

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра метеорологии и физики околоземного космического пространства

УТВЕРЖДАЮ декан географического факультета доц. С.Ж.Вологжина

«18» мая 2020 г.

Рабочая программа дисциплины

Наименование дисциплины (модуля)

Б1.В.09 «Численные методы анализа и прогноза погоды»

Направление подготовки 05.03.04 «Гидрометеорология»

Направленность (профиль) подготовки «Метеорология»

Квалификация выпускника - БАКАЛАВР

Форма обучения очная, заочная

Согласовано с УМК географического факультета Протокол №3 от «17» апреля 2020 г.

Председатель В С.Ж. Вологжина

Иркутск 2020 г.

Содержание

1. Цели и задачи дисциплины	3
2. Место дисциплины в структуре ООП	3
3. Требования к результатам освоения дисциплины	3
4. Объем дисциплины и виды учебной работы	4
5. Содержание дисциплины	4
5.1 Содержание разделов и тем дисциплины	4
5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемы	ыми
(последующими) дисциплинами	6
5.3 Разделы и темы дисциплины и виды занятий	6
5.4 Перечень лекционных занятий	7
6. Перечень семинарских, практических занятий, лабораторных работ, пл	пан
самостоятельной работы студентов, методические указания по организац	ии
самостоятельной работы студентов	7
6.1 План самостоятельной работы студентов	9
6.2 Методические указания по организации самостоятельной работы ст	гудентов 9
7. Примерная тематика курсовых работ (проектов) (при наличии)	11
8. Учебно-методическое и информационное обеспечение дисциплины:	11
а) основная литература	11
б) дополнительная литература	11
в) программное обеспечение	12
г) базы данных, поисково-справочные и информационные системы	12
9. Материально-техническое обеспечение дисциплины	12
10. Образовательные технологии	13
11. Оценочные средства (ОС)	13

1. Цели и задачи дисциплины:

Основной целью освоения дисциплины «Численные методы анализа и прогноза погоды» является ознакомление студентов с методами численного анализа и прогноза погоды, современным состоянием систем усвоения метеорологической информации и численного прогнозирования погоды.

Выпускники должны обладать теоретической подготовкой в области численного прогноза погоды и знаниями по технологии составления численных анализов и прогнозов погоды. Курс призван дать выпускникам знания, необходимые для понимания выходной продукции, поступающей из систем численного прогнозирования погоды, и для приобретения квалификации, позволяющей работать в области численного анализа и прогноза погоды после окончания университета.

2. Место дисциплины в структуре ОПОП:

Дисциплина «Численные методы анализа и прогноза погоды» включена в раздел " Б1.В.ОД.9 Дисциплины (модули)" основной образовательной программы 05.03.04 «Гидрометеорология», направленность (профиль) «Метеорология» и относится к дисциплинам Обязательные дисциплины. Данная дисциплина осваивается на 4 курсе, 8 семестр, на заочной форме на 5 курсе. Общая трудоемкость дисциплины составляет 3 зачетные единицы.

Дисциплина «Численные методы анализа и прогноза погоды» обеспечивает студентам старших курсов введение в одно из важнейших приложений физики атмосферы. Курс базируется на знаниях, полученных после усвоения дисциплин «Физика» (Б1.Б.9), «Механика жидкости и газов» (Б1.Б16). «Математика» (Б1.Б.6), «Динамическая метеорология» (Б1.В.ОД.5), «Геофизическая гидродинамика» (Б1.Б.27), «Синоптическая метеорология» (Б1.В.ОД.7). Освоение этой дисциплины необходимо для формирования представления о методах объективного анализа и усвоения метеорологической информации, гидродинамического прогноза погоды. Знания численных методов необходимо для самостоятельной работы в области прогноза погоды, подготовки наблюдательных данных для систем усвоения метеорологической информации. Общая трудоемкость дисциплины составляет 4 зачетные единицы. Полный курс «Численные методы анализа и прогноза погоды» составляет 144 часа и завершается зачетом и экзаменом.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины «Численные методы анализа и прогноза погоды» направлен на формирование следующих компетенций:

