

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет»

(ФГБОУ ВО «ИГУ»)

Факультет химический

УТВЕРЖДАЮ Декан химического факультета

Вильмс А.И.

"15" апреля 2025 г.

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): Математическое моделирование химических реакций

Научная специальность: 1.4.4. Физическая химия

Форма обучения очная

Согласовано с УМК_химического факультета

Протокол № 4 от «15» апреля 2025 г.

Председатель Ди Вилис

Рекомендовано кафедрой физической и коллоидной химии:

Протокол № 8 от «10» апреля 2025 г.

И.о. зав. кафедрой *То сегор Белых Л.Б.*

Содержание

- 1. Цели и задачи дисциплины (модуля)
- 2. Требования к результатам освоения дисциплины (модуля)
- 3. Объем дисциплины (модуля) и виды учебной работы 5
- 4. Содержание дисциплины (модуля)
- 4.1 Содержание разделов и тем дисциплины (модуля)
- 4.2 Разделы и темы дисциплин (модулей) и виды занятий
- 4.3 Перечень семинарских, практических занятий и лабораторных работ.
- 5. Примерная тематика рефератов (при наличии)
- 6. Учебно-методическое и информационное обеспечение дисциплины (модуля):
 - а) основная литература;
 - б) дополнительная литература;
 - в) программное обеспечение;
 - г) интернет-ресурсы, базы данных, информационно-справочные и поисковые системы
- 7. Материально-техническое обеспечение дисциплины (модуля).
- 8. Образовательные технологии
- **9.** Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации
- 9.1 Оценочные средства текущего контроля
- 9.2 Оценочные средства для промежуточной аттестации

1. Цели и задачи дисциплины (модуля):

Цель дисциплины - Подготовка аспирантов к участию в исследованиях химических процессов проводимых в лабораторных условиях, освоение принципов математического моделирования сложных химических процессов.

Задачи:

- дать аспирантам углубленные представления о методах математического моделирования, численных методах решения систем уравнений и интегрирования систем дифференциальных уравнений, познакомить с основными типами химических задач, в которых используются методы математического моделирования;
- сформировать современные представления, обобщающие, полученные на предыдущем этапе обучения сведения о термодинамике и кинетике химических процессов.

2. Требования к результатам освоения дисциплины

В результате изучения дисциплины аспирант должен:

Знать:

- методы математического моделирования и основные типы химических задач, в решении которых применяются эти методы;
- основные поисковые системы химической информации;
- основные методы определения структуры и свойств веществ с помощью уникального и серийного научного оборудования

Уметь:

- самостоятельно осуществлять научно-исследовательскую деятельность в области математического моделирования химических реакций с использованием современных методов исследования и информационно-коммуникационных технологий;
- собирать, систематизировать и анализировать научную литературу по заданной теме;
- самостоятельно определять перечень необходимых инструментальных методов исследования, используемых при выполнении диссертационной работы по выбранному направлению подготовки; современные способы обработки и интерпретации получаемых результатов; представлять возможности и ограничения методов

Владеть:

- теоретическими представлениями в области «Математического моделирования химических реакций» и основным понятийным аппаратом;
- навыками целенаправленного сбора литературы и анализа научной литературы, в том числе с использованием современных информационных технологий;
- навыками использования современных специализированных вычислительных комплексов и баз данных при планировании химических исследований, для обработки и анализа экспериментальных данных, подготовке публикаций и презентации результатов диссертационной работы.

3. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы Всего		Курсы			
	академиче ских часов	1	2	3	4
Аудиторные занятия (всего)	16		16		
В том числе:	-	-	-	-	-
Лекции	8		8		
Практические занятия (ПЗ)	8		8		
Самостоятельная работа (всего)	18		18		
В том числе:	-	-	-	-	-
Реферат (при наличии)					
Контактная работа					
Другие виды самостоятельной работы					
Промежуточная аттестация (всего)	2		2		
В том числе:					
Контактная работа во время промежуточной аттестации	2		2		
Форма промежуточной аттестации (зачет, экзамен)	зачет		заче т		
Общая трудоемкость часы	36		36		
зачетные единицы	1		1		

