
JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 22 8 DECEMBER 1999
A consistent third-order propagator method for electronic excitation
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Physikalisch-Chemisches Institut, University of Heidelberg, D-69120 Heidelberg, Germany
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A propagator method referred to as third-order algebraic–diagrammatic construction@ADC~3!# for
the direct computation of electronic excitation energies and transition moments is presented. This
approach is based on a specific reformulation of the diagrammatic perturbation expansion for the
polarization propagator, and extends the existing second-order@ADC~2!# scheme to the next level of
perturbation theory. The computational scheme combines diagonalization of a Hermitian secular
matrix and perturbation theory for the matrix elements. The characteristic properties of the method
arecompactconfiguration spaces,regular perturbation expansions, andsize-consistentresults. The
configuration space is spanned by singly and doubly excited states, while the perturbation
expansions in the secular matrix extend through third order in thep-h block, second order in the
p-h/2p-2h coupling block, and first order in the 2p-2h block. While the simpler ADC~2! method,
representing a counterpart to the MP2~second-order Mo” ller–Plesset! ground-state method,
recommends itself for application to larger molecules, the ADC~3! scheme is aimed at a more
accurate description of molecular excitation spectra. The relationship of the ADC~3! scheme with
coupled cluster methods is discussed, focusing here in particular on the treatment of transition
moments. ©1999 American Institute of Physics.@S0021-9606~99!30345-7#
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I. INTRODUCTION

As is well known, a central entity in the derivation o
many-body methods for the treatment of electronic exc
tions in atoms and molecules is the polarizati
propagator.1–3 Among the various computational schem
based on or related to the polarization propagator one
distinguish between algebraic methods and diagramm
methods. Practical computational schemes of the former k
have been developed in the framework of the equation
motion method~EOM!,4–7 and the essentially equivalent s
peroperator formalism.8–10 Following the diagrammatic ap
proach, based on the diagrammatic perturbation expansio
the polarization propagator, a general procedure referre
as algebraic–diagrammatic construction~ADC!11 has been
used to derive approximation schemes beyond the leve
the famous, though unsatisfactory, random-phase approx
tion ~RPA!. These many-body methods have two charac
istic features. Firstly, the excitation energies and transit
moments~spectral intensities! are determined directly, tha
is, without the need of performing separate calculations
the initial and final states, as is the case in the conventio
wave function approach. Secondly, the methods are po
tially size-consistent~here, more specifically, size-intensiv!
which is crucial in the application to larger systems. Whet
a method is size-intensive can be seen in the application
system consisting of two separate~noninteracting! frag-
ments. Here the resulting excitation energies and transi
moments for a local excitation should not depend on whe
the method is applied to the whole system or to the c
cerned fragment.

a!Permanent address: Laboratory of Quantum Chemistry, Computer Ce
Irkutsk State University, 664003 Irkutsk, Russian Federation.
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In practice, the resulting computational schemes co
bine in one form or another the solution of secular equati
~eigenvalue problem! with perturbation theory in form of
finite expansions for the secular matrix elements or rela
quantities. A~not necessarily sufficient! measure of the gen
eral quality of the approximation scheme is the perturbat
theoretical consistency of the results for, say, the class
single or particle-hole (p-h) excitations. For example, th
RPA is only a first-order method, as the error introduced h
both for the (p-h) excitation energies and transition mo
ments is of second order. A substantial improvement of
results was achieved by second-order methods, such a
SOPPA ~second-order polarization propagator approxim
tion! method9,12,13derived within the EOM/superoperator ap
proach, or the second-order ADC~2! scheme.11,14 A third-
order extension of the algebraic EOM/superopera
formulation has been presented in Ref. 15, but, to the bes
our knowledge, this scheme has never been implemented
computer code nor used in actual applications. While
available second-order schemes are quite practical and
cient ~the computational effort may be compared to that
the familiar SDCI ~configuration interaction including al
single and double excitations on the Hartree–Fock~HF! ref-
erence state!, the accuracy, say, for thep-h excitation ener-
gies is comparable to that of the widely applied MP
~Mo” ller–Plesset second-order perturbation theory! method
for the ground-state energy. Typically one has to expect
error of 60.5 eV for thep-h excitation energies which is
clearly inferior to the accuracy standard of the succes
CASPT2 @complete active space multireference SCF~self-
consistent field! plus second-order perturbation theor#
method.16,17 The relative modest performance of secon
order methods is a well-known fact in the related field
electronic ionization, where for a long time third-ord

er,
2 © 1999 American Institute of Physics
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propagator and related methods have been used with co
erable success.7,18–21The claimed accuracy standard here
60.2 eV for the ionic main states~single hole states!. In
view of this situation the development of a consistent thi
order method for electronic excitations would be highly d
sirable, and one may wonder why such a scheme has
emerged as yet.

In this article we will extend the ADC procedure beyon
second-order and derive complete third-order@ADC~3!#
equations for the polarization propagator. The derivation
veals a substantial complexity inherent to this level of a
proximation which apparently has discouraged previous
tempts to develop third-order schemes for electro
excitation. Compared to the electron propagator~one-particle
Green’s function! in the ionization problem, the complexit
encountered here is greater by one order of magnitude.
holds in particular for the calculation of the third-order tra
sition moments. For the excitation energies, however,
situation is more favorable. As will be seen, the ADC~3!
expressions for the secular matrix are not at odds with
end of devising a both efficient and accurate computatio
scheme. Like at the second-order level, the explicit confi
ration space of the ADC~3! secular matrix is spanned by th
manifold of singly and doubly excited states. An appar
bottleneck is the plethora of 29 distinct third-order contrib
tions to thep-h block of the secular matrix leading to aN8

scaling in the computation of this block.
The ADC reformulation of the polarization propagat

can be introduced in an alternative way as a so-called in
mediate state~ISR! representation22 of the ~shifted! Hamil-
tonian Ĥ2E0 , whereE0 is the exact ground-state energ
This point of view puts the ADC approach directly into th
context of methods extending the successful coupled clu
~CC! method to the treatment of electronic transitions. Me
ods of this type are the multireference coupled clus
~MRCC! schemes,23,24 the SAC-CI~symmetry adapted clus
ter! method,25–27the coupled cluster linear response~CCLR!
theory,28–32 and the equation-of-motion coupled clust
~EOM-CC! method.33–35 For a general discussion of variou
aspects of these ISR methods, the reader is referred to
22. In contrast to the EOM/superoperator and ADC schem
the CC methods are basically nonperturbative~the secular
matrix elements here are constructed from terms gener
by a CC ground-state calculation!. However, it should be
noted, that most CC schemes reported so far are only
sistent through second order for the energies and trans
moments. A consistent third-order method referred to as C
model has been presented by Christiansenet al.36 A com-
parison of the ADC approach and CC methods is given
Sec. V B.

II. ALGEBRAIC–DIAGRAMMATIC CONSTRUCTION
„ADC… FOR THE POLARIZATION PROPAGATOR

In the following we will briefly review the polarization
propagator and the general aspects of the ADC approach
the original derivation and further details the reader is
ferred to Ref. 11.
id-
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A. Review of the polarization propagator

The polarization propagator is defined as a matrixP(v)
of energy~or time-! dependent functions1

P rs,r 8s8~v!5P rs,r 8s8
1

~v!1P rs,r 8s8
2

~v! ~1a!

P rs,r 8s8
1

~v!5^C0ucs
†cr~v2Ĥ1E0

1 ih!21Q̂0cr 8
† cs8uC0&, ~1b!

P rs,r 8s8
2

~v!5Ps8r 8,sr
1

~2v!. ~1c!

Here we consider anN-electron system with a~nondegener-
ate! ground-stateuC0& and energyE0 . Moreover, we assume
a single-particle representation based on the ground-s
Hartree–Fock~HF! orbitals uwp&. The associated creatio
~annihilation! operators of second quantization are deno
by cp

†(cp). Ĥ is the Hamiltonian of the system, and

Q̂051̂2uC0&^C0u, ~2!

denotes the projection operator onto the orthogonal com
ment of the exact ground-stateuC0&. The positive infinitesi-
mal h, guaranteeing the convergence of the Fourier trans
mations between time and energy representations, will
dropped in the following whenever unessential. Accordi
Eq. ~1!, the polarization propagator consists of two par
P1(v) and P2(v), which are related by Eq.~1c!. There-
fore, it suffices to confine oneself to the partP1(v). The
physical content ofP1(v) is explicit in the so called spec
tral representation1 reading in a compact matrix notation

P1~v!5x†~v2V!21x. ~3!

Here V is the diagonal matrix of~vertical! excitation ener-
gies

vm5Em2E0 , ~4!

andx is the matrix of transition amplitudes

xm,rs5^Cmucr
†csuC0&. ~5!

The latter amplitudes enter the calculation of spectral int
sities as follows. Let

D̂5(
r ,s

drscr
†cs , ~6!

denote a single-particle transition operator~e.g., thez com-
ponent of the dipole operator!, wheredrs are the associated
one-particle integrals~e.g.,drs5^w r uẑuws&). Then the transi-
tion moment for the 0→m transition can be written in the
form

Tm5^CmuD̂uC0&5(
r ,s

xm,rsdrs . ~7!

The well-known formalism of diagrammatic perturb
tion theory ~see, for example, Fetter and Walecka1! allows
one to construct the perturbation expansion of the polar
tion propagator in terms of the famous Feynman diagra
Figures 1 and 2 show the Feynman diagrams~in Abrikosov
or Hugenholz form! through second and in third order, re
spectively. According to the diagram rules, annth order
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FIG. 1. Feynman diagrams for the polarization prop
gator through second order.
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Feynman diagram introduces ann-fold energy~or time! in-
tegration over the arguments of then inner vertices. Explicit
analytical expressions for the result of the internal integ
tions can be obtained from the so-called time-ordered
Goldstone diagrams.1 In nth order each Feynman diagram
gives rise to (n12)! Goldstone diagrams.~For the diagram
rules and an example see Appendix A.!

The time ordered diagrams decompose into two disti
classes, I and II, corresponding to the two possible time
derings of the external verticest and t8. Class I (t.t8) and
class II (t,t8) contribute exclusively toP1 and P2, re-
spectively. This establishes a direct diagrammatic pertur
tion expansion for the partP1 to be considered below. Fo
the second-order diagram C the 12 Goldstone diagrams
tributing to P1 are shown in Fig. 3. In third order there ar
already 60 Goldstone diagrams forP1 per Feynman dia-
gram@see Fig. 4 displaying the diagrams associated with
Feynman diagram~7!#.