	вание следующих компетенции.
Шифр компетенции	Расшифровка приобретаемой компетенции
ПК-1	владение методами гидрометеорологических измерений, статистической обработки и анализа гидрометеорологических наблюдений с применением программных средств
	наолюдении с применением программных средств
ПК-2	способность понимать, излагать и критически анализировать базовую информацию в гидрометеорологии при составлении разделов научно-технических отчетов, пояснительных записок, при подготовке обзоров, аннотаций, составлении рефератов и библиографии по тематике исследования

В результате освоения дисциплины обучающийся должен:

- а) знать: фундаментальные разделы физики и математики в объеме, необходимом для понимания процессов, определяющих динамические и физические изменения метеорологических полей, формирование глобальных особенностей циркуляции атмосферы и процессов на подсеточном уровне, фундаментальные разделы математики в объеме, необходимом для применения математического аппарата в численных методах анализа метеорологических полей и решения системы уравнений гидротермодинамики.
- б) уметь: применять математический аппарат для аппроксимации дифференциальных уравнений и их решения
 - в) владеть: основами прикладных методов решения дифференциальных уравнений.

4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

Вид учебной работы	Всего		Семестры		
	часов / зачетных единиц			8/5 курс	
Аудиторные занятия (всего)	60/22			92/22	
В том числе:	-	-	-	-	-
Лекции	28/10			28/10	
Практические занятия (ПЗ)	28/10			28/10	
Семинары (С)	4/2			4/2	
Лабораторные работы (ЛР)					
Самостоятельная работа (всего)	48/113			48/113	
В том числе:	-	-	-	-	-
Курсовой проект (работа)					
Расчетно-графические работы					
Реферат (при наличии)	40/100			40/100	
Другие виды самостоятельной работы	8/13			8/13	
Вид промежуточной аттестации (зачет, экзамен)	36/9			36/9	
Контактная работа (всего)	60/24			64/24	
Общая трудоемкость часы	144/144			144/144	
зачетные единицы	4/4			4/4	

5. Содержание дисциплины (модуля)

5.1. Содержание разделов и тем дисциплины (модуля). Все разделы и темы нумеруются

Раздел 1. Гидрометеорологическая информация и ее первичная обработка

- 1. Обзор гидрометеорологической информации, используемой в численных анализах и прогнозах погоды. Глобальные системы наблюдений (ГСН) и телесвязи (ГСТ)
- 2. Пространственно-временная разрешающая способность современной ГСП и точностные характеристики измерений параметров состояния атмосферы различными наблюдательными системами.
- 3. Методы контроля гидрометеорологической информации: климатический, временной, вертикальный и горизонтальный.

Раздел 2. Усвоение гидрометеорологической информации

- 1. Обзор основных задач, решаемых системой усвоения гидрометеорологической информации.
- 2. Методы дискретного усвоения гидрометеорологических измерений: методы формальной интерполяции, последовательных коррекций, оптимальной интерполяции.
- 3. Проблема согласования начальных данных для прогностических моделей.
- 4. Методы инициализации по линейным и нелинейным нормальным модам, вариационные методы усвоения данных.

Раздел 3. Постановка задачи численного прогноза

- 1. Краткое описание задачи численного прогноза погоды.
- 2. Основные этапы постановки численного прогноза погоды: формирование физической модели атмосферы, адекватно описывающей прогнозируемые метеовеличины; выбор способа численной аппроксимации системы уравнений гидротермодинамики; организация технологической линии подготовки начальных данных; создание системы интерпретации результатов численных расчетов.

