
Clla="Vawiai (€3
(2) — A (B) (©)
Cak,a’k’ Cak a’'k’ + Cak a’k’ + Cak a'k’’ (C4) Cg?’k’
where
1 1
A
CE:lk?a'k’ = E(Skkrg VacijVija’c( €j + €J' — €. E(Ga'i‘ Ea/)) ,
i
(CH
(37)
(B) 1 Cak a’'k’
Cak a’k! — 2 Oaar C 4 VedkiVk’icd §(5k+ €)TE— €~ €q
(C6)
1
c
C;k)a k! ; Vkria’cVacik §(€k+ €k~ €3 €a1) T €~ Ec) .
’ (38)
€n  Cakaw™
Third-order:
there are 29 contributions
c® (31)
ak a'k’ 2 Cak,a’k” (C8)
c(89)

as specified beloWEgs.(C9—(C37)]. Note that the expres- Caar =

sions given here correspond to a Hermitignblock [see Eq.
(26)]. The terms are ordered according to their diagrammatic
origin.

c19
diagrams(1)—(6) aka’k’ —
@y _1
Cakark = 45aa’;j Vijcd Vi mij]Vedkm
ijm (311) _
Cak a'k!

€m— €.~ €4+ (1/2) (ex+ €/)

+h.c., (C9
€t eEm— €€y
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1
= § 5aa’c,dz‘f’g Vcd[fg]

\" Vi ViriedVigri
fgkiVk’i[cd] + k’icd V fg[ik] ’ (ClO)
€k+€i_ec_6d Ek/+&'i_6g_6f
5aa’ 2 VcleVk’]cfvlf[dk]
'vJ
€—e.— e+ (1/2) (e + €
w|GmemarURactad) o e
ExT €j— €.~ €
_5aa’cd ‘ ch[fi]
i
VaikiViri ViricdVidrki
dfkjVk’i[cd] + k’icd V fd[kj] , (ClZ)
Ek+5i_€c_€d €kr+€j_6d_€f
5kk’C§f VedijVija’Vaf[ed
i
o €tej—€— (U2 (exteq) the 13
€+ €j— €, € o
1
:§5kk' > Vimiij]
C
i,j,m,l
> VacInVij[a’c] _ Vija’cvac[lm] (C14)
€T €€ € Emt €~ €x T € ,
5kk’ 2 VCdIJVIma’dVaJ[mC]
i j m
y €t en—€q— (1/2) (ex+€qr) he (19
€+ €m— €2~ €4 v
1
5kk'2 Vindid]
i ] m
VagimViira ViiareV i
adjmVij[a’c] + ija’cVadmj , (C16)
€T €~ €€ €t €m— €a — €g

1
5 E VijcdVedjm( Saa’ Vi miki] — Skk Vamia’i])»

(C17

1
=3 VijcaVdtij( Saar Ve ki) T Okk Vacar 1)

o

0, f
1)
(C18

1 v 1
2 s ijcd Ved[fj] € — €
|

X(é‘aa,Vk,f[ik]-f—5kk,Vaf[ari])+h.C., (Clg)
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cB12) _ 2 Vv 1
aka’'k! = Vijed Vmdlijl ¢ ¢
i j m
X (8aar Vi cikm) — Ok Vacrarm) +h.C., (C20
diagram(7)
1 1
(313) _
k! A Iarg ————— +N. .
aka k'™ D & z VCdI] ajlck Vik [a’d] €t € —€ea—eq h.c
(C2)
cB) _
Cakark = 2 Viclid]
VadijkVik[a’c] . Vik'ca’ Vadjk] (22
6k+ €~ €37 € fk'+fj_€a’_5d ,
diagrams(8) and (9)
3,15
Cgk a’)k’_ _g VacijVijedVak'1ark T h-C., (C23
0
316 L
Cak a’k’~ o CE Vedij Ja[Cd]VIk’[a’k] e, +h.c., (C29
i,
c(317) 1
aka’k'_z 2 VacjmVjmric] Vik'[a’k] p +h.c.,, (C2H
i,j,m
diagrams(10) and (11)
318 L
Cakark = Zg VedikVijedVakrfarip T h-C. (C26
0
@19 1
Caka'k’_z E VedijVijrdig V' area’] . +h.c., (C27
C €k c
I
@20 1
Cakark =3 C;f Vdfichi[df]Vak'[caf]HH'LC-, (C28
d
diagrams(12) and (13)
3,21
C.(aka’)k’ 2 VadijVik'a’cVej[dk
I,J
€— €.+ (1/2) (e, + € —€,— €4
% i c ( )( k k a a) +he
€T €E—€5—€;
(C29
3,22
C;ka’)k’ CE VedjkVikracVialdi]
I
€— €.+ (1/2) (ex+ € —€,— €4
> i c ( )(k k a a) +h.C.,
et eE—€— €
(C30)

