

#### МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

# «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра радиофизики и радиоэлектроники

УТВЕРЖДАЮ
Декан физического факультета
7 Н.М. Буднев
"17" апредя 2024 г.

### Рабочая программа дисциплины

Наименование дисциплины: **Дополнительные главы компьютерного моделирования распространения радиоволн** 

Научная специальность: 1.3.4 Радиофизика

Форма обучения очная

Согласовано с УМК: физического факультета Протокол № 42 <u>от "15" апреля</u> 2024 г.

Председатель: д.ф.-м.н., профессор

Н.М. Буднев

Рекомендовано кафедрой:

радиофизики и радиоэлектроники

Протокол № 8

от "8" апр∉ля 2024 г.

И.о. зав. кафедрой к.ф.-м.н., доцент

\_ С.Н. Колесник

Иркутск 2024 г.

# Содержание

| 1. Цели и задачи дисциплины (модуля)                                     | 3        |
|--------------------------------------------------------------------------|----------|
| 2. Требования к результатам освоения дисциплины (модуля)                 | 3        |
| 3. Объем дисциплины (модуля) и виды учебной работы                       | 3        |
| 4.Содержание дисциплины (модуля)                                         | 4        |
| 4.1. Содержание разделов и тем дисциплины (модуля)                       | 4        |
| 4.2 Разделы и темы дисциплин (модулей) и виды занятий                    | 4        |
| 4.3. Перечень семинарских, практических занятий и лабораторных работ     | 5        |
| 5. Примерная тематика рефератов (при наличии)                            | 5        |
| 6. Учебно-методическое и информационное обеспечение дисциплины (модуля)  | 6        |
| а) основная литература                                                   | 6        |
| б) дополнительная литература                                             | 6        |
| в) программное обеспечение                                               | 6        |
| г) базы данных, информационно-справочные и поисковые системы             | 6        |
| 7. Материально-техническое обеспечение дисциплины (модуля)               | 7        |
| 8. Образовательные технологии                                            | 7        |
| 9. Фонды оценочных средств для проведения текущего контроля успеваемости | и проме- |
| жуточной аттестации                                                      | 7        |
| 9.1. Оценочные спедства текушего контроля                                |          |

#### 1. Цели и задачи дисциплины (модуля)

Дисциплина «Дополнительные главы компьютерного моделирования распространения радиоволн» посвящена изучению алгоритмов и программ, а также методик численного моделирования распространения декаметровых радиоволн в ионосферных моделях, максимально приближенных к реальности.

**Цель курса** – дать аспирантам представления о состоянии исследований в области ионосферного распространения радиоволн, познакомить с методами численного моделирования такого распространения, рассмотреть проблемы, существующие в данной области радиофизики.

Задачи курса - научить аспирантов выполнять моделирование ионосферного распространения радиоволн для условий, приближенным к реальным, обрабатывать и интерпретировать результаты моделирования.

#### 2. Требования к результатам освоения дисциплины (модуля):

В результате изучения дисциплины аспирант должен:

**Знать:** теоретические основы построения глобальных моделей ионосферы и алгоритмов расчета распространения радиоволн

**Уметь:** самостоятельно осуществлять научно-исследовательскую деятельность в соответствующей профессиональной области с использованием методов компьютерного моделирования

**Владеть:** навыками применения методов компьютерного моделирования в решении задач научных исследований в области ионосферного распространения радиоволн

#### 3. Объем дисциплины (модуля) и виды учебной работы

| Вид учебной работы             | Всего ча-                     |   |    | рсы |   |
|--------------------------------|-------------------------------|---|----|-----|---|
|                                | сов / за-<br>четных<br>единиц | 1 | 2  | 3   | 4 |
| Аудиторные занятия (всего)     | 16                            |   | 16 |     |   |
| В том числе:                   | -                             |   | -  | -   | - |
| Лекции                         | 8                             |   | 8  |     |   |
| Практические занятия (ПЗ)      | 8                             |   | 8  |     |   |
| Семинары (С)                   |                               |   |    |     |   |
| Лабораторные работы (ЛР)       |                               |   |    |     |   |
| Самостоятельная работа (всего) | 18                            |   | 18 |     |   |
| В том числе:                   | -                             |   | -  | -   | - |

| Расчетно-графические работы                    |    |     |  |
|------------------------------------------------|----|-----|--|
| Реферат (при наличии)                          |    |     |  |
| Решение задач                                  | 18 | 18  |  |
|                                                |    |     |  |
| Контактная работа во время промежуточной атте- | 2  | 2   |  |
| стации                                         |    |     |  |
| Вид промежуточной аттестации (зачет, экзамен)  |    | Зач |  |
| Общая трудоемкость часы                        | 36 | 36  |  |
| зачетные единицы                               | 1  | 1   |  |

#### 4. Содержание дисциплины (модуля)

## 4.1. Содержание разделов и тем дисциплины (модуля)

Тема 1. Моделирование глобальной ионосферы.