Раздел 4. Прогностические модели атмосферы

- 1. Прогностические модели, используемые в прогнозах глобального, регионального и локального масштабов: системы уравнений. горизонтальные и вертикальные координаты, учитываемые физические процессы.
- 2. Начальные и граничные условия для прогностических моделей.
- 3. Конечно-разностные прогностические модели атмосферы. Основы конечно-разностных методов решения дифференциальных уравнений. Конечно-разностная аппроксимация дифференциальных операторов.
- 4. Схемы интегрирования по времени (явные, полунеявные, неявные). Основные характеристики конечно-разностных схем: устойчивость, сходимость, консервативность, монотонность, порядок аппроксимации

Раздел 5. Спектральные прогностические модели атмосферы

- 1. Спектральный метод численного решения систем уравнений гидротермодинамики
- 2. Преимущества и недостатки спектральных численных схем.
- 3. Базисные функции, используемые при разложении метеополей;
- 4. Сферические функции.

Раздел 6. Параметризация атмосферных процессов подсеточного масштаба.

- 1 Параметризация подсеточной турбулентности и крупномасштабной конденсации.
- 2 Параметризация облачности и осадков, глубокой и мелкой конвекции.
- 3 Параметризация процессов на подстилающей поверхности и в деятельном слое почвы.
- 4 Параметризация переноса радиации в атмосфере, диссипативного эффекта гравитационных волн.

Раздел 7. Современные прогностические модели и системы усвоения данных

- 1. Общее описание прогностических моделей и системы усвоения данных в Гидрометцентре РФ.
- 2. Прогностические модели и системы усвоения данных в некоторых зарубежных центрах (ЕЦСПП, Вашингтон, Брэкнелл).

Раздел 8. Ансамбль прогнозов

- 1. Понятие ансамбля прогнозов, его организация в различных центрах.
- 2. Формы представления ансамбля прогнозов.
- 3. Сравнение успешности прогнозов по ансамблю с успешностью единичного прогноза.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

Дисциплина изучается в заключительном семестре.

5.3. Разделы и темы дисциплин (модулей) и виды занятий

№ n/n	Наименование раздела дисциплины	Наим енова ние темы	Лекц.	Практ. Занятия	Лаб. заня тия	Семи н.	СРС	Всего
1	Гидрометеорологическая информация и ее первичная обработка	1,2	2/0 1/0	2/0 1/0			8/8 2/2	12/8 3/2
2	Усвоение гидрометеорологической информации	1 2 3 4	1/0 1/0 1/0 1/0	1/0 1/0 1/0 1/0			0/8 0/8 0/8 0/8	2/8 2/8 2/8 2/8
3	Постановка задачи численного прогноза	1 2	2/2 2/2	2/2 2/2		2/1 2/1	0/4 0/4	6/11 6/9
4	Прогностические модели атмосферы	1 2 3 4	1/1 1/1 1/1 1/1	1/1 1/1 1/1 1/1			2/2 2/2 2/2 4/4	3/3 3/3 3/3 5/5
5	Спектральные прогностические модели атмосферы	1 2 3 4	1/1 1/1 1/0 1/0	1/1 1/1 1/0 1/0			0/4 0/4 0/4 0/4	2/4 2/4 2/4 2/4
6	Параметризация атмосферных процессов подсеточного масштаба.	1 2 3 4	1/0 1/0 1/0 1/0	1/0 1/0 1/0 1/0 1/0			4/4 4/4 6/6 6/6	6/4 6/4 8/6 8/6
7	Современные прогностические модели и системы усвоения данных	1 2	1/0 1/0	1/0 1/0			4/4 4/5	6/4 6/5
8	Ансамбль прогнозов	1 2 3	1/0 1/0 1/0	1/0 1/0 1/0			0/3 0/3 0/2	2/3 2/3 2/2
	Bcero:		28/10	28/10		4/2	48/113	144/144