B. General ADC equations

In the ADC formulation the polarization propagator pa
P1(v) is written in the general algebraic form

P1~v!5f †~v2K2C!21f. ~8!

This nondiagonal representation may be established
similar way as the~diagonal! spectral representation@Eq. ~3!#
by inserting a complete set of so-called intermediate sta

uC̃J& on the right-hand-side of Eq.~1b! instead of the exact
excited states~see Sec. V B!. These states are labeled like th
usual excitation manifold ofp-h ~particle-hole!, 2p-2h,
3p-3h . . . -excitations, that is

$J%[$a j , abi j , . . . ;a,b, i , j ; . . . %.
-
r

t
r-

a-

n-

e

a
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Here and in the following we adopt the usual convention
designate occupied orbitals byi , j ,k,l , . . . , unoccupied~vir-
tual! orbitals by a,b,c, . . . , and unspecified orbitals by
p,q,r , . . . . Thesecular matrixK1C introduced in Eq.~8! is
defined according to

~K1C! IJ5^C̃ I uĤ2E0uC̃J&, ~9!

as the intermediate state representation of the~shifted!
HamiltonianĤ2E0 , while the matrixf of ‘‘effective’’ tran-
sition amplitudes is given by

f I ,rs5^C̃ I ucr
†csuC0&. ~10!

The ADC procedure aims directly at determining the secu
matrix K1C and the effective transition amplitudesf, as-
suming that these quantities can be expanded in perturba
series

C5C(1)1C(2)1C(3)•••,
~11!

f5f (0)1f (1)1f (2)•••,

with respect to the usual Mo” ller–Plesset partitioningĤ
5Ĥ01ĤI of the Hamiltonian. The zeroth-order~or HF! part
of the secular matrix is given by the diagonal matrixK of HF
excitation energies, that is

Kak,ak5ea2ek ,
~12!

Kabkl,abkl5ea1eb2ek2e l ,

and so forth, where theep denote HF orbital energies. Inser
ing the expansions of Eq.~11! in the ADC form @Eq. ~8!#
generates a perturbation expansion for the ADC form
P1(v), which now can be compared with the original di
.

FIG. 2. Third-order Feynman dia-
grams for the polarization propagator



-

the

nt

a-

of

nts

on

d

d

9985J. Chem. Phys., Vol. 111, No. 22, 8 December 1999 Third-order propagator
FIG. 3. Goldstone diagrams associated with the second-order Feynman
gram ~C!; only diagrams contributing toP1 are shown.

FIG. 4. Goldstone diagrams associated with the third-order Feynman
gram ~7!; only diagrams contributing toP1 are shown.
grammatic series forP1(v). This allows one to determine
the contributions toC and f successively through higher or
der.

The structure of the secular matrixK1C and of thef
matrix in the third-order ADC approximation scheme~result-
ing from the comparison through third order! is depicted in
Fig. 5. The explicit configuration space here comprises
p-h excitations ~class m51) and the 2p-2h excitations
~classm52). The perturbation expansions for the differe
blocksCm,m8 , m,m851,2 of C are as follows:

C115C11
(1)1C11

(2)1C11
(3) ,

C125C12
(1)1C12

(2) . ~13!

C225C22
(1) .

In a similar way one may distinguish the blocksfm , m
51,2, of effective transition amplitudes. Here the perturb
tion expansions of the ADC~3! scheme read

f15f1
(0)1f1

(1)1f1
(2)1f1

(3) ,
~14!

f25f2
(1)1f2

(2) .

For further reference we also introduce the notationfm1 and
fm1̄ for the subblocks offm where the second index pairrs is
a ph pair ~1! or any of the possibilitieshp,hh,pp (1), re-
spectively. The respective terms of highest order in Eqs.~13!
and ~14! are to be determined at the third-order level
P1(v) ~see Sec. III!; the lower order terms follow from the
ADC procedure through second order.11

For a given secular matrixK1C the excitation energies
vm are obtained from the solution of the~Hermitian! eigen-
value problem

~K1C!Y5YV, Y†Y51. ~15!

Here V is the diagonal matrix of eigenvaluesvm , and Y
denotes the matrix of eigenvectors. The transition mome
@Eq. ~7!# are given by the scalar products

Tm5Y(m)†
F, ~16!

of the mth eigenvector and the vector of effective transiti
moments

ia-

ia-

FIG. 5. Block structure of the secular matrixK1C ~a! and of the effective
transition amplitude matrixf ~b! of the third-order ADC scheme.
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FJ5(
r ,s

f J,rsdrs , ~17!

where drs are the one-particle integrals of the consider
transition operator.

III. EXPLICIT ADC EXPRESSIONS THROUGH THIRD
ORDER

In Ref. 11 the derivation of the explicit ADC equation
for P1 through second order has been described. In the
lowing we will extend this procedure to third order~Secs.
III B and III C!. As a preparation to this steps it should
useful to recall briefly the much simpler first- and secon
order cases.

A. First- and second-order ADC schemes

In zeroth and first order the ADC form@Eq. ~8!# reads

P1~v!5f1
(0)†

v1
21f1

(0)1f1
(0)†

v1
21C11

(1)v1
21f1

(0)

1f1
(0)†

v1
21f1

(1)1f1
(1)†

v1
21f1

(0) , ~18!

involving only p-h blocks (m51) of f andK1C. Here and
in the following the short hand-notation

vm5~v2K!m ~19!

is used. The zeroth- and first-order diagrams~Fig. 1! for P1

fit directly to the ADC form@Eq. ~18!#, so that the quantities
C11

(1) ,f1
(0) , and f1

(1) can simply be read off the analytical ex
pressions yielding

Cak,a8k8
(1)

52Vak8[a8k] , f ak,rs
(0) 5dardks , ~20!

f ak,k8a8
(1)

5
Vaa8[k8k]

ea1ea82ek2ek8

,

f ak,a8k8
(1)

5 f ak,a8b8
(1)

5 f ak,k8 l 8
(1)

50, ~21!

where Vpq[ rs]5Vpqrs2Vpqsr denote the antisymmetrize
Coulomb integrals~in ‘‘1212’’notation!.

In second order there are eight contributions~A!–~H! for
the ADC form @Eq. ~8!# as listed in Table I. Here the term
~F!–~H! show that the next higher configuration class, that
the 2p-2h excitations (m52), comes explicitly into play.

TABLE I. Second-order contributions in the ADC representation@Eq. ~8!#
of P1(v).

~A! f1
(2)†

v1
21f1

(0)1h.c.

~B! f1
(1)†

v1
21f1

(1)

~C! f1
(1)†

v1
21C11

(1)v1
21f1

(0)1h.c.

~D! f1
(0)†

v1
21C11

(1)v1
21C11

(1)v1
21f1

(0)

~E! f1
(0)†

v1
21C11

(2)v1
21f1

(0)

~F! f2
(1)†

v2
21f2

(1)

~G! f2
(1)†

v2
21C21

(1)v1
21f1

(0)1h.c.

~H! f1
(1)†

v1
21C12

(1)v2
21C21

(1)v1
21f1

(0)
d

l-

-

,

The ADC quantities to be determined at this level areC11
(2) ,

C12
(1) ,f1

(2) , andf2
(1) . The terms of Table I have to be compare

to the second-order Feynman diagrams in Fig. 1. Each of
five second-order Feynman diagrams~A!–~E! gives rise to
12 Goldstone diagrams contributing toP1(v), so that alto-
gether a manifold of 60 diagrams has to be considered. A
example, Fig. 3 shows the Goldstone diagrams for the R
diagram ~C!, labeled from~1!–~12!. For most of the dia-
grams the assignment to the ADC terms is straightforwa
since their analytical expressions fit directly to correspond
terms in Table I. Only 12 diagrams, more specifically, t
Goldstone diagrams~time orderings! ~7!–~10! of Feynman
diagrams~A!–~C! require a simple algebraic transformatio
before they assume a compatible form. Let us consider
diagrams in Fig. 3. Obviously, diagram~1! corresponds to
term~D!, and merely repeats quantities already determine
the first-order level. In the following such diagrams a
termed as repetitive diagrams or as diagrams containing
petitive terms. The latter also holds for diagram~2! and its
Hermitian conjugate diagram~3! corresponding to term~C!,
as well as for diagram~4! being of the form of term~B!. The
diagrams~5!, ~11!, and their Hermitian conjugated counte
parts~6!, ~12! are of the form~A!, thus specifying a contri-
bution to f1

(2) .
The remaining four diagrams~7!–~10! do not fit indi-

vidually to the ADC terms. Obviously, the correspondin
analytic expressionsX(m), m57 – 10 differ only in the de-
nominator productsP(m), that is

X~m!5(
i ,c

Vac[ ik]Vik8[a8c] P~m!,

where

P~7!5~v1ek2ea!21~v1ek82ea8!
21v6

21,

P~8!5~v1ek82ea8!
21v6

21e1
21,

P~9!5~v1ek2ea!21v6
21e2

21,

P~10!5v6
21e1

21e2
21 .

Here we use the abbreviationsv65(v1ek1ek81e i2ea

2ea82ec), e15(ek81e i2ea82ec), and e25(ek1e i2ea

2ec). All four denominator products share the factorv6
21

arising from the ‘‘cut’’ of three particle and three hole line
in the diagrams. Clearly the presence of this six-line deno
nator would not be compatible with the ADC scheme whe
explicit 3p-3h denominators occur for the first time at four
order. Indeed, thev6

21 factor cancels when the four produc
P(m) are added up, and the simple result is

(
m57

10

P~m!5~v1ek2ea!21~v1ek82ea8!
21

e11e2

2e1e2

1~v1ek2ea!21
1

2e1e2

1~v1ek82ea8!
21

1

2e1e2
. ~22!
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This shows, that the joint contribution of the diagrams~7!–
~10! splits into a part being of the form~E! and two further
parts being of the form~A!.

The resulting contributions toC11
(2) and f1

(2) read

C̃ak,a8k8
(2)

5(
i ,c

Vac[ ik]Vik8[a8c]

e11e2

2e1e2
, ~23!

f̃ ak,a8k8
(2)

5
1

2 (
i ,c

Vac[ ik]Vik8[a8c]

1

e1e2
, ~24!

respectively. In a similar way one may analyze the Feynm
diagrams~A! and ~B!.

A remark applies to the signs of theC12
(1) and f2

(1) contri-
butions. Obviously, the terms~H! and ~F! do not fix the
overall sign ofC12

(2) and f2
(1) , respectively. This is to be ex

pected as the phases of the 2p-2h states coming here into
play need not be determined. However, the relative signs
not arbitrary, but have to be determined by inspecting~G!.