diagrams(14) and (15)

Trofimov, Stelter, and Schirmer

1
3,23
C;k a’)k’ =5 c%f VedikVkria’fVatfed]
i
€— €+ (1/2) (e + € —€,— €1
% i f ( )( k k a a) J,-hC,
€T €— €5~ €
(C3)
3,2
Cgkaél’)k’_ ; VacijVk'mea Vij [k
i,j,m
em— €.t (L2 (et e — €5~ €
x( m— €t (1/2) (&t &0 — a))Jrh.c.,
€t eEm— €a— €
(C32
diagram(16)
Cf’iiﬁ)k’_ %gj VacijVijda' Vdk'[cK - (C33
diagram(17)
3,26
C;k = %;j VedikVk'jedVaifa’j] » (C34)
i
diagram(18)
Cﬁ?’)k’ 2 VacijVima cV|k’[km] ’ (C35)
i ] m
diagram(19)
3,28
C;ka’)k’ Cgf VedkiVikrdfVaffa'e] » (C36)
i
diagrams(22) and(23)
3,29
C;k = g VacijVjk’cdVdifa'k) T N.C.. (C37)

0
The contributiongC9)—(C20 are related to the ADC quan-

tities of the one-particle Green’s function according to Eq.

(35). In particular, one may note the relation

3,
;9 Coar =~ Saar Z k(@) + S S (),

whereEé?,(oo) is the so-called static self-energgee Ref.
39).

1p-1h/2p-2h coupling block:

C;t)’a,b,kq,: Saa Vi1 [kb'] ™ Oab V17 [ka']
— Sk Varfarb1t Sk Vakarny,  (C38)
5

C;i),a'b'k'v:izl C(azk’,i;’b’k’l’ ; (C39

where
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ngk,g'b'kw:((%a'; Vicrib e Vi efik] —(a%»b’))
—(K'=1"), (C40

SO P 5 % —(a' b’

aka'b'k'l’ = | 5 %aa’ &4 VieledVedlkb] (a'—b"),
(C41)

C;2l£|:2’b’k’l’:<<5kk’; ViripcVaclia’] —(a’<—>b’)>
—(kK'=1"), (C42

1

2,4
C;k,a)’b’k’l’:<2 5kk’i2j Vija’b’VI’a[ij]) _(k,Hl ,)l

(C43
ngk,?'b'kw:(g Vk’l'a'cVac[b'k])—(a'<—>b'), (C44
ngk’?rbrqu: 2| Vl’ia’b’Vak’[ik])_(k’HII)- (C45)

Here (p<q) means repeating the preceding term, but ygith
andq interchanged. g-2h block:

Kabki,arbrk'1r = (€at €p— €x— €]) Saar Sppr Skkr Sii»
Célb’khafb/k,. 1= Ok 011 Vaparb'] T Oaar Obbr Vi1 [kI]
— (b 611" Vakr[ark] T Oob Skk Vairar]
+ Saar 011" Vo [b'k) T Saar Ok VoI [br1])
+(k'—=l")+(@'<b")—(k'«~l1",a’"~b").
(C40)
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