5.4 Перечень лекционных занятий

№ п/п	№ раздела и темы дисциплины (модуля)	Наименование используемых технологий	Трудое мкость (часы)	Оценочные средства	Форм ируем ые компе тенци и
1	2	3	4	5	6
1.	1. Гидрометеорологическая информация и ее первичная обработка	ГИС «Метео» и ГИС «Океан»	3/1	Устный опрос. Тестирование.	ПК-1 ПК-2
2.	2. Усвоение гидрометеорологической информации	ГИС «Метео» и ГИС «Океан»	4/1	Устный опрос. Тестирование.	ПК-1 ПК-2
3.	3. Постановка задачи численного прогноза	ГИС «Метео» и ГИС «Океан»	4/2	Устный опрос. Тестирование.	ПК-1 ПК-2
4.	4. Прогностические модели атмосферы	ГИС «Метео» и ГИС «Океан»	4/1	Устный опрос. Тестирование.	ПК-1 ПК-2
5.	5. Спектральные прогностические модели атмосферы	ГИС «Метео» и ГИС «Океан»	4/2	Устный опрос. Тестирование.	ПК-1 ПК-2
6.	6. Параметризация атмосферных процессов подсеточного масштаба.	ГИС «Метео» и ГИС «Океан»	4/1	Устный опрос. Тестирование.	ПК-1 ПК-2
7.	7. Современные прогностические модели и системы усвоения данных	ГИС «Метео» и ГИС «Океан»	2/1	Устный опрос. Тестирование.	ПК-1 ПК-2
8.	8. Ансамбль прогнозов	ГИС «Метео» и ГИС «Океан»	3/1	Устный опрос. Тестирование.	ПК-1 ПК-2
	Bcero:		28/10		

6. Перечень семинарских, практических занятий и лабораторных работ

$N_{\underline{0}}$	№ раздела и темы	Наименование		семинаров,	Трудое	Оценочн	Форми-
Π/	дисциплины	практических и	И	лабораторных	мкость	ые	руемые
П	(модуля)	работ			(часы)	средства	компе-
					(очно/за		тенции
					очно)		
1	2	3			4	5	6
1	2. Усвоение	Обзор задач, реш	іаем	ных системой	5/2	Устный	ПК-1, ПК-2

	гидрометеорологич	усвоения гидрометеорологической		опрос.	
	еской информации	информации. Методы дискретного		Тестиро	
		усвоения гидрометеорологических		вание.	
		измерений: методы интерполяции,			
		оптимальной интерполяции.			
		Проблема согласования начальных			
		данных для прогностических			
		моделей.			
2	3. Постановка	Описание задачи численного	7/2	Оценка	ПК-1, ПК-2
_	задачи численного	прогноза погоды, основные этапы	772	в баллах	1111 1, 1111 2
		постановки численного прогноза		В Оаллах	
	прогноза	=			
		погоды: формирование			
		физической модели атмосферы,			
		адекватно описывающей			
		прогнозируемые метеовеличины;			
		выбор способа численной			
		аппроксимации системы			
		уравнений гидротермодинамики.			
3	5.Спектральные	Спектральный метод численного	6/2	Устный	ПК-1, ПК-2
	прогностические	решения систем уравнений		опрос.	,
	модели атмосферы	гидротермодинамики,		Тестиро	
	модели итмосферы	преимущества и недостатки		вание.	
		спектральных численных схем.		вание.	
		Базисные функции, используемые			
		при разложении метеополей;			
	(H	сферические функции.			TIC 1 TIC 2
4	6.Параметризация	А) Параметризация подсеточной	- /-	Оценка	ПК-1, ПК-2
	атмосферных	турбулентности и	5/2	в баллах	
	процессов	крупномасштабной конденсации.			
	подсеточного	Б) Параметризация облачности и			
	масштаба.	осадков, глубокой и мелкой			
		конвекции.			
		В) Параметризация процессов на			
		подстилающей поверхности и в			
		деятельном слое почвы.			
		Г) Параметризация переноса			
		радиации в атмосфере,			
		диссипативного эффекта			
_	7.0000000000000000000000000000000000000	гравитационных волн.	6/2	V.	пи тиса
5	7.Современные	Общее описание прогностических	6/2	Устный	ПК-1, ПК-2
	прогностические	моделей и системы усвоения		опрос.	
	модели и системы	данных в Гидрометцентре РФ		Тестиро	
	усвоения данных			вание.	
6	8.Ансамбль	Понятие ансамбля прогнозов, его	3/2	Оценка	ПК-1, ПК-2
	прогнозов	организация в различных центрах.		в баллах	
		Формы представления ансамбля			
		прогнозов			
		ı •		1	1