4. Содержание дисциплины

4.1. Содержание разделов и тем дисциплины

No	Наименование раздела	Содержание раздела дисциплины
1.	Введение	Цель и задачи курса. Исторический очерк. Численные методы как особый раздел математики. Задачи, требующие численного решения и допускающие численное решение. Область применимости численных методов. Типы решаемых задач. Вычислительные методы: методы аппроксимации, прямые методы, итерационные методы, методы статистических испытаний (методы Монте-Карло). Математическая модели. Эмпирические, феноменологические и детальные модели. Прямая и обратная задачи. Моделирование как способ проверки гипотез. Обработка данных эксперимента как решение обратной задачи математического моделирования. Погрешности численных методов. Источники ошибок вычислений. Классификация ошибок. Абсолютная и относительная ошибки. Корректность

		вычислительной задачи. Единственность, устойчивость
		вычислительной задачи. Единственность, устойчивость решения. Численный эксперимент. Тестирование и отладка
		математической модели
2.	Численные методы	2.1 Типы уравнений (линейные, алгебраические,
	решения систем	трансцендентные). Численные методы решения уравнений.
	-	Метод простой итерации. Метод касательных (Ньютона-
	линейных	Рафсона). Метод дихотомии (половинного деления). Метод
	уравнений	хорд (секущих). Матричная форма записи систем линейных
		уравнений. Влияние погрешности коэффициентов системы
		уравнений на погрешность результата. Обусловленность
		систем линейных уравнений.
		2.2. Точные (прямые) методы решения задачи. Методы
		Гаусса, Гаусса-Жордана, Крамера. Нахождение обратной
		матрицы. Примеры химических задач: Методы нахождения
		стехиометрических уравнений реакций по компонентному
		составу реакционной смеси; Методы нахождения уравнений
		материального баланса;
		2.3. Математическое описание сложной химической реакции;
		Расчеты равновесных составов сложных реакций; уравнение
		состояния реального газа; вычисление рН растворов слабых
		кислот; вычисление рН буферных растворов; обработка
		спектральных данных
3.	Численные методы	3.1. Метод сопряженных градиентов. Примеры химических
	решения систем	задач, сводимых к решению систем линейных уравнений.
	нелинейных	Регрессионный анализ методом наименьших квадратов
	уравнений	(МНК). 3.2 Линейные и нелинейные математические модели.
	JI	
		Нелинейные модели, которые можно свести к линейным. Линейный МНК. Нелинейный МНК. Численные методы
		решения систем нелинейных уравнений. Метод простой
		итерации. Метод Зейделя. Метод Ньютона. Решение задач
		оптимизации функции нескольких переменных. Метод
		наискорейшего спуска. Численные методы решения обратной
		кинетической задачи.
4.	Методы	4.1. Методы прямоугольников, трапеций, Симпсона.
	численного	Численные методы решения обыкновенных
		дифференциальных уравнений первого порядка. Метод
	интегрирования	Эйлера. Методы Рунге-Кутта 2-го – 4-го порядков. Метод
		прогноза и коррекции. Примеры химических задач,
		приводящих к необходимости численного интегрирования:
		вычисление летучести газа, вычисление теплоемкости
		твердых тел, моделирование простой перегонки.
		4.2. Численное интегрирование обыкновенных
		дифференциальных уравнений (ОДУ): решение задачи Коши.
		Локальная и глобальная ошибки. Понятие устойчивости
		решения. Явные и неявные схемы интегрирования (на
		примере метода Эйлера); их устойчивость. "Жесткие"
		уравнения. Количественный критерий жесткости. Общее
		представление о принципах построения методов для
		интегрирования жестких систем ОДУ. Стохастические
		модели и метод "Монте-Карло".
		4.3. Примеры химических задач, приводящих к

	необходимости	решения	дифференциальн	ных уравнений:
	интегрирование	дифферен	циальных уравне	ний формальной
	кинетики химич	песких реак	кций, описание я	влений переноса
	(перенос тепла, м	массы, импу	ульса), системы с	автоколебаниями
	концентраций	реагирую	цих веществ,	моделирование
	нестационарных	эффектов (химических колеб	баний, триггеров)

4.2. Разделы и темы дисциплины (модуля) и виды занятий

№	Наименование	Наименование	Виды занятий в часах			
п/п	раздела	темы	Лекции	Практические занятия	Самостояте льная работа	Всего
1.	Введение	Введение	1	1	2	4
2.	Численные методы решения систем линейных уравнений	Численные методы решения уравнений. Методы нахождения стехиометрическ их уравнений реакций по компонентному составу реакционной смеси; Методы нахождения уравнений материального баланса	3	2	4	9
3.	Численные методы решения систем нелинейных уравнений	Математическое описание сложной химической реакции Метод сопряженных градиентов. Примеры химических задач, сводимых к решению систем линейных уравнений. Линейные и нелинейные математические модели.	2	3	6	11
4	Методы численного интегрирован ия	Решение задач оптимизации функции нескольких переменных. Метод наискорейшего	2	2	6	10

спуска. Численные
методы решения
обратной
кинетической
задачи.