- 1.1. Эмпирические модели.
- 1.2. Полуэмпирические модели.
- 1.3. Теоретические модели.

Тема 2. Сопряжение моделей с алгоритмами расчета распространения радиоволн.

- 2.1. Сплайн-интерполяция данных.
- 2.2. Квадратичная интерполяция параметров ионосферы.
- 2.3. Кубическая интерполяция высотного профиля электронной концентрации.

Тема 3. Расчет распространения радиоволн в двумерно-неоднородной ионосфере.

- 3.1. Алгоритм расчета по методу характеристик.
- 3.2. Двумерная бикубическая сплайн-интерполяция ионосферных данных.

Тема 4. Учет трехмерной неоднородности и анизотропии ионосферы.

- 4.1. Особенности распространения траекторий лучей в трехмерно-неоднородной ионосфере.
- 4.2. Учет анизотропии ионосферы при расчете распространения радиоволн.

#### 4.2 Разделы и темы дисциплин (модулей) и виды занятий

| $N_{\underline{0}}$ | Наименование  | Наименование   | Виды занятий в часах |        |       |      |     |       |
|---------------------|---------------|----------------|----------------------|--------|-------|------|-----|-------|
| $\Pi/\Pi$           | раздела       | темы           | Лекц.                | Практ. | Семин | Лаб. | CPC | Всего |
|                     |               |                |                      | зан.   |       | зан. |     |       |
| 1.                  | Моделирова-   | Моделирова-    |                      |        |       |      |     |       |
|                     | ние глобаль-  | ние глобальной | 2                    | 2      |       |      |     | 4     |
|                     | ной ионосфе-  | ионосферы      | 2                    | 2      |       |      |     | 4     |
|                     | ры            |                |                      |        |       |      |     |       |
| 2.                  | Сопряжение    | Сопряжение     | 2                    | 2      |       |      |     | 4     |
|                     | моделей с ал- | моделей с ал-  | 2                    | 2      |       |      |     | 4     |

|    | горитмами расчета распространения радиоволн                            | горитмами расчета распространения распродиоволн                                          |   |   |  |   |
|----|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|---|--|---|
| 3. | Расчет распространения радиоволн в двумернонеоднородной ионосфере      | Расчет распро-<br>странения ра-<br>диоволн в дву-<br>мерно-<br>неоднородной<br>ионосфере | 2 | 2 |  | 4 |
| 4. | Учет трех-<br>мерной неод-<br>нородности и<br>анизотропии<br>ионосферы | Учет трехмерной неоднородности и анизотропии ионосферы                                   | 2 | 2 |  | 4 |

## 4.3. Перечень семинарских, практических занятий и лабораторных работ

| No        | № раздела и | Наименование семинаров, практиче-  | Трудоем- | Оценочные |
|-----------|-------------|------------------------------------|----------|-----------|
| $\Pi/\Pi$ | темы дисци- | ских и лабораторных работ          | кость    | средства  |
|           | плины (мо-  |                                    | (часы)   |           |
|           | дуля)       |                                    |          |           |
| 1         | 2           | 3                                  | 4        | 5         |
| 1.        | 1           | Освоение программы и проведение    | 4        | Собесед.  |
|           |             | расчетов ионосферных условий       |          | реш.зад   |
| 2.        | 3           | Освоение программы и поведение     | 4        | Собесед.  |
|           |             | расчетов распространения в двумер- |          | реш.зад   |
|           |             | но-неоднородной ионосфере          |          |           |

## 5. Примерная тематика рефератов (при наличии)

Рефераты не предусмотрены.

#### 6. Учебно-методическое и информационное обеспечение дисциплины (модуля):

Программой предусмотрено использование современных образовательных технологий: информационные (лекции и презентации в Power Point), проектные (мультимедийные, использование документальных видеоматериалов).