6.1. План самостоятельной работы студентов

№	Тема	Вид	Задание	Рекомендуемая	Коли
нед.		самостоятельной		литература	честв
		работы			О
					часов
1	1.Гидрометеорологи ческая информация и ее первичная обработка	Подготовка презентации. Презентацию представляет назначенный студент в присутствии преподавателя.	Реферат-презентация	Основная: [1] Дополнительная: [1-3]	10/29
2	2.Прогностические модели атмосферы	Подготовка реферата на тему Прогностически е модели атмосферы	реферат	Основная: [1] Дополнительная: [1-3]	10/28
3	3.Параметризация атмосферных процессов подсеточного масштаба	Подготовка реферата на тему Параметризация атмосферных процессов	реферат	Основная: [1] Дополнительная: [4]	20/28
4	4.Современные прогностические модели и системы усвоения данных	Краткий обзор на тему Современные прогностические модели	обзор	Основная: [1] Дополнительная: [7-8]	8/28

6.2. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студента (СРС) в течение учебного года контролируется графиком работы по семестрам, предусматривающим:

- формулирование проблемных вопросов;
- подготовка доклада презентацией по выбранной теме;
- самостоятельное освоение отдельных тем дисциплины;
- еженедельные консультации согласно утвержденному графику.

СРС является важной составляющей учебного процесса, целью которой является более глубокое освоение бакалаврами основных понятий, законов, методов, используемых в рамках изучаемой дисциплины.

СРС формирует способность бакалавров к самостоятельному познанию и обучению, поиску литературы, обобщению, оформлению и представлению полученных результатов, их критическому анализу, поиску новых и неординарных решений, аргументированному отстаиванию своих предложений, умений подготовки выступлений и ведения дискуссий.

СРС позволяет:

- сделать учебный процесс более насыщенным, продуктивным и разнообразным;
- способствует повышению интереса к избранной профессии метеоролога;
- позволяет бакалавру самостоятельно искать решение профессиональных вопросов;
- формирует у бакалавра дифференцированный подход к обучению.

СРС заключается в изучении отдельных тем курса по заданию преподавателя по

рекомендуемой им учебной литературе, в подготовке к семинарам, практическим работам, подготовке к зачету по дисциплине. Обсуждение доклада происходит в диалоговом режиме между бакалаврами, бакалаврами и преподавателем, но без его доминирования. Такая интерактивная технология обучения способствует развитию у бакалавров информационной коммуникативности, умений вести дискуссию, отстаивать свою позицию и аргументировать её, анализировать и синтезировать изучаемый материал, акцентировано представлять его аудитории.

ВИДЫ И ФОРМЫ СРС

Структурно самостоятельная работа бакалавра делится на две части:

- 1) организуемая преподавателем и четко описываемая в учебно-методическом комплексе;
- 2) самостоятельная работа, которую бакалавр организует по своему усмотрению, без непосредственного контроля со стороны преподавателя.

Формы СРС:

- 1. Конспектирование.
- 2. Реферирование литературы.
- 3. Аннотирование книг, статей.
- 4. Выполнение заданий поисково-исследовательского характера.
- 5. Работа с лекционным материалом: проработка конспекта лекций, работа на полях конспекта с терминами, дополнение конспекта материалами из рекомендованной литературы.

Виды СРС:

- познавательная деятельность во время основных аудиторных занятий;
- внеаудиторная самостоятельная работа бакалавров по выполнению домашних заданий учебного и творческого характера (в том числе с электронными ресурсами);
- самостоятельное овладение бакалаврами конкретных учебных модулей, предложенных для самостоятельного изучения;
 - учебно-исследовательская работа;
 - научно-исследовательская работа.

СРС с электронными ресурсами:

В аудиториях для самостоятельных компьютерных занятий с помощью обучающих программ, бакалавры дополняют свои занятия, полученные на лекциях и практических занятиях, а также проверяют свой уровень подготовки и сдают зачет.