B. Third-order ADC: General remarks

The derivation of the first- and second-order AD
schemes, as sketched in the preceding subsection, cou
achieved without undue effort. At the third-order level, ho
ever, the complexity grows by an order of magnitude, wh
calls for reasonable handling strategies. As shown in Ta
II, the third-order ADC expansion can be broken into
individual terms labeled~A!–~T!. Subscripts 1 and 2 will be
used to distinguish between the term written out in Table
and its Hermitian counterpart~h.c.!. The first nine terms
~A!–~I! in Table II are purep-h parts, the following terms
~J!–~R! introduce mixing of the p-h and
2p-2h-configurations, while the two remaining terms~S!
and~T! are pure 2p-2h-contributions. The new quantities t
be determined at third order areC11

(3) , C12
(2) , C22

(1) , f1
(3) , and

f2
(2) . These new quantities arise only in 9 terms of Table

namely in ~A!, ~G!, ~J!–~L!, ~P!, ~R!–~T!. This means that
the other 11 terms are mere repetitions of the quantities
ready determined at the first- and second-order level. Mos
the latter terms can be readily assigned to individual th
order Goldstone diagrams.

The algebraic terms of Table II are opposed by an a
some number of third-order diagrams. As shown in Fig
there are 23 Feynman diagrams, each contributing 60 G
stone diagrams toP1, which results in a total of 1380 Gold
stone diagrams. As an example, Fig. 4 shows the 60 G
stone diagrams associated with the third-order~RPA!
diagram~7!. For a unique designation of the diagrams we u
the convention,i . jx, wherei 51, . . . ,23labels the Feynman
diagrams as in Fig. 2, while the extensionjx after the dot
specifies the Goldstone diagrams as in Fig. 4. The first e
j 51, . . . ,10distinguishes the positions of the two outer ve
tices according to the ten choices~1,5!, ~2,5!, ~1,4!, ~2,4!,
~1,3!, ~3,5!, ~2,3!, ~3,4!, ~1,2!, and~4,5!; for a given position
of the two outer vertices the second entryx5a, . . . ,f speci-
fies the six permutations of the three inner vertices~123!,
~132!, ~321!, ~213!, ~312!, and~231!, where~123! is the or-
der in the original Feynman diagram. Here the vertex nu
bering runs from the top to the bottom of the diagram.
n

re
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The basic step of generating and drawing the diagra
has been achieved with the help of a computer progr
based on a simple matrix representation of the diagrams
briefly discussed in Appendix B, the matrix representat
allows for a unique algorithmic treatment of the diagram
guaranteeing in particular their completeness and corr
ness. The sorted matrices are read by a follow-up progra37

that transforms each matrix into a PostScript code and g
erates a graphic output, that is, a ‘‘book’’ of all 1380 di
grams. Moreover, the program prints the corresponding a
lytical expressions up to the sign and sorts the diagra
according to their integral type. As explained below, d
grams of the same integral type often have to be combine
the course of the ADC procedure.

Once the diagrams have been generated and drawn
appropriate order, the ADC analysis is no longer an adam
endeavor. Many diagrams can be directly assigned to
algebraic terms of Table II, even without the need to write
the analytical expressions. The derivation of the new qua
ties listed above requires the inspection of relatively f
‘‘key’’ diagrams. The number of key diagrams determinin
the contributionsC11

(3) , C12
(2) andC22

(1) is about 50. About 200
additional diagrams have to be inspected to specify also

TABLE II. Third-order contributions in the ADC representation@Eq. ~8!# of
P1(v).

~A! f1
(3)†

v1
21f1

(0)1h.c.

~B! f1
(2)†

v1
21f1

(1)1h.c.

~C! f1
(2)†

v1
21C11

(1)v1
21f1

(0)1h.c.

~D! f1
(1)†

v1
21C11

(2)v1
21f1

(0)1h.c.

~E! f1
(1)†

v1
21C11

(1)v1
21f1

(1)

~F! f1
(1)†

v1
21C11

(1)v1
21C11

(1)v1
21f1

(0)1h.c.

~G! f1
(0)†

v1
21C11

(3)v1
21f1

(0)

~H! f1
(0)†

v1
21C11

(2)v1
21C11

(1)v1
21f1

(0)1h.c.

~I! f1
(0)†

v1
21C11

(1)v1
21C11

(1)v1
21C11

(1)v1
21f1

(0)

~J! f2
(2)†

v2
21C21

(1)v1
21f1

(0)1h.c.

~K! f2
(1)†

v2
21C22

(1)v2
21C21

(1)v1
21f1

(0)1h.c.

~L! f2
(1)†

v2
21C21

(2)v1
21f1

(0)1h.c.

~M! f2
(1)†

v2
21C21

(1)v1
21f1

(1)1h.c.

~N! f2
(1)†

v2
21C21

(1)v1
21C11

(1)v1
21f1

(0)1h.c.

~O! f1
(1)†

v1
21C12

(1)v2
21C21

(1)v1
21f1

(0)1h.c.

~P! f1
(0)†

v1
21C12

(1)v2
21C21

(2)v1
21f1

(0)1h.c.

~Q! f1
(0)†

v1
21C12

(1)v2
21C21

(1)v1
21C11

(1)v1
21f1

(0)1h.c.

~R! f1
(0)†

v1
21C12

(1)v2
21C22

(1)v2
21C21

(1)v1
21f1

(1)

~S! f2
(2)†

v2
21f2

(1)1h.c.

~T! f2
(1)†

v2
21C22

(1)v2
21f2

(1)



de

y
ou

ok
o

te

a-
tiv
d
th

m

y

e

m

P
he

C

h
he
rm
-

.
e-
rm
ro

es
e

th

s
.

to
ra

t

he
ia-

n

m
ved

PA
red

e-
fi-

ed

s
rms

-

9988 J. Chem. Phys., Vol. 111, No. 22, 8 December 1999 Trofimov, Stelter, and Schirmer
effective transition amplitudesf1
(3) and f2

(2) . In Sec. III C the
interested reader may find a brief survey of the third-or
ADC analysis. The final expressions forK1C are listed in
Appendix C. A full list of thef expressions is available b
request from the authors or can be downloaded from
website.38

C. Details of the third-order ADC analysis

In the following six paragraphs we take a closer lo
into the third-order ADC procedure. Let us note that a go
deal of this section will be useful only for a reader interes
in repeating the ADC~3! derivation. First we consider, in
Secs. III C 1–III C 4 the treatment of different groups of di
grams. Then in Sec. III C 5 and Sec. III C 6, the perspec
changes to the side of the ADC expressions. One may
tinguish three groups of third-order diagrams, namely
diagrams~1!–~6!, representing productsG(0)G(3) of a zeroth
and a third-order one-particle Green’s function; the diagra
~7!–~15! which are of the formP(0)C(1)P(2) or P(2)C(1)P(0);
and finally the diagrams~16!–~23!, characterized by a so
called irreduciblep-h vertex. In the latter groups one ma
note a topological similarity between the diagrams~16!–
~19!, ~20! and~21!, ~22! and~23!, respectively. As a separat
special case we will consider the RPA diagram~7! in the
beginning. As a common feature of all Feynman diagra
we note that the time orderings 9(a– f ) and their counter-
parts 10(a– f ) have the form of the ADC terms (A1) and
(A2), respectively, in Table II. As a result there are 6323
5138 trivial contributions tof1

(3) which can be read off the
diagrams in a straightforward way.

1. The RPA diagram

The 60 Goldstone diagrams associated with the R
diagram~7! are shown in Fig. 4. As already mentioned, t
ADC analysis of the time orderings 9(a– f ) @and 10(a– f )]
is trivial leading to six distinctf1

(3) contributions. The dia-
grams (1a) – (8a) and in addition, (5b), (7b), (6d), and
(8d) are readily identified as repetitive terms of the AD
expansion. For example, diagram (7a) is of the form

f1
(1)†

v1
21f1

(2) @term (B2) in Table II#, where thef1
(2) contribu-

tion is the one arising from the second-order diagrams~C11!
and ~C12!.

For the remaining diagrams, things become somew
more complex, as none of them fits individually to any of t
ADC terms, and moreover, some parts of the repetitive te
~B!, ~C!, ~D!, and~H! cannot readily be retrieved in the dia
grammatic expressions. The latter applies to repetitions
the ‘‘complex’’ C11

(2) andf11
(2) contributions considered in Sec

III A, for which already at the second-order level no imm
diate one-to-one relation between diagrams and ADC te
could be established. In the following we describe one p
cedure how diagrams and complex repetitive terms~CRT!
can be combined algebraically yielding quite simple expr
sions forC11

(3) and f1
(3) . The question of uniqueness will b

addressed further below.
1. First we consider diagrams (1c) – (8c). Obviously,

these diagrams have a common integral structure and,
can be combined. A simple way is to formS15(1c)
1(2c)1(3c)1(4c),S25(5c)1(7c), and S35(6c)
r

r

d
d

e
is-
e

s

s

A

at

s

of

s
-

-

us,

1(8c). It is readily seen, thatS1 is of the form~G! specifying
a C11

(3) contribution;S2 and S3 correspond to the Hermitian
conjugate pair (A2) and (A1), respectively, yielding anf1

(3)

contribution.
2. A common integral structure is found for diagram

(1e) – (5e), (7e), (1b), and (3b). One recipe is as follows
Form S15(1e)1(2e)1(3e)1(4e),S25(1b)1(3b), and
compareS1 andS2 with the complex repetitive terms (H2)
and (C2) where, of course, only the RPA contributions
C11

(2) and f1
(2) are to be considered. Straightforward algeb

leads to an expression of the form~G! specifying another
C11

(3) contribution @which incidentally is one-half of wha
would result directly from (S1)]. In an analogous way one
can treat the diagrams (1f ) – (4f ), (1d), and (2d), and the
CRT’s (H1) and (C1) yielding a Hermitian conjugateC11

(3)

contribution. The remaining diagrams, combined as (5e)
1(7e) and (6f )1(8 f ) yield a f1

(3) contribution according to
(A2) and (A1), respectively.

3. There remain two more sets of diagrams with t
same integral structure. For the first set we combine d
grams as follows. FormS15(2b)1(4b), S25(6b)1(8b)
1(6e)1(8e), and compareS1 andS2 with the CRT contri-
butions (B2) and (D1). Straightforward algebra leads to a
expression of the form (A2) specifying anf1

(3) contribution.
The corresponding Hermitian conjugate term of (A1) form is
obtained analogously from (3d), (4d), (5d), (7d), (5f ),
and (7f ).