- а) основная литература
- 1. Сажин В.И. Компьютерное моделирование распространения радиоволн в регулярной ионосфере [Электронный ресурс] : учеб. пособие / В. И. Сажин. - ЭВК. - Иркутск : ИГУ, 2010. - Режим доступа: ЭЧЗ "Библиотех".
- 2. Распространение радиоволн: учебник / О.И. Яковлев [и др.]; под ред. О.И. Яковлева. М.: ЛЕНАНД, 2009. –496 с.
- б) дополнительная литература
- 1. Сажин В.И. Моделирование на ЭВМ распространения радиоволн в регулярной ионосфере : учебное пособие / В.И. Сажин. Иркутск, Изд-во Ирк.гос. ун-та, 1993. 40 с.
- 2. Кравцов Ю.А. Геометрическая оптика неоднородных сред / Ю.А. Кравцов, Ю.И. Орлов. М.: Наука, 1980. 304 с.
- 3. Красов В.И. Компьютерное моделирование физических процессов [Электронный ресурс] : учеб. пособие для студ. физ. спец. ун-тов- Иркутск : ИГУ, 2007. Режим доступа: ЭЧЗ "Библиотех".
- в) программное обеспечение
- 1. Программа расчета ионосферных условий ПЭМИ;
- 2. Программа расчета распространения радиоволн в двумерно-неоднородной ионосфере;
- 3. Dia (кроссплатформенный свободный редактор диаграмм);
- 4. XMind (программа для составления интеллект-карт и диаграмм)
- 5. пакеты MS Office.
- г) базы данных, информационно-справочные и поисковые системы
- 1. Интернет ресурсы в свободном доступе, на сайтах ИГУ <u>www.isu.ru</u> и физического факультета ИГУ www. physdep.isu.ru.
- 2. Научные статьи из компьютерной сети физического факультета и научной библиотеки
- A. Научная электронная библиотека eLIBRARY.RU, более 10 полнотекстовых версий научных журналов по тематике курса
- B. Информационная система доступа к российским физическим журналам и обзорам ВИ-НИТИ (http://www.viniti.ru)
- C. Архив научных журналов JSTOR (<a href="http://www.jstor.org">http://www.jstor.org</a>)
- ЭЧЗ «Библиотех» https://isu.bibliotech.ru/
- ЭБС «Лань» <a href="http://e.lanbook.com/">http://e.lanbook.com/</a>
- ЭБС «Руконт» http://rucont.ru

#### 7. Материально-техническое обеспечение дисциплины (модуля):

Компьютерный класс со специализированным программным обеспечением для проведения практических и лабораторных занятий. Методическим оформлением курса является использование современных образовательных технологий: информационных (лекции и презентации в Power Point), проектных (мультимедиа, видео, документальные фильмы), дистанционных. Внедрение глобальной компьютерной сети в образовательный процесс позволяет обеспечить доступность Интернет-ресурсов. В качестве материалов используются научные статьи из рецензируемых журналов, рассматривающих современные подходы и исследования в области компьютерного моделирования распространения радиоволн.

#### 8. Образовательные технологии:

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- практические занятия, направленные на активизацию познавательной деятельности аспирантов и приобретения ими навыков решения практических и проблемных задач;
- консультации еженедельно для всех желающих аспирантов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- текущий контроль за деятельностью студентов осуществляется на лекционных и практических занятиях в виде самостоятельных работ

Программой предусмотрено использование современных образовательных технологий: информационные (лекции и презентации в Power Point), проектные (мультимедиа, документальное видео).

# 9. Фонды оценочных средств для проведения текущего контроля успеваемости и проимежуточной аттестации

Для изучения данного курса аспирант должен знать основы физики, радиофизики и информатики, уметь пользоваться стандартными поисковыми сервисами сети Интернет. Входной контроль знаний не проводится.