Формы контроля СРС:

- выборочная проверка во время аудиторных занятий;
- составление аннотаций на прочитанный материал;
- составление схем, таблиц по прочитанному материалу;
- обзор литературы;
- реферирование литературы;
- подготовка конспекта;
- включение вопросов на контрольных работах, на зачете.

Этапы СРС:

- 1. Подбор рекомендуемой литературы.
- 2. Знакомство с вопросами, по которым нужно законспектировать литературу.
- 3. Составление схем и таблиц на основе изученной литературы.

Комплекс средств обучения при СРС:

- учебно-методический комплекс;
- дидактический материал;
- презентации;
- видеоматериалы;
- интернет-ресурсы.

ВИДЫ И ФОРМЫ ОРГАНИЗАЦИИ СРС

Виды самостоятельной работы	Форма проверки преподавателем				
1. Конспектирование	Выборочная проверка в течение семестра				
2. Подготовка докладов и презентаций	Подготовка докладов с анализом				
	литературных источников и применением				
	современных компьютерных технологий				
	(см. учебно-методические рекомендации				
	по дисциплине)				
3. Углубленный анализ научно-	Собеседование по проработанной				
методической литературы	литературе в течение семестра (см. график				
	контроля за самостоятельной работой				
	бакалавров)				
4. Дополнение конспекта лекций	Предложение составить свой план в				
рекомендованной литературой	заключение каждой лекции				

Для выполнения всех перечисленных самостоятельных работ студенту предоставляется возможность использования одного из трех компьютерных классов во внеучебное время (предварительная запись у дежурных в классе, все компьютеры подключены к сети "Интернет" и обеспечены доступом в электронную информационнообразовательную среду университета), фондов стационарной библиотеки в 6-м корпусе и фундаментальной библиотеки ИГУ, читальных залов Институтов академии наук (согласно заключенным с ними Договорами), фондов библиотеки Иркутского управления по гидрометеорологии и мониторингу окружающей среды, индивидуальных консультаций с преподавателями факультета (согласно графику еженедельных консультаций).

7. Примерная тематика курсовых работ (проектов) (при наличии) – не предусмотрена

8. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература
- 1. Мордвинов В. И. Численные методы анализа и прогноза погоды : учеб. пособие / В. И. Мордвинов ; Иркутский гос. ун-т. Иркутск : Изд-во ИГУ, 2009. 143 с. (54 экз).
- 2. Волков Е. А. Численные методы [Электронный ресурс] : учеб. пособие / Е. А. Волков. Москва : Лань, 2008. 256 с. : граф., табл. (Учебники для вузов. Специальная литература). Режим доступа: ЭБС "Издательство "Лань".
- 3. Гордин В. А. Математика, компьютер, прогноз погоды и другие сценарии математической физики [Электронный ресурс] / В. А. Гордин. Москва : ФИЗМАТЛИТ, 2010. 736 с. : ил. Режим доступа: ЭБС "Айбукс". Неогранич. доступ.
 - б) дополнительная литература
- 1. Численные методы, используемые в атмосферных моделях: пер. с англ. Л. : Гидрометеоиздат, 1979 [Т.] 2 / пер. под ред. В. П. Садокова. 1982. 360 с. (2 экз.).
- 2. Русин, Игорь Николаевич Гидродинамические методы долгосрочного прогноза погоды: учеб. пособие для студ. вузов, обуч. по спец. "Метеорология" / И. Н. Русин ; Ленингр. гидрометеорол. ин-т. Л. : Ленингр. политехн. ин-т, 1984. 150 с. (1 экз.).