4.3. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров,	Трудоемко	Оценочные
п/п	темы	практических и лабораторных	сть	средства
11/11	дисциплины	работ	± ± ±	
	(модуля)	раоот (часы)		
1	2	3	4	5
_		3	7	3
1	1.Введение	Численные методы как особый раздел математики	1	Входной контроль в виде тестового задания по химической кинетике с открытыми вопросами
2	2. Численные методы решения систем линейных уравнений	Численные методы решения уравнений. Методы нахождения стехиометрических уравнений реакций по компонентному составу реакционной смеси; Методы нахождения уравнений материального баланса	2	Устная беседа. Проверка практических работ
3	3. Численные методы решения систем нелинейных	Математическое описание сложной химической реакции Метод сопряженных градиентов. Примеры химических задач,	1	Устная беседа. Проверка практических работ Устная беседа. Проверка
	уравнений	Примеры химических задач, сводимых к решению систем линейных уравнений. Линейные и нелинейные	1	практических работ Устная беседа.
		математические модели.	_	Проверка практических работ
4	4. Методы численного интегрировани я	Решение задач оптимизации функции нескольких переменных. Метод наискорейшего спуска. Численные методы решения обратной кинетической задачи.	1	Устная беседа. Проверка практических работ
		Примеры химических задач, приводящих к необходимости решения дифференциальных уравнений: интегрирование дифференциальных уравнений формальной кинетики химических реакций.	1	Устная беседа. Проверка практических работ

5. Примерная тематика рефератов, докладов, проектов (при наличии); перечень вопросов к зачетам, экзаменам и т.п.: не предусмотрены

6. Учебно-методическое и информационное обеспечение дисциплины (модуля):

- а) основная литература
- 1. Марков, Ю. Г. Математические модели химических реакций [Электронный ресурс] / Ю. Г. Марков. Москва : Лань, 2013. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=30200. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1483-3 :
- 2. Самойлов, Н. А. "Примеры и задачи по курсу ""Математическое моделирование химико-технологических процессов"" [Электронный ресурс] / Н. А. Самойлов. Москва : Лань", 2013. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=37359. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1553-3 :
- 3. Курохтина, А.А. Метод конкурирующих реакций в исследованиях механизмов каталитических процессов: традиционные и новые способы применения [Текст]: учеб. пособие / А. А. Курохтина, А. Ф. Шмидт; Иркутский гос. ун-т, Хим. фак. Иркутск: Изд-во ИГУ, 2012. 93 с.; 20 см. Библиогр.: с. 83-93. ISBN 978-5-9624-0667-1: 13 экз.

б) дополнительная литература:

- 1. Темкин, О.Н. Гомогенный металлокомплексный катализ. Кинетические аспекты / О. Н. Темкин. М.: Академкнига, 2008. 918 с.: ил.; 24 см. Библиогр. в конце глав. ISBN 978-5-94628-336-6: 1 экз.
- 2. Практическая химическая кинетика. Химическая кинетика в задачах с решениями : учеб. пособие / ред. М. Я. Мельников. М. : Изд-во МГУ ; СПб. : Изд-во СПбГУ, 2006. 591 с. : ил. ; 22 см. Библиогр. в конце глав. Библиогр.: с. 591. ISBN 5-211-05233-1. ISBN 5-288-04155-5 : 2 экз
- 3. Самарский, А.А. Введение в численные методы [Текст] : учеб. пособие для вузов / А. А. Самарский ; Московский гос. ун-т им. М. В. Ломоносова. 3-е изд., стер. М. : Лань, 2005. 288 с. ; 21 см. (Классический университетский учебник) (Учебники для вузов. Специальная литература). Библиогр.: с. 281. Предм. указ.: с. 284-286. ISBN 5-8114-0602-9 : 3 экз
- 4. Бахвалов, Н.С. Численные методы. Решения задач и упражнения: Учеб. пособие / Н. С. Бахвалов, А. А. Корнев, Е. В. Чижонков. М.: Дрофа, 2009. 394 с.: ил.; 22 см. (Высшее образование: Современный учебник). Библиогр.: с. 393-394. ISBN 978-5-358-03610-9: 1 экз.
- 5. Формалев, В.Ф. Численные методы [Текст]: учеб. пособие для студ. техн. ун-тов / В. Ф. Формалев, Д. Л. Ревизников. М.: Физматлит, 2004. 398 с.: ил.; 22 см. Библиогр.: с. 391-393. ISBN 5-9221-0479-9: 1 экз
- 6. Турчак, Л. И. Основы численных методов [Текст]: учеб. пособие для студ. вузов / Л. И. Турчак, П. В. Плотников. 2-е изд., перераб. и доп. М.: Физматлит, 2005. 300 с.: ил. Библиогр.: с. 290-292. Предм. указ.: с. 293-300. ISBN 978-5-9221-0153-6: 1 экз
- 7. Горлач, Б. А. Исследование операций [Электронный ресурс] / Б. А. Горлач. Москва : Лань, 2013. Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4865. Режим доступа:

- ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1430-7:
- 8. Демидович, Б. П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс] : учеб. пособие / Б. П. Демидович, И. А. Марон, Э. З. Шувалова. Москва : Лань, 2010. 400 с. : ил. (Классическая учебная литература по математике) (Лучшие классические учебники). Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=537. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0799-6 :
- 9. Волков, Е.А. Численные методы [Электронный ресурс] : учеб. пособие / Е. А. Волков. Москва : Лань, 2008. 256 с. : граф., табл. (Учебники для вузов. Специальная литература). Режим доступа: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=54. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0538-1 :
- в) программное обеспечение: https://copasi.org, Artistic License 2.0
- г) интернет-ресурсы, базы данных, информационно-справочные и поисковые системы (при наличии)
 - 1) http://www.intuit.ru/department/calculate/intromathmodel/4/

данный интернет источник — это сайт Интернет Университет, на котором представлена лекция «Численные методы решения нелинейных уравнений».

2) http://www.intuit.ru/department/calculate/intromathmodel/11/

данный интернет источник — это сайт Интернет Университет, на котором представлена лекция «Компьютерное моделирование при обработке опытных данных»

3) http://www.uchites.ru/chislennye_metody/posobie

данный интернет источник – это сайт Учитесь.ру, на котором представлен учебное пособие «Численные метолы».

7. Материально-техническое обеспечение дисциплины (модуля):

Помещения для проведения лекционных и практических занятий, укомплектованные необходимым оборудованием и приборной базой, а именно: аудитории, оснащенные мультимедийными средствами, для проведения аудиторных и практических занятий (ауд. 402, 426, 303);

8. Образовательные технологии:

В процессе изучения дисциплины используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения. В частности, в рамках освоения дисциплины «Кинетика многомаршрутных реакций» аспирантами химического факультета предусмотрены

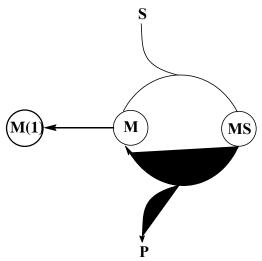
- 1) лекции с применением
- а) технологий объяснительно-иллюстративных объяснений,
- б) объяснительно-иллюстративный метода с элементами проблемного изложения;
- в) разбора конкретных ситуаций.
- 2) практические занятия, во время которых проводится решение типовых задач, контрольные и аудиторные самостоятельные работы, обсуждаются вопросы лекций и

домашних заданий;

- 3) самостоятельная работа аспирантов, включающая подготовку к семинарским занятиям в форме изучения теоретического материала лекций, решения задач по различным разделам дисциплины; подготовку к текущему контролю успеваемости;
- 4) консультирование аспирантов по изучаемым теоретическим и практическим вопросам.
- 9. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации

9.1 Оценочные средства текущего контроля:

Для проведения текущего контроля успеваемости и промежуточной аттестации разработан ФОС, включающий тематику заданий и примерный перечень вопросов к зачету.


Примеры практических заданий

1. В реактор были загружены (PhCO)₂O, PhCH=CH₂ и катализатор. После нагревания кроме катализатора и исходных веществ были обнаружены: CO, PhCOOH, Ph-Ph и PhCH=CHPh. Найдите стехиометрические уравнения и линейно независимые комбинации концентраций для превращений в этой системе.