#### План самостоятельной работы аспирантов

| №    | Тема | Вид самостоятель- | Задание | Рекоменду-<br>емая литера- | Количе-<br>ство ча- |
|------|------|-------------------|---------|----------------------------|---------------------|
| нед. |      | ной работы        |         | тура                       | сов                 |

| 1. | Все темы       | - изучение теорети- | - ответить на кон- | Вся реко-     | 16 |
|----|----------------|---------------------|--------------------|---------------|----|
|    |                | ческой составляю-   | трольные вопросы   | мендуемая     |    |
|    |                | щей практических    |                    | литература    |    |
|    |                | заданий;            |                    |               |    |
|    |                | - оформление ре-    |                    |               |    |
|    |                | зультатов;          |                    |               |    |
|    |                | - подготовка к за-  |                    |               |    |
|    |                | щите конкретного    |                    |               |    |
|    |                | задания             |                    |               |    |
|    |                |                     |                    | Вся реко-     |    |
| 2. | Все темы       | Подготовк           | мендуемая          | 1             |    |
|    |                |                     |                    | литература    | _  |
|    |                |                     |                    | ······•parypa |    |
| 3. | Текущие консул | ътации              |                    |               | 1  |

#### Методические указания по организации самостоятельной работы аспирантов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у аспирантов-выпускников способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие аспирантов в практических занятиях, выполнения контрольных заданий и тестов, написания и выпускных квалификационных работ. При этом самостоятельная работа аспирантов играет решающую роль в ходе всего учебного процесса.

Самостоятельная работа реализуется:

- 1) В процессе семинарских занятий и при выполнении лабораторных работ.
- 2) В контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- 3) В библиотеке, дома, в общежитии, на кафедре при выполнении аспирантом учебных и творческих задач.

Границы между этими видами работ достаточно размыты, а сами виды самостоятельной работы пересекаются. Таким образом, самостоятельной работа аспирантов может быть как в аудитории, так и вне ее.

#### 9.1. Оценочные средства текущего контроля

Текущий контроль успеваемости аспирантов осуществляется по следующим критериям оценивания:

#### 1) Пороговый уровень:

- (знание) дает определения основных понятий
- воспроизводит основные физические факты, идеи
- распознает физические объекты
- знает основные методы решения типовых задач
- (умение) умеет работать со справочной литературой
- (владение) владеет терминологией предметной области знания
- способен корректно представить знания в математической форме

#### 2) Базовый уровень

- (знание) понимает связи между различными физическими понятиями
- имеет представление о физических моделях ионосферы и компьютерного моделирования распространения радиоволн.
- аргументирует выбор метода решения задачи; составляет план решения задачи
- графически иллюстрирует задачу
- (умение) применяет методы решения задач в незнакомых ситуациях;
- умеет корректно выражать и аргументированно обосновывать положения предметной области знания
- (владение) критически осмысливает полученные знания
- способен корректно представить знания в математической форме
- компетентен в различных ситуациях (работа в междисциплинарной команде)
- владеет разными способами представления физической информации

#### 3) Высокий уровень

- (знание) фактически и теоретически знает материал курса в пределах области исследования с пониманием границ применимости (знания глубокие, всесторонние)
- (**умение**) творчески подходит к решению физических задач (как теоретических, так и практических)
- умеет абстрагировать проблемы, с которыми сталкивается при решении различных задач;
- (владение) может самостоятельно оценивать результаты своей работы;
- способен совершенствовать действие работы, исходя из собственной оценки результатов
- соблюдает нормы литературного языка, преобладает научный стиль изложения

Защита разработанных программ и результатов компьютерного моделирования по выданным заданиям.

Оценка степени сформированности компетенций аспиранта основывается конкретностью и полнотой его ответов при выполнении заданий и упражнений итогового контроля знаний. Дополнительные вопросы и их число определяется необходимостью объективной оценкой уровня освоения аспиранта изучаемой дисциплины.

Оценка "Зачтено" выставляется аспиранту, который усвоил весь программный материал, исчерпывающе, грамотно и по существу его излагает, не допуская существенных неточностей в ответах на вопросы, умело применяет теоретические положения при решении практических вопросов и заданий, владеет необходимыми навыками и приемами их выполнения.

Оценка "Не зачтено" выставляется аспиранту, который не может ответить на ключевые вопросы программного материала, допускает существенные ошибки, с большими затруднениями и ошибками выполняет практические задания.

#### Разработчики:

**В.** Ссеге профессор, д.ф.-м.н.

В.И. Сажин

Программа рассмотрена на заседании кафедры радиофизики и радиоэлектроники ИГУ

«8» апреля 2024 г.

Протокол № 8, и.о. зав.кафедрой

С.Н. Колесник

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.