- 3. Мусаелян Шабо Асланович Проблемы предсказуемости состояния атмосферы и гидродинамический долгосрочный прогноз погоды [Текст] / Ш. А. Мусаелян. Л. : Гидрометеоиздат, 1984. 184 с. (2 экз.).
- 4. Костюков В. В. Объективный анализ и согласование метеорологических полей / В. В. Костюков; ред. С. А. Машкович; Гос. ком. СССР по гидрометеорол. и контролю природ. среды, Зап.-Сиб. регион. НИИ. М.: Гидрометеоиздат. Моск. отд-ние, 1982. 184 с. (1 экз.).
- 5. Западно-Сибирский региональный научно-исследовательский гидрометеорологический институт Труды Зап.-Сиб. регион. н.-и. гидрометеорол. ин-та / ред. А. А. Фоменко, Г. С. Ривин. М.: Гидрометеоиздат. Моск. отд-ние. 22 см. ISSN 0320-359X. Т. 96: Численный анализ и прогноз погоды. 1991. 123 с. (1 экз.).
- 6. Бабенко, Константин Иванович. Основы численного анализа / К.И. Бабенко. 2-е изд. испр. и доп. Ижевск : Регулярная и хаотическая динамика, 2002. 847 с. (3 экз.).
- 7. Модели общей циркуляции атмосферы [Текст] / А. Аракавва [и др.]; под ред. Ю. Чанга, пер. с англ. под ред., предисл. С. А. Машковича. Л.: Гидрометеоиздат, 1981. 351 с..
- 8. Математическое моделирование общей циркуляции атмосферы и океана [Текст] / Г. И. Марчук [и др.]. Л. : Гидрометеоиздат, 1984. 320 с.

в) программное обеспечение

Microsoft Imagine Premium - Сублицензионный договор № 03-015-16 от 21.11.2016 г.

STADIA – Лицензионный паспорт № 1442 от 21.03.2008 г.

Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition — Лицензия № 1B08161103014721370444 от 03.11.2016 г. – 27 экз.

УПРЗА «Эколог» вер. 3.0 вариант «Базовый» - Microsoft Imagine Premium - Сублицензионный договор № 03-015-16 от 21.11.2016 г.

Программное обеспечение: геоинформационные системы ГИС «Метео» и ГИС «Океан» Электронный ключ № 1 от 23.03.2018 г.

Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition — Лицензия № 1808161103014721370444 от 03.11.2016 г. -27 экз.

ScanEx Image Processor – Лицензионный договор № 1968 от 23.12.2014 г. – 10 экз.

ГИС «Океан – 2010» - Договор № 12-ПО/1 от 03.07.2012 г.

г) базы данных, информационно-справочные и поисковые системы

- Сайт Всемирной метеорологической организации: http://www.wmo.int/pages/index ru.html.
- Сайт NOAA http://www.noaa.gov/
- Сайт ГМЦ России http://meteoinfo.ru/
- Сайт ИПК Росгидромета http://ipk.meteorf.ru/
- Сайт РГГМУ http://www.rshu.ru/
- NCEP/NCAR Reanalysis 1 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily ao index/ao.shtml

9. Материально-техническое обеспечение дисциплины (модуля):

Освоение дисциплины «Численные методы анализа и прогноза погоды» предполагает использование следующего материально-технического обеспечения:

Компьютерный класс, представляющий собой рабочее место преподавателя и не менее 15 рабочих мест студентов, включающих компьютерный стол, стул, персональный компьютер, лицензионное программное обеспечение. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети ИГУ и находятся в едином домене.

1) Библиотечный фонд ИГУ:

2) Дисплейный класс.

10. Образовательные технологии:

В рамках лекционных занятий для обеспечения функций наглядности используется соответствующий тематике занятия иллюстрационный материал, переведенный в электронный формат и оформленный в виде презентаций. Для демонстрации данных презентаций бакалавры могут использовать возможности компьютерного класса с выходом в интернет. Для проведения практических работ используется программа ГИС «Океан» и ГИС «Метео».