Herewith all Goldstone diagrams of the RPA diagra
~7! ~Fig. 4! have been exhausted. Altogether we have deri
three C11

(3) and threef1
(3) contributions~plus six additional

trivial f1
(3) contributions!.

The recipe used above for the ADC analysis of the R
diagram~7! is not unique. The nonuniqueness encounte
here is reflected by the fact that the ADC terms~A! and~G!
may exchange contributions by applying partial fraction d
composition~PFD! and its inverse procedure. More speci
cally, nondiagonal contributions, sayC̃IJ of C11 may be
transferred tof11 as a result of PFD of~G!, yielding the
~anti-Hermitian! contributions

f̃ IJ5~KI2KJ!
21C̃IJ , ~25!

in f11. Conversely, any anti-Hermitian contributions off11
can be transferred into nondiagonal~but Hermitian! contri-
butions of C11. Therefore, one arrives at a distinguish
ADC scheme by imposing the symmetry condition

f 11
† 5f11, ~26!

to the~1,1! block of f. It should be clear that the difference
in the results of the symmetrized and nonsymmetrized fo
of the ADC~3! expressions are of fourth order.

2. Diagrams (8) –(15)

Obviously, the Feynman diagrams~8!, ~10!, ~12!, and
~14! can be constructed according to

D (x)~v!5P(0)~v!C11
(1)P(2,x)~v!, ~27!

as the products of the free~zeroth-order! propagator, the
first-order secular matrixC11

(1) , and the second-order propa
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gator partsP(2,x)(v) wherex5A,B,D,E labels the second
order Feynman diagrams in Fig. 1, excluding the RPA d
gram ~C!. Analogously, the Feynman diagrams~9!, ~11!,
~13!, and~15! may be formulated as

D (x)~v!5P(2,x)~v!C11
(1)P(0)~v!, ~28!

where compared to Eq.~27!, the order of the factors is inter
changed. The total contribution of diagrams~8!–~15! plus
the RPA diagram~7! can be written as

(
h57

15

D (h)~v!5P(0)~v!C11
(1)P(2)~v!

1P(2)~v!C11
(1)P(0)~v!

2P(1)~v!C11
(1)P(1)~v!. ~29!

Here the subtracted term on the right-hand-side correspo
to the RPA diagram~7! which is counted twice in the firs
two terms. Equation~29! offers an alternative route to th
ADC analysis of diagrams~7!–~15!. Instead of inspecting the
associated Goldstone diagrams one can use the already
able second-order forms forP1(v) andP2(v) in conjunc-
tion with the following obvious projection formula:

P1~v!5
1

2p i R P~v8!

v82v2 ih
dv8. ~30!

Here the contour integration is to be closed in the low
complexv8-plane. We have used both the projection meth
and the Goldstone analysis for mutual checking.

In the following we return to the Goldstone analysis
diagrams~8!–~15!. Let us first consider the somewhat sim
pler cases~12!–~15!. Obviously~12! and~13!, ~14! and~15!
form pairs of ‘‘antipodes,’’ that is,~13! and~15! are obtained
by turning upside-down~12! and ~14!, respectively. The
treatment of these four diagrams is essentially analog
and we may, for example, consider the 60 time orderings
diagram~15! ~labeled according to the convention explain
in Sec. III B!. As above we can disregard the 12 trivial (A1,2)
contributions. Further 12 diagrams, namely (1a) – (4a),
(6a), (8a), (1d) – (4d), (6d), and (8d), can readily be
identified as repetitive ADC terms. An additional eight di
grams can be directly assigned to one of the ADC terms:
four diagrams (5a), (5b), (5d), and (5f ) give expressions
of the form (J2), while the diagrams (7a), (7b), (7d), and
(7 f ) contribute to (S2). In the (J2) term thef2

(2) contribu-
tions to be determined occur in conjunction withC12

(1) . As
described in Sec. III C 5 one has to collect all (J2) @or (J1)]
contributions in order to disentangle the desiredf2

(2) contri-
butions from the knownC12

(1) expressions. Alternatively, on
could use the (S2) @or (S1)] term.

The remaining 28 diagrams do not fit individually
ADC terms, but the appropriate combinations are rather
vious. Both (1e)1(2e)1(3e)1(4e) and (1c)1(2c)
1(3c)1(4c) are of the form~G!, yielding fourC11

(3) contri-
butions. The combinations (1b)1(3b) and (1f )1(3 f ) con-
tribute to (P1), while (2b)1(4b) and (2f )1(4 f ) are of the
form (L1). In (P1) and (L1) the soughtC21

(2) contributions
arise in conjunction withC12

(1) and f2
(1) , respectively. As in
-

ds

ail-

r
d

s,
f

e

b-

the case ofC21
(2) , one must collect either all (P1) or all (L1)

contributions in order to deducef2
(2) ~see Sec. III C 5!. Of

course, one may equally consider the h.c. terms (P2) or
(L2). The remaining 12 diagrams can readily be combin
pairwise: (5c)1(7c), (5e)1(7e), (6b)1(8b), (6c)
1(8c), (6e)1(8e), and (6f )1(8 f ). Here the first two
pairs contribute to (A2), while the latter four pairs contribute
to (A1).

Now let us turn to the diagrams (8) – (11), for which th
ADC analysis is somewhat more complicated because,
for diagram~7!, complex repetitive terms@originating from
the second-order diagrams~A! and ~B!# have to be recov-
ered. Note that diagrams~10! and ~11! are ‘‘antipodes’’ to
~9! and ~8!, respectively. As a representative let us consi
the Goldstone diagrams of~9! ~labeled according to the con
vention explained in Sec. III B!. It may suffice to discuss
only diagrams bringing up new features, that is here, the
diagrams (1c) – (1f ), . . . , (4c) – (4f ), (5c), (5e), (7c),
and (7e). The common integral structure suggests to co
bine diagrams (1f ) – (4f ), (1d), and (2d). Forming S1

5(1 f )1(2 f )1(3 f )1(4 f ) and S25(1d)1(2d) one gets
readily rid of the 3p-3h denominatorv6

21. Now one can
compareS1 and S2 with the CRT’s (H1) and (C1), where
only theC11

(2) and f1
(2) contributions of the second-order dia

gram~A! are taken into account. The result is an express
of type ~G! specifying aC11

(3) contribution. In a similar way
one obtains af1

(3) contribution by comparing (3d)1(4d)
with the appropriate CRT contributions of the type (D2) and
(B1). For the combination (1c)1(3c)1(5c) straightfor-
ward algebra yields an expression of form~G! from which
one deduces aC11

(3) contribution. In a similar way one obtain
an (A1) term from (2c)1(4c)1(7c), specifying af1

(3) con-
tribution. An analogous procedure applies to the diagra
(1e) – (5e) and (7e).

3. Diagrams (16) –(23)

After the cases considered so far, the ADC analysis
diagrams~16!–~23! is rather simple. There are no repetitiv
terms, and the only new feature is the occurrence of vari
C22

(1) contributions. However, here the assignment of d
grams and ADC terms is straightforward. Moreover, theC22

(1)

expressions may be determined directly without the need
inspecting diagrams~see Sec. III C 6!. Let us take a brief
look to one of these diagrams, say to~22!. The 12 Goldstone
diagrams (1a) – (4a), (1b) – (4b), and (1e) – (4e) corre-
spond toC22

(1) terms in one of the forms~K!, ~R!, or ~T!. The
combination of (1f ) – (4f ) yields aC11

(3) contribution accord-
ing to term ~G!. Following the procedure described in th
case of Feynman diagram~15!, the diagrams (1c) – (4c) and
(1d) – (4d) can be rewritten in the form of~P! and~L! terms,
bearing information required to determineC12

(2) . In the same
way as described for diagrams~8!–~15! the remaining dia-
grams contribute to terms~S!, ~J!, or ~A! specifyingf1

(3) and
f2
(2) contributions.
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4. Diagrams (1) –(6)

This class of diagrams is a special case of contributi
that in time representation are given by a product of t
oppositely directed one-particle Green’s functions~GF!:

P̃ pq,rs~ t,t8!5~2 i !Gpr~ t,t8!Gsq~ t8,t !, ~31!

Here the factor (2 i ) is needed to reconcile the phase co
vention of the one-particle Green’s functions with that of t
polarization propagator. After Fourier transformation to e
ergy representation Eq.~31! takes on the form of a convolu
tion integral

P̃ pq,rs~v!5
1

2p i E dv1Gpr~v1!Gpr~v12v!. ~32!

The simple product form of the diagrams~1!–~6!, in which
the third-order GF-partsG(3)1,G(3)2 are combined with the
zeroth-order GF partsG(0)2 and G(0)1, respectively, sug-
gests to exploit the recently established third-order AD
schemes forG2 ~and G1).39 Obviously, diagrams~1!–~3!
can be combined according to

P̃ pk,rk8~v!5
1

2p i E dv1Gpr
(3)1~v1!Gk8k

(0)2
~v12v!

5dkk8Gpr
(3)1~v1ek!. ~33!

Analogously we find

P̃aq,a8s~v!5
1

2p i E dv1Gaa8
(0)1

~v1!Gsq
(3)2~v12v!

5~21!daa8Gsq
(3)2~ea2v!, ~34!

for diagrams~4!–~6!. Inserting now the third-order ADC ex
pressions forG(3)1 and G(3)2 as given in Ref. 39 yields
readily the corresponding ADC terms for the polarizati
propagator. One should note that here only the nine te
@~A!, ~G!, ~J!–~L!, ~P!, ~R!–~T!# of Table II come into play,
namely those without af1

(1) or C11
(1) constituent. For theC11

(3)

and f1
(3) contributions, the final expressions can directly

inferred from theG1 andG2 results. For example, theC11
(3)

contribution arising from diagrams~1!–~6! is simply given
by

C̃ak,a8k8
(3)

5daa8~21!Ckk8
(3)2

1dkk8Caa8
(3)1 , ~35!

whereCkk8
(3)2 andCaa8

(3)1 are specified by Eqs.~A5!–~A9! and
~B9! in Ref. 39. Of course, one may as well resort to t
Goldstone analysis of diagrams~1!–~6!. The Goldstone dia-
grams are obtained by a trivial extension of the diagrams
G(3)1 andG(3)2, respectively.