Критерии оценивания:

Задание считается выполненным при соблюдении всех нижеперечисленных условий:

- а) верно составлена молекулярная матрица системы;
- б) верно определены минимальное число и вид линейно независимых стехиометрических уравнений.
- Исследуйте свойства математической модели, описывающей каталитическую реакцию S→P, протекающую в присутствии катализатора M:

Стехиометрические уравнения стадий	Ориентировочные значения констант
	скоростей
$M + S \rightarrow MS$	1
$MS \rightarrow M + P$	1

$M \rightarrow M(1)$	0,05

Считать концентрацию субстрата S постоянной. Начальные концентрации компонентов: $C_{OS} = 100$, $C_{OM} = 0.01$, $C_{OP} = 0$.

В рамках предложенной модели выполните следующие задания:

- получите зависимости $C_P = f(t)$, $C_{M(1)} = f(t)$, $C_M = f(t)$, $C_{MS} = f(t)$. Объясните их характер;
- найдите число стационарных состояний и стационарные значения концентраций C_{MS} t и C_{MS} st;
- проверьте адекватность описания стационарной математической моделью зависимостей C_{M} st и C_{MS} st от начальных концентраций C_{OS} и C_{OM} ;
- проверьте адекватность описания стационарной математической моделью зависимости скорости реакции в стационарном состоянии (rst) от начальных концентраций C_{OS} и C_{OM} .

Критерии оценивания:

Задание считается выполненным при соблюдении всех нижеперечисленных условий:

- а) верно определен вид временных зависимостей концентраций компонентов, указанных в задании;
- б) верно определено число стационарных состояний и соответствующих значений концентраций компонентов, указанных в задании;
- в) корректно проведена оценка адекватности моделей от указанных в задании переменных

9.2. Оценочные средства для промежуточной аттестации:

Промежуточная аттестация (*зачет*) может проводиться в форме устного собеседования или в виде тестовых заданий с открытыми вопросами.

Примерный список вопросов к зачету

- 1. Методы аппроксимации, прямые методы, итерационные методы, методы статистических испытаний (методы Монте-Карло).
- 2. Эмпирические, феноменологические и детальные модели. Прямая и обратная задачи. Моделирование как способ проверки гипотез.
- 3. Погрешности численных методов. Источники ошибок вычислений. Классификация ошибок. Абсолютная и относительная ошибки. Корректность вычислительной задачи. Единственность, устойчивость решения. Численный эксперимент.
- 4. Типы уравнений (линейные, алгебраические, трансцендентные). Численные методы решения уравнений.
- 5. Методы нахождения стехиометрических уравнений реакций по компонентному составу реакционной смеси
- 6. Методы нахождения уравнений материального баланса; Математическое описание сложной химической реакции
- 7. Расчеты равновесных составов сложных реакций; уравнение состояния реального газа; вычисление pH растворов слабых кислот; вычисление pH буферных растворов
- 8. Обработка спектральных данных.
- 9. Численные методы решения систем нелинейных уравнений. Примеры химических задач, сводимых к решению систем линейных уравнений.

- 10. Методы численного интегрирования. Примеры химических задач, приводящих к необходимости численного интегрирования: вычисление летучести газа, вычисление теплоемкости твердых тел, моделирование простой перегонки.
- 11. Явные и неявные схемы интегрирования (на примере метода Эйлера); их устойчивость. "Жесткие" уравнения.
- 12. Стохастические модели и метод "Монте-Карло".

Критерии оценивания:

«Зачтено»:

Знает теоретические основы математических методов, применяемых в физической химии. Владеет представлениями о пакетах программ, используемых при физико-химических исследованиях, проводимых с помощью математических методов. Может объяснить порядок действий при исследовании механизмов сложных химических процессов с помощью применения математических методов. Умеет использовать стандартное и специализированное программное обеспечение в исследованиях механизмов химических реакций. Владеет теоретическими основами математических методов, применяемых в физической химии, и навыками их применения при установлении наиболее вероятного механизма каталитического процесса. Владеет навыками анализа результатов, полученных с помощью современной научной аппаратуры.

«Не зачтено»:

Фрагментарное знание предмета, отсутствие умений и навыков применения математических методов и подходов при решении конкретный задач в области физической химии.

Разработчик:

Д-р хим. наук, профессор

А.Ф. Шмидт

Программа рассмотрена на заседании кафедры физической и коллоидной химии «10» апреля 2025 г.

Протокол № 8 И.о. зав. кафедрой

/Белых Л.Б./