5. Derivation of C 12
„2… and f „2…

To determine the second-order contributions toC12 one
may consider all (P2) contributions and compare them to th
general form
s
o

-

-

s

r

(
a8b8k8 l 8

~v2ea1ek!
21Cak,a8b8k8 l 8

(2)
~v2ea82eb81ek

1ek8!
21Ca8b8k8 l 8,a9k9

(1)
~v2ea91ek9!

21, ~36!

where one has to insert the given first order expression
Ca8b8k8 l 8,a9k9

(1) @see Eq.~C38!#. This allows one to deduce th
constituents ofC21

(2) without major difficulties. One may dis
tinguish contributions toCak,a8b8k8 l 8

(2) with the Kronecker
symboldaa8 , with the Kronecker symboldkk8 , and without
any Kronecker symbol. The diagrams contributing to (P2)
may be distinguished according to these three types

daa8 :~4!,~5!,~17!,~19–21!,~23!

dkk8 :~1!,~2!,~16!,~18!,~20–22!

none:~8!,~10!,~12!~32!,~14!~32!.

Note that diagrams~12! and~14! give two (P2) contributions
each. As the next step, the preliminary total expression
Cak,a8b8k8 l 8

(2) has to be antisymmetrized with respect toa8,b8
and k8,l 8, respectively. The antisymmetrized expressio
can then be verified by inserting them into Eq.~36! which
must recover the 20 original (P2) contributions. Alterna-
tively, one could have used the terms (P1), (L1), or (L2). In
a similar way, f2

(2) can be deduced from any set o
(S1),(S2),(J1), or (J2) contributions.

6. Derivation of C 22
„1…

The diagrammatic derivation ofC22
(1) using either~R!,

~T!, or ~K! contributions poses no difficulties. The corr
sponding Goldstone diagrams of the Feynman diagrams~1!,
~2!, ~4!, ~5!, ~16!–~23! can directly be assigned to the alg
braic terms. However, it is not necessary to refer to d
grams, because the first-order contribution toC22

(1) is given by
the well-known configuration interaction~CI! expression

Cabkl,a8b8k8 l 8
(1)

5^FabkluĤ2E0~1!uFa8b8k8 l 8&. ~37!

Here uFabkl&5ca
†cb

†ckcl uF0&(a,b,k, l ) is a doubly exited
CI configuration andE0(1)5^F0uĤuF0& is the first-order
ground-state energy. As an obvious extension to the ADC~2!
scheme, the first-orderC22 block has been considere
previously.11

IV. MISCELLANEOUS ASPECTS OF THE ADC
POLARIZATION PROPAGATOR FORMULATION

In the following three subsections we will discuss brie
some consequences of the ADC approach to the polariza
propagator. First we consider physical quantities related
the p-h density matrix. As important checks for the quali
of a computional scheme, the dipole sum rule and
equivalence of the length and velocity forms of the transit
moment will be considered in Sec. IV B. Finally, in Se
IV C the ADC reformulation of the RPA equations wi
briefly be addressed.
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A. Generalized spectral moments and the particle-
hole density matrix

A quantity related to the polarization propagator is t
p-h density matrix.

r rs,r 8s8
ph

5^C0ucs
†crcr 8

† cs8uC0&2rsrr r 8s8 , ~38!

whereruv5^C0ucu
†cvuC0& denotes the familiar one-particl

density matrix. Obviouslyrph can be obtained fromP1 ~or
P) by the contour integral

rph52
1

2p i R P1~v!dv, ~39!

where the integration path closes in the lower comp
v-plane. Inserting forP1(v) the ADC representation@Eq.
~8!# yields the relation

rph5f †f. ~40!

The p-h density matrix is a special case (m50) of the fol-
lowing generalized spectral moments:

Srs,r 8s8
(m)

5^C0ucs
†cr~Ĥ2E0!mQ̂0cr 8

† cs8uC0&

5 (
nÞ0

~En2E0!m^C0ucs
†cr uCn&^Cnucr 8

† cs8uC0&.

~41!

Here the second line follows by inserting the complete se
excited statesuCn&. One may readily derive the relationsh

S(m)5f †
„K1C…

mf, ~42!

by inserting into Eq.~41! instead of the exact states the i

termediate statesuC̃ J& of the ADC representation@Eq. ~8!#.
One may note thatS(m) can be calculated directly fromf and
K1C without the need to diagonalize the secular matrixK
1C. The relationship

gpq,p8q852rq8p,qp8
ph

1dqq8rpp81rpq8rqp8 , ~43!

between thep-h density and the more familiar reduced tw
particle density matrix

gpq,p8q85^C0ucp
†cq

†cq8cp8uC0&, ~44!

shows thatrph is not so well suited for representing th
ground-state expectation value of a two-particle operator.
is well known,1 a more natural relationship is found for th
ground-state expectation value of products of two sing
particle operators, sayÂ5(Arscr

†cs and B̂5(Brscr
†cs . In

particular the compact relation

^C0u~Â2^A&!~B̂2^B&!uC0&5A†rphB5A†f †f B, ~45!

is obtained for the product of ‘‘deviation’’ operatorsÂ
2^A& and B̂2^B&. Here^X&5^C0uX̂uC0& andA(B) is the
matrix of single-particle integralsArs(Brs). Note that forÂ
5B̂, Eq. ~45! describes the ground-state fluctuation of
single-particle operator.

An interesting conclusion follows for the choice:

B̂5N̂5(
r

cr
†cr . ~46!
x

f

s

-

SinceuC0& is an eigenfunction of the particle number oper
tor N̂, the deviation operator product has a vanishing exp
tation value, that is

(
J

S (
rs

Ars* f J,rs* D S (
p

f J,ppD 50, ~47!

for arbitrary matrix elementsArs . The immediate conse
quence is that

(
p

f J,pp50, ~48!

for any configurationJ. Of course this result could have bee
inferred directly from noting that

(
p

f J,pp5^C̃ JuN̂uC0&50, ~49!

as the intermediate statesuC̃ J& are orthogonal to the exac
ground state. The relation~48! holds in any order of pertur-
bation theory and, moreover, does not depend on the un
lying single particle basis set. It may serve as an import
check of the complex expressions derived forf. Unfortu-
nately, only contributions withpp or hh index pairs are con-
cerned.

B. The dipole sum rule and the equivalence of length
and velocity form of the transition moments

The well-known Thomas–Reiche–Kuhn~TRK! or di-
pole sum rule states that the first moment

Sz
(1)5(

n
~En2E0!u^CnuẐuC0&u25 1

2 N, ~50!

of the excitation spectrum for thez component of the dipole
operator

Ẑ5(
i 51

N

ẑ( i )5(
i 51

N

drs
(z)cr

†cs , ~51!

equals one-half of the electron numberN. This relation fol-
lows from the identity of the explicit form and the doub
commutator expression

Sz
(1)5 1

2 ^C0u@ Ẑ,@Ĥ,Ẑ##uC0&. ~52!

Analogous relations hold for thex and y components. The
ADC formulation @Eq. ~42!# for the generalized transition
moments can be readily transferred toSz

(1) yielding

Sz
(1)5F~z!†~K1C!F~z!5 1

2 N, ~53!

whereF(z) is the~column! vector of effective transition mo-
ments@see Eq.~17!#

FJ
(z)5(

r ,s
f J,rsdrs

(z) , ~54!

for the transition operatorẐ. Equation~53! offers an impor-
tant test for the quality of the computational scheme. Ho
ever, deviations from the exact result arise not only fro
using approximative ADC schemes, but also from the inco
pleteness of the underlying single-particle basis. For a
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cussion of how these two factors can be disentangled
certain extent, the reader is referred to Ref. 14.

Another significant quality test is the agreement betwe
the dipole length~L! and dipole velocity (V) forms of the
transition moments. As is well known, the following identi
holds for the exact ground and excited states:

~Em2E0!^CmuẐuC0&52 i ^CmuP̂zuC0&. ~55!

Here P̂z is thez component of the momentum operator. T
expressions on the left- and right-hand-side are referred t
~L! and (V) form, respectively, of the transition moment.
the ADC formulation the left-hand-side of Eq.~55! can be
written as

~Em2E0!^CmuẐuC0&5Y(m)†
~K1C!F~z!, ~56!

while the (V) transition moment is given by

^CmuP̂zuC0&5Y(m)†
F~pz!. ~57!

HereF(pz) is the vector of effective transition moments@Eq.
~17!# for P̂z . By abstracting the scalar product with the e
genvectorY(m)†

both in Eqs.~56! and ~57!, one yields the
general identity

~K1C!F~z!52 iF ~pz!, ~58!

which is no longer restricted to a particular transition.14 As in
the dipole sum rule, deviations from this relation reflect bo
the approximation level of the ADC scheme and basis
insufficiencies.

In a similar way the static and dynamic~dipole! polariz-
abilities can be expressed in terms of ADC quantities.
details the reader is referred to a forthcoming paper.

C. The random-phase approximation „RPA… in the ADC
form

As is well known, the subset of Feynman diagrams c
stituted by diagrams~0!, ~1!, ~C! in Fig. 1, diagram~7! in
Fig. 3 and similarly constructed diagrams of ordern
54,5,6, . . . can besummed exactly leading to the famou
random-phase approximation~RPA! for the polarization
propagator.1 The RPA is an example of an infinite, thoug
partial summation of Feynman diagrams. Obviously, the
ror introduced by omitting diagrams is of second ord
which severely restricts the usefulness of the RPA in ato
and molecular applications.

It should be clear that the ADC procedure applied h
to the full polarization propagator could have been spec
ized as well to the class of RPA diagrams. As described
Ref. 40 this leads to an ADC representation of the R
polarization propagator part according to

PRPA(1)5f RPA†
~v1̂2~K1C!RPA!21f RPA, ~59!

where the configuration space of the secular matrixK
1C)RPA is spanned by the manifold of single excitatio
$J%5$a j%. The second index pair~rs! of the effective tran-
sition amplitudesf J,rs is restricted top-h andh-p pairs. The
ADC reformulation of the RPA is of some interest as it spl
the RPA pseudo-eigenvalue problem into two equival
and, in general, Hermitian eigenvalue problems of half
a
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mension. In Ref. 40 the secular matrixCRPA and the effective
transition momentsf RPA have been specified through seco
order. Using the results of the present ADC analysis for
RPA diagram~7! in Fig. 2 the RPA–ADC scheme can b
extended to third order. The third-order contributions
CRPA are specified in Eqs.~C21! and ~C22!.

V. DISCUSSION

A. General ADC properties

The third-order ADC procedure for the polarizatio
propagator has lead to a structurally simple extension of
existing ADC~2! scheme. In both the ADC~2! and ADC~3!
methods the~vertical! electronic excitation energies ar
given directly by the eigenvalues of a Hermitian secular m
trix K1C defined with respect to a configuration space
p-h ~single! and 2p-2h ~double! excitations~see Fig. 5!.
The corresponding transition moments are obtained as
dot products of the respective eigenvectors and a vectorf of
effective transition amplitudes. Both the matrix elements
K1C and f are given by first-, second-, and third-order pe
turbation expansions of Rayleigh–Schro¨dinger type. The
ADC~3! method extends the perturbation-theoretical con
tency to third order for the single excitations and to fi
order for the double excitations, allowing for higher accura
than at the second-order level though at substantially hig
computational cost.

The ADC computational schemes combine matrix diag
nalization and perturbation theory~‘‘as little diagonalization
as necessary, as much perturbation theory as possib!.
Three basic properties, referred to asregularity, compact-
ness, and separability establish the usefulness of the
schemes:22,41,42

~i! Regularity means that the perturbation expansio
for K1C and f behave essentially like the Rayleigh
Schrödinger series forE0 and uC0&, respectively. There are
no ‘‘dangerous denominators’’ provided there is a finite e
ergy gap between the occupied and virtual ground-state
bitals.

~ii ! The explicit configuration spaces are smaller~more
compact! than those of comparable CI expansions. For
ample, a consistent second- or third-order CI treatmen
single excitations would require to include 3p-3h configu-
rations. By contrast, the explicit ADC~3! configuration space
extends only to the 2p-2h excitation class.

~iii ! The ADC equations areseparable, that is, local
excitations in a system of noninteracting~separate! frag-
ments decouple strictly from nonlocal excitations. This gu
antees size-intensive results, i.e., neither excitation ener
nor transition moments of a~local! fragment excitation de-
pend on whether the method is applied to the fragment o
the entire system.

While combination of perturbation theory and secu
equations is found also in the EOM/superoperator sche
such as the SOPPA method,9,12,13 the latter schemes diffe
from the ADC approach in two essential points: The EO
secular equations are of the non-Hermitian RPA type, a
the explicit secular configuration spaces are twice as larg
in the ADC case, as they comprise in addition to the phys
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excitations, e.g.,p-h and 2p-2h excitations, also the corre
sponding unphysical excitations, that is,h-p and 2h-2p ex-
citations in the given example. For a discussion of the co
pactness and separability properties of the EOM scheme
reader is referred to Mertinset al.43

It should be noted that the explicit ADC~3! expressions
reflect the symmetry properties of the Hamiltonian. As a
sult, the ADC secular equations decouple with respec
different irreducible representations of the underlying sy
metry group. In particular, spin-free working equations
singlet and triplet excitations can readily be derived fo
spin-independent Hamiltonian, using standard technique
tensorial analysis~see, for example, Ref. 14!.

B. Comparison to CC methods

Both the ADC schemes and the various CC based m
ods can be discussed in the framework of a general con
referred to as intermediate state representations~ISR!.22 In
the ADC case we recall that the secular equations could h
been obtained directly as the representation of the~shifted!
HamiltonianĤ2E0

~K1C! IJ5^C̃I uĤ2E0uC̃ J&, ~60!

and the generalized transition operator

f J,rs5^C̃ Jucr
†csuC0&, ~61!

with respect to a set of ‘‘intermediate’’ statesuC̃ J&. These
intermediate states are constructed from a set of ‘‘correla
excited~CE! states’’

uCJ
0&5ĈJuC0&, ~62!

where

$ĈJ%[$ca
†ck ;ca

†cb
†ckcl ,a,b,k, l ; . . . %, ~63!

is the manifold of physical excitation operators, by succ
sive Gram–Schmidt orthogonalization of thep-h,
2p-2h, . . . , excitation classes. As a zeroth excitation cla
the exact ground-stateuC0& may be incorporated so that th
resulting intermediate states are orthogonal touC0&,

^C̃ JuC0&50.

As shown in Refs. 22, 41, and 42 the representation base
these ‘‘excitation class orthonormalized~ECO!’’ intermedi-
ate states has the basic properties of regularity, compact
and separability which establishes the equivalence of
ADC and ECO-ISR formulation. Here the role of the o
thonormalization procedure is essential. Using symmetric
thonormalization instead of the ECO Gram–Schmidt pro
dure would not lead to a compact and separa
representation. Explicit closed-form expressions for
blocks of K1C and f for the first three excitation classe
have been given in Ref. 41. This provides an alterna
approach for deriving perturbation expansions for the ma
elements ofK1C andf, namely by using perturbation theor
for uC0& in the closed form expressions. In practice, ho
-
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ever, it turns out that the original diagrammatic procedu
pursued above is still a much simpler and safer way for
riving the explicit working equations.

As the main representative of the CC methods we w
briefly consider the biorthogonal coupled cluster~bCC! rep-
resentation used, for example, in the CCLR theory of Ko
and Jo”rgensen29,30and in the EOM-CC method as formulate
by Stanton and Bartlett.35 For a more comprehensive discu
sion the reader is referred to Ref. 22. The bCC formulation
based on a mixed representation ofĤ2E0 in terms of two
sets of states, namely the CE states

uCJ
0&5ĈJ exp~ T̂!uF0&5exp~ T̂!ĈJuF0&, ~64!

on the right-hand-side, and the associated biorthogonal s

^C I
'u5^F0uĈI

† exp~2T̂!, ~65!

on the left-hand-side. HereĈI denote the physical excitatio
operators as specified in Eq.~63!. The familiar CC param-
etrization

uC0
CC&5exp~ T̂!uF0&, ~66!

is used for the ground state; hereuF0& denotes the HF
ground state. The cluster operator

T̂5(
I

t I ĈI ,

is given as a sum of physical excitation operators and, th
T̂ commutes with anyĈJ . The bCC representation leads
the following non-Hermitian secular matrixM:

MIJ5^C I
'uĤ2E0uCJ

0&

5^F0uĈI
† exp~2T̂!@Ĥ,ĈJ#exp~ T̂!uF0&. ~67!

The excitation energiesvm are obtained either from the righ
or the left eigenvalue problem

MX5XV,
~68!Y†M5VY†,

wherev is the diagonal matrix of eigenvaluesvm , andX(Y)
denotes the matrix of right~left! eigenvectors. The two ver
sions of the secular equations can be combined accordin

Y†MX5V, Y†X51, ~69!

so that the right and left eigenvectors are biorthonormal
in general not normalized. The corresponding right and
eigenstates can be written as follows:

uCn&5(
I

XInuC I
0&,

~70!

^C̄nu5(
I

YIn* ^C I
'u.

It should be noted that the excitation energies are
affected in the extended representationM8 including the ex-
act and the HF ground state,uC0

CC& and uF0&, respectively

M85S 0 v

0 MD . ~71!
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Herev is a row vector with the elements

v I5^F0u@Ĥ,ĈI #exp~ T̂!uF0&. ~72!

The left eigenvector ofM8 associated with the ground sta
(v050)

Y0
85S 1

Y 0
D

where

Y0
†
52vM21, ~73!

can be used to form a representation of the ground state

^C̄0u5^F0u1(
I

YI0* ^C I
'u, ~74!

in terms of the biorthogonal states. This is the ‘‘dual’’ sta
designated̂ Lu in the work of Koch and Jo”rgensen;29,30 the
row vectorv is their vectorh.

The analysis of the perturbation-theoretical~PT! consis-
tency of approximative methods, obtained, for example,
truncating the configuration space, has to be based on
order relations~that is the lowest nonvanishing PT order! of
the blocks of the secular matrix. In Fig. 6 we compare
order relations of the ADC~ECO-ISR! and bCC secular ma
trices as derived in Refs. 22 and 36. While the ADC secu
matrix fulfills the so-called canonical order relations, t

FIG. 6. Order relations of the secular matrix blocks in the ADC~or ECO-IS!
representation~a! and in the biorthogonal coupled cluster~BCC! represen-
tation~b!. The numbers in the blocks indicate the lowest nonvanishing o
of perturbation theory; empty blocks vanish.
y
he

e

r

bCC matrixM is canonical in the lower triangular part, bu
has the typical CI structure in the upper triangular part.~Note
that in the derivation of Ref. 22, the bCC order relatio
could have been made more stringent@as in Fig. 6~b!# by
exploiting the fact, thatT̂ is a physical operator.! As a result,
the bCC compactness properties are weaker than those o
ADC. This means, for example, that the usual truncation
the configuration space beyond thep-h and 2p-2h excita-
tion manifold, allows for third-order consistency in the AD
case, but only for a consistent second-order description
the excitation energies in the truncated bCC scheme.

The second essential property, the size intensivity of
results, is fulfilled for the excitation energies as a con
quence of the separability of the characteristic polynom
~see Refs. 22 and 29!.

The CCLR and EOM-CC methods differ in the treatme
of spectral intensities. In the latter method the squared tr
sition moments

uTnu25a^C̄nuD̂uC0
CC&^C0

CCuD̂uCn&, ~75!

are obtained as the product of a left and a right transit
moment

Tn
( l )5^C̄nuD̂uC0

CC&,
~76!

Tn
(r )5^C0

CCuD̂uCn&.

The normalization constanta5^C0
CCuC0

CC&21 corrects for
the intermediate normalization ofuC0

CC&. Here and in the
following we assume thatuC0

CC& anduCn& differ by symme-
try so that there is no admixture ofuC0

CC& in uCn& of Eq.
~70!. While the left transition momentTn

( l ) is separable~size-
intensive!, the right transition moment does not have th
property.22,44 The weaker compactness property leads to
second-order consistency of bothTn

(r ) and Tn
( l ) ~for a single

excitation! in the truncated bCC~SD! method. In the CCLR
formulation of Koch and Jo”rgensen29 one keeps the left tran
sition moment as it is but sets out from the following for
for the right transition moment

Tn
(r )5^C̄0uD̂uCn&, ~77!

where ^C̄0u is the dual ground state of Eq.~74!. Since

^C̄0uC0&51 the normalization constant in Eq.~75! can be
skipped (a51). The lack of separability is circumvented b
rewriting Tn

(r ) as follows:

Tn
(r )5^C̄0uD̂ĈnuC0

CC&

5^C̄0u@D̂,Ĉn#uC0
CC&1^C̄0uĈnD̂uC0

CC&, ~78!

whereuCn&5ĈnuC0
CC& with

Ĉn5(
I

XInĈI . ~79!

As an obvious consequence of the commutator, the first t
on the right-hand-side of Eq.~78! is separable. The secon
term, of course, is not yet separable, but may be rewrit
further by using the identity

r
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^C̄0uĈnD̂uC0
CC&5^C̄0uĈn~Ĥ2E01vn!

3~Ĥ2E01vn!21D̂uC0
CC&. ~80!

Now (Ĥ2E01vn)21 may be replaced by its biorthogon
representation

(
I ,J

uC I
0&~M1vn! IJ

21^CJ
'u. ~81!

Note that the use of the extended representation in term
M8 would make no difference. As a result Eq.~80! becomes

^C̄0uĈnD̂uC0
CC&5(

I ,J
^C̄0uĈn~Ĥ2E01vn!ĈI uC0

CC&

3~M1vn! IJ
21^CJ

'uD̂uC0
CC&

52(
I ,J

^C̄0u@@Ĥ,ĈI #,Ĉn#uC0
CC&

3~M1vn! IJ
21^CJ

'uD̂uC0
CC&. ~82!

To make contact with the original formulation of Koch an
Jo”rgensen Eq.~82! may be written as

^C̄0uĈnD̂uC0
CC&5(

I ,K
^C̄0u@@Ĥ,ĈI #,ĈK#uC0&XI~2vn!XKn ,

~83!

where

XI~2vn!52(
J

~M1vn! IJ
21^CJ

'uD̂uC0
CC&. ~84!

Indeed, as was shown by Koch and Jo”rgensen, the right tran
sition moment in the form of Eqs.~83! and ~84! is size in-
tensive. The compactness property, of course, is not chan
by this procedure.

Our findings can be summarized as follows. The bC
representation allows for practical nonperturbative appro
mation schemes which is a very desirable feature. In co
parison with the ADC~ECO-ISR! representation, which
however, has been used only in combination with pertur
tion theory ~for the secular matrix elements and effecti
transition moments!, the CC method has the disadvantag
that the secular matrix is non-Hermitian and that the co
pactness and separability properties are weaker. A relati
complicated formulation of the transition moment is nec
sary to obtain size-intensive intensities. A consistent th
order description off requires inclusion of the triple excita
tions in the explicit configuration space. A consistent thi
order CC method referred to as CC3 model that ind
considers the triple excitations though with certain simpl
cations of the full CC expressions has been developed
Christiansenet al.36

VI. CONCLUDING REMARKS

The actual potential of the ADC~3! method for treating
electronic transitions in larger molecules depends, of cou
critically on the inherent computational costs. Clearly, t
computational bottleneck is the calculation of the third-ord
contributions to thep-h block of the secular matrixC. As
of
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specified by Eqs.~C9!–~C37!, there are 29 distinct terms
involving fourfold and partly fivefold summations over o
bital indices. The computational cost of this part scales asN8

with the numberN of orbitals ~in the rough estimate no
distinguishing between occupied and virtual orbitals!. A
more favorableN7 scaling is found for generating th
p-h/2p-2h coupling block. The number of nonvanishin
matrix elements of the latter block and of the 2p-2h block is
N6, so that an iteration step in the diagonalization proced
scales asN6, that is, as in the familiar SDCI treatment. Th
much simpler ADC~2! scheme, for example, scales asN5 in
the iteration step and asN6 in the generation of thep-h
block.

The different types of matrix elements in the blocks ofC
suggest to adopt a mixed strategy for the matrix-times-ve
product in the diagonalizer iterations. For the 2p-2h block,
which is linear in the Coulomb integrals, the adequate cho
is adopting the integral driven direct diagonalization tec
nique, as used in direct CI methods. The second- and th
order matrix elements in the other blocks should prefera
be calculated once and stored on disk. According to an
ploratory analysis, their computation can be performed qu
efficiently by splitting the summations into subseque
passes through ordered segments of the Coulomb inte
list.

A challenge of its own kind is the third-order treatme
of the intensities. Though the scaling behavior here, like
the energies, isN8 and N7 in the p-h and 2p-2h parts,
respectively, the large number of distinct third-order con
butions tof ~altogether about 200 terms! causes severe prob
lems even for an error-free implementation in a compu
code. While it would be desirable to have consistent thi
order transition moments, e.g., for calculating accurate po
izabilities, in normal applications the second-order treatm
of the intensities is by far sufficient. This suggests to co
bine the transition moments of the ADC~2! scheme with the
eigenvectors of the ADC~3! secular matrix. Such a schem
will be referred to as ADC~3/2! scheme.

Finally one may wonder about the considerable co
plexity of the derivation and the final form of the ADC~3!
expressions. It seems, however, that what one finds he
reflecting the intrinsic complexity of the excitation proble
rather than artificial complications of the method, which,
emphasize it once more, is structurally utmost simple. H
reliable are the results presented here? As an effort to c
with this obvious problem, the explicit ADC procedure h
been performed independently and individually by each
the authors allowing for threefold mutual checks.
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FIG. 7. Matrix representation~adja-
cency matrices! of the zeroth-, first-,
and second-order Feynman diagram
for the polarization propagator.
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APPENDIX A: DIAGRAMMATIC RULES

The rules for drawing and evaluating Feynman diagra
~FD! are well documented in textbooks~for example, see
Fetter and Walecka1!. The rules for the associated time
ordered or Goldstone diagrams~GD! are less familiar~for
the GD rules in the case of the electron propagator
Cederbaum45!. For the case of the polarization propaga
the Feynman and Goldstone diagram rules have been a
described in Appendix A of Ref. 11, and for brevity we m
refer the reader to this source. However, here the follow
corrections concerning the overall sign of a diagram mus
made:

The rule~F4! should read:
~F4! Multiply by a sign factor (21)L, whereL is the

number of closed~Fermion! loops, and by an additional fac
tor (2 i ) stemming from the definition of the polarizatio
propagator. When alli factors for thenth order diagram are
collected one obtains the overall factor

~2 i !~2 i !n~1 i !2n115 i n11.

An additional factor (21) applies if one Fermion line run
from the bottom~lower external vertex! to the top ~upper
external vertex! of the diagram~in this case another Fermio
line runs from the top to the bottom; this is opposed to
case where the Fermion lines run from top to top and fr
bottom to bottom.!

In a similar way the GD rule~G4! has to be modified:
~G4! Each hole line introduces the factor (21). Thus,

multiply by a sign factor (21)L1M, whereL is the number
of closed loops andM is the number of hole lines. Since eac
~inner! vertex gives a factor (2 i ) and each cut gives a facto
(1 i ), one obtains together with the factor (2 i ) from the
definition ~of the polarization propagator! the overall factor
simply as

~2 i !~2 i !n~1 i !n11511.

An additional factor (21) applies if one~or two! Fer-
mion line~s! run between the two external vertices.

For illustration we consider the time ordering (10a) of
the RPA diagram~7! ~Fig. 4!. The analytical expression
reads

Dak,mb
7.10a [~21!~v2ea2ek!

21~em1ek2ea2eb!21

3(
i j
cd

Vai[ck]Vc j [di]Vdb[m j]~em1e i2eb2ec!
21

3~em1e j2eb2ed!21.

Obviously this term is of the form (A2) ~Table II! and one
may readily extract the corresponding contribution tof ak,mb

(3) .
s

e
r
ply

g
e

e

APPENDIX B: COMPUTER GENERATION OF
DIAGRAMS

The matrix representation of Feynman diagrams~FD! in
Abrikosov ~or Hugenholtz! notation presented in the follow
ing is based on the concept of adjacency matrices of gr
theory ~see, for example, Harary46!. The use of adjacency
matrices in the computer generation of Feynman diagra
has been discussed by Paldus and Wong.47,48 Using a some-
what different method than the one described below the la
authors have generated a complete list of third-order d
grams for the polarization propagator.48

According to the following prescription one may map
given nth order FD uniquely to a quadratic (n12) matrix:

~i! Label then12 vertices of the FD by the number
1,2, . . . ,n12, beginning with the top~outer! vertex and end-
ing with the bottom~outer! vertex.

~ii ! Form a quadratic (n12) matrix S whereSi j is the
number ofG(0) lines running from vertexi to vertex j. All
other entries are set to zero.

~iii ! Optionally an extra symbol can be used as an
try in S1,n12 to indicate the auxiliaryv-line connecting the
two outer vertices.

Figure 7 shows the adjacency matrices for the FDs thro
second order.

The following properties can readily be verified:
~1! The matrix elementsSi j can assume only the value

0, 1, or 2; Diagonal elements vanish:Sii 50. For inner ver-
tices i , j 52, . . . ,n11, the row sum and the column sum
2. For the~outer! vertices 1 andn12 the row and column
sum is 1.

~2! Different diagrams are mapped to different mat
ces, that is, the mapping is one-to-one for the range of
ages.

~3! A matrix fulfilling the properties~1! does not nec-
essarily correspond to a FD. For example, the correspon
diagram may be unlinked; different matrices may belong
the same FD.

~4! Time orderings of a FD correspond to simultaneo
permutations of rows and columns in the original matrix.

Based on these properties one can readily devise an a
rithm for generating all FDs of a given order. One simp
constructs all matrices with the properties~1! and then dis-
cards any matrix not qualifying for a FD or being only
different time ordering of a previous FD. For eachnth order
FD one obtains a matrix representation of the (n12)! Gold-
stone diagrams by performing all simultaneous row and c
umn permutations of the original matrix. Finally each mat
can be converted into a symbolic form specifying the Co
lomb integral products and thev-denominators of the corre
sponding analytical expressions. This allows one to sort
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diagrams into groups of the same integral product type
complete specification of the final analytic expression incl
ing the overall sign has not been attempted.

APPENDIX C: ADC „3… EXPRESSIONS FOR K1C

In the following we collect the expressions for the sec
lar matrix K1C ~effective interaction! of the third-order
ADC scheme forP1. ~A complete list for bothK1C and f
is available at our website.38! The explicit ADC~3! configu-
ration space comprises the 1h and 2h-1p configurations. For
notational brevity we use the short-hand notation

vpqrs5
Vpq[ rs]

ep1eq2e r2es
, ~C1!

whereVpq[ rs]5Vpqrs2Vpqsr and ep denote the antisymme
trized Coulomb integrals in ‘‘1212’’ notation and HF orbita
energies, respectively. The lettersi , j ,k,l , . . . and
a,b,c, . . . refer to occupied and unoccupied orbitals,
spectively. The subscriptsp,q,r , . . . label both occupied
and unoccupied orbitals.

p-h block:
zeroth through second order~see Ref. 11!

Kak,a8k85~ea2ek!daa8dkk8 , ~C2!

Cak,a8k8
(1)

52Vak8[a8k] , ~C3!

Cak,a8k8
(2)

5Cak,a8k8
(A)

1Cak,a8k8
(B)

1Cak,a8k8
(C) , ~C4!

where

Cak,a8k8
(A)

5
1

2
dkk8(

c
i , j

vaci jv i ja 8cS e i1e j2ec2
1

2
~ea1ea8! D ,

~C5!

Cak,a8k8
(B)

5
1

2
daa8(

c,d
i

vcdkivk8 icdS 1

2
~ek1ek8!1e i2ec2edD ,

~C6!

Cak,a8k8
(C)

5(
c,i

vk8 ia8cvacikS 1

2
~ek1ek82ea2ea8!1e i2ecD .

~C7!

Third-order:

there are 29 contributions

Cak,a8k8
(3)

5(
i 51

29

Cak,a8k8
(3,i ) , ~C8!

as specified below@Eqs.~C9!–~C37!#. Note that the expres
sions given here correspond to a Hermitianf11 block @see Eq.
~26!#. The terms are ordered according to their diagramm
origin.

diagrams~1!–~6!

Cak,a8k8
(3,1)

5
1

4
daa8 (

c,d
i , j ,m

v i jcdVk8m[ i j ]vcdkm

3S em2ec2ed1 ~1/2! ~ek1ek8!

ek81em2ec2ed
D 1h.c., ~C9!
A
-

-

-

ic

Cak,a8k8
(3,2)

5
1

8
daa8 (

c,d, f ,g
i

Vcd[ f g]

3S v f gkiVk8 i [cd]

ek1e i2ec2ed
1

vk8 icdVf g[ ik]

ek81e i2eg2e f
D , ~C10!

Cak,a8k8
(3,3)

5daa8 (
c,d, f

i , j

vcdi jvk8 jc fVi f [dk]

3S e j2ec2e f1 ~1/2! ~ek1ek8!

ek1e j2ec2e f
D1h.c., ~C11!

Cak,a8k8
(3,4)

5
1

2
daa8 (

c,d, f
i , j

Vc j [ f i ]

3S vd f k jVk8 i [cd]

ek1e i2ec2ed
1

vk8 icdVf d[k j ]

ek81e j2ed2e f
D , ~C12!

Cak,a8k8
(3,5)

5
1

4
dkk8 (

c,d, f
i , j

vcdi jv i ja 8 fVa f [cd]

3S e i1e j2e f2 ~1/2! ~ea1ea8!

e i1e j2ea2e f
D1h.c., ~C13!

Cak,a8k8
(3,6)

5
1

8
dkk8 (

c
i , j ,m,l

Vlm[ i j ]

3S vaclnVi j [a8c]

e i1e j2ea2ec
2

v i ja 8cVac[ lm]

em1e l2ea82ec
D , ~C14!

Cak,a8k8
(3,7)

5dkk8 (
c,d

i , j ,m

vcdi jv ima8dVa j [mc]

3S e i1em2ed2 ~1/2! ~ea1ea8!

e i1em2ea2ed
D1h.c., ~C15!

Cak,a8k8
(3,8)

5
1

2
dkk8 (

c,d
i , j ,m

Vmc[ id]

3S vad jmVi j [a8c]

e i1e j2ea2ec
1

v i ja 8cVad[m j]

e j1em2ea82ed
D , ~C16!

Cak,a8k8
(3,9)

5
1

2 (
c,d

i , j ,m

v i jcdvcd jm~daa8Vk8m[ki]2dkk8Vam[a8 i ] !,

~C17!

Cak,a8k8
(3,10)

5
1

2 (
c,d, f

i , j

v i jcdvd f i j~daa8Vck8[k f ]1dkk8Vac[a8 f ] !,

~C18!

Cak,a8k8
(3,11)

5
1

2 (
c,d, f

i , j

v i jcdVcd[ f j ]

1

e i2e f

3~daa8Vk8 f [ ik]1dkk8Va f [a8 i ] !1h.c., ~C19!
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Cak,a8k8
(3,12)

5
1

2 (
c,d

i , j ,m

v i jcdVmd[ i j ]

1

em2ec

3~daa8Vk8c[km]2dkk8Vac[a8m] !1h.c., ~C20!

diagram~7!

Cak,a8k8
(3,13)

5
1

2 (
c,d
i , j

vcdi jVa j [ck]Vik8[a8d]

1

ek1e i2ea2ed
1h.c.,

~C21!

Cak,a8k8
(3,14)

5
1

2 (
c,d
i , j

Vjc[ id]

3S vad jkVik8[a8c]

ek1e i2ea2ec
1

v ik8ca8Vad[ jk]

ek81e j2ea82ed
D , ~C22!

diagrams~8! and ~9!

Cak,a8k8
(3,15)

5
1

4(c,d
i , j

vaci jv i jcdVdk8[a8k]1h.c., ~C23!

Cak,a8k8
(3,16)

5
1

2 (
c,d
i , j

vcdi jVja[cd]Vik8[a8k]

1

e i2ea
1h.c., ~C24!

Cak,a8k8
(3,17)

5
1

2 (
c

i , j ,m

vac jmVjm[ ic]Vik8[a8k]

1

e i2ea
1h.c., ~C25!

diagrams~10! and ~11!

Cak,a8k8
(3,18)

5
1

4(c,d
i , j

vcd jkv i jcdVak8[a8 i ]1h.c., ~C26!

Cak,a8k8
(3,19)

5
1

2 (
c,d
i , j

vcdi jVi j [dk]Vk8a[ca8]

1

ek2ec
1h.c., ~C27!

Cak,a8k8
(3,20)

5
1

2 (
c,d, f

i

vd f ikVci[d f ]Vak8[ca8]

1

ek2ec
1h.c., ~C28!

diagrams~12! and ~13!

Cak,a8k8
(3,21)

5(
c,d
i , j

vadi jv ik8a8cVc j [dk]

3S e i2ec1 ~1/2! ~ek1ek82ea2ea8!

ek1e i2ea2ec
D1h.c.,

~C29!

Cak,a8k8
(3,22)

5(
c,d
i , j

vcd jkv ik8a8cVja[di]

3S e i2ec1 ~1/2! ~ek1ek82ea2ea8!

ek1e i2ea2ec
D1h.c.,

~C30!

diagrams~14! and ~15!
Cak,a8k8
(3,23)

5
1

2 (
c,d, f

i

vcdikvk8 ia8 fVa f [cd]

3S e i2e f1 ~1/2! ~ek1ek82ea2ea8!

ek1e i2ea2e f
D1h.c.,

~C31!

Cak,a8k8
(3,24)

5
1

2 (
c

i , j ,m

vaci jvk8mca8Vi j [km]

3S em2ec1 ~1/2! ~ek1ek82ea2ea8!

ek1em2ea2ec
D1h.c.,

~C32!

diagram~16!

Cak,a8k8
(3,25)

5 1
2(

c,d
i , j

vaci jv i jda8Vdk8[ck] , ~C33!

diagram~17!

Cak,a8k8
(3,26)

5 1
2(

c,d
i , j

vcdikvk8 jcdVai[a8 j ] , ~C34!

diagram~18!

Cak,a8k8
(3,27)

5 (
c

i , j ,m

vaci jv jma8cVik8[km] , ~C35!

diagram~19!

Cak,a8k8
(3,28)

5 (
c,d, f

i

vcdkiv ik8d fVa f [a8c] , ~C36!

diagrams~22! and ~23!

Cak,a8k8
(3,29)

5(
c,d
i , j

vaci jv jk8cdVdi[a8k]1h.c.. ~C37!

The contributions~C9!–~C20! are related to the ADC quan
tities of the one-particle Green’s function according to E
~35!. In particular, one may note the relation

(
m59

12

Cak,a8k8
(3,m)

52daa8Sk8k
(3)

~`!1dkk8Saa8
(3)

~`!,

whereSpq8
(3) (`) is the so-called static self-energy~see Ref.

39!.

1p-1h/2p-2h coupling block:

Cak,a8b8k8 l 8
(1)

5daa8Vk8 l 8[kb8]2dab8Vk8 l 8[ka8]

2dkk8Val8[a8b8]1dkl8Vak8[a8b8] , ~C38!

Cak,a8b8k8 l 8
(2)

5(
i 51

5

Cak,a8b8k8 l 8
(2,i ) , ~C39!

where
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Cak,a8b8k8 l 8
(2,1)

5S S daa8(
c,i

vk8 ib8cVl 8c[ ik] D 2~a8↔b8! D
2~k8↔ l 8!, ~C40!

Cak,a8b8k8 l 8
(2,2)

5S 1

2
daa8(

c,d
vk8 l 8cdVcd[kb8] D 2~a8↔b8!,

~C41!

Cak,a8b8k8 l 8
(2,3)

5S S dkk8(
c,i

v l 8 ib8cVac[ ia8] D 2~a8↔b8! D
2~k8↔ l 8!, ~C42!

Cak,a8b8k8 l 8
(2,4)

5S 1

2
dkk8(

i , j
v i ja 8b8Vl 8a[ i j ] D 2~k8↔ l 8!,

~C43!

Cak,a8b8k8 l 8
(2,5)

5S (
c

vk8 l 8a8cVac[b8k] D 2~a8↔b8!, ~C44!

Cak,a8b8k8 l 8
(2,6)

5S (
i

v l 8 ia8b8Vak8[ ik] D 2~k8↔ l 8!. ~C45!

Here (p↔q) means repeating the preceding term, but withp
andq interchanged. 2p-2h block:

Kabkl,a8b8k8 l 85~ea1eb2ek2e l !daa8dbb8dkk8d l l 8

Cabkl,a8b8k8 l 8
(1)

5dkk8d l l 8Vab[a8b8]1daa8dbb8Vk8 l 8[kl]

2~dbb8d l l 8Vak8[a8k]1dbb8dkk8Val8[a8 l ]

1daa8d l l 8Vbk8[b8k]1daa8dkk8Vbl8[b8 l ] !

1~k8↔ l 8!1~a8↔b8!2~k8↔ l 8,a8↔b8!.

~C46!

It should be noted that the relative signs have been chose
such a way that the first-order contributions toC agree with

CIJ
(1)5^F I uĤ2E0~1!uFJ&,

where$uFJ&%[$ca
†ckuF0

N&,ca
†cb

†ckcl uF0
N&, . . . % are the usual

N-electron HF configurations andE0(1) is the first-order
ground-state energy.
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