11. Оценочные средства (ОС):

- 11.1Оценочные средства текущего контроля тесты, контрольные работы, контроль выполнения практических работ. Собеседование с каждым студентом по выполненной работе с целью выяснения самостоятельности и качества усвоения материала. Консультации по отдельным вопросам.
- 11.2 Оценочные средства для самоконтроля обучающихся проверка рефератов, собеседования, консультации. Проверка выполнения самостоятельной работы осуществляется согласно графику контроля.
- 11.3 В начале каждой лекции проводится экспресс-опрос по пройденному материалу. Опрос затрагивает всех студентов без исключения. Заранее подготовленная схема позволяет экспресс-опрос проводить в течение не более 15 мин. Для закрепления теоретического материала студенты регулярно выполняют контрольные и практические работы. Результаты самостоятельных работ и экспресс-опроса фиксируются в журнале преподавателя и в электронном виде, что является основанием для отслеживания успеваемости студентов. Положительное выполнение указанных пунктов необходимое условие для допуска к зачету.

Программа оценивания контролируемой компетенции:

Раздел/	Индекс и уровень	OC	Содержание задания
Тема	формируемой		_
	компетенции		
	или дескриптора		
1.	ПК-1	С, УО, П	Составить и обсудить
Гидрометеорологическая	ПК-2		на занятии
информация и ее			проблемные вопросы
первичная обработка			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических
			заданий.
2. Усвоение	ПК-1	С, УО, П	Составить и обсудить
гидрометеорологической	ПК-2		на занятии
информации			проблемные вопросы
			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических

			заданий.
3. Постановка задачи	ПК-1	С, УО, П	Составить и обсудить
численного прогноза	ПК-2		на занятии
			проблемные вопросы
			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических
			заданий.
4. Прогностические	ПК-1	С, УО, П	Составить и обсудить
модели атмосферы	ПК-2	0, 50, 11	на занятии
модели атмосферы	1110-2		проблемные вопросы
			1 -
			J J J
			1 * 3 * 1
			презентации и устные
			доклады, обсудить
			решение практических
5.0	TTTC 1	C VO H	заданий.
5. Спектральные	ПК-1	С, УО, П	Составить и обсудить
прогностические модели	ПК-2		на занятии
атмосферы			проблемные вопросы
			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических
			заданий.
6. Параметризация	ПК-1	С, УО, П	Составить и обсудить
атмосферных процессов	ПК-2		на занятии
подсеточного масштаба.			проблемные вопросы
			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических
			заданий.
7. Современные	ПК-1	С, УО, П	Составить и обсудить
прогностические модели	ПК-2		на занятии
и системы усвоения			проблемные вопросы
данных			по изученному
			разделу, заслушать
			презентации и устные
			доклады, обсудить
			решение практических
			заданий.
8. Ансамбль прогнозов	ПК-1	С, УО, П	Составить и обсудить
r r	ПК-2	, -,	на занятии
			проблемные вопросы
			по изученному
			разделу, заслушать
			презентации и устные
			презептации и устные

	доклады,	обсудить
	решение	практических
	заданий.	

Примечание:

УО – устный опрос (собеседование)

 Π – практическая работа

С – собеседование по презентации

Критерии оценки текущей успеваемости

применяется балльная система:

No	Вид учебной деятельности	Баллы	Максимум
Π/Π			за семестр
1	Ведение конспекта лекции и работа с ним	1	1
2	Обсуждение проблемных вопросов	0-5	5
3	Решение практических заданий	0-5	5
4	Премиальные баллы (посещение, активность,	0-5	5
	эрудированность, заинтересованность)		

Тематика заданий для самостоятельной работы

- 1. Способы конечно-разностной аппроксимации уравнений гидротермодинамики (явные, полунеявные, неявные схемы).
- 2. Понятие монотонности, консервативности и порядка аппроксимации дифференциальных операторов, устойчивости и сходимости разностных схем
- 3. Полулагранжевы схемы интегрирования.
- 4. Параметризация подсеточной турбулентности
- 5. Анализ метеорологических полей методом оптимальной интерполяции.

Тематика рефератов

- 1. Согласование начальных данных для прогностических моделей, процедуры инициализации.
 - 2. Вариационный метод усвоения данных.
 - 3. Четырехмерный численный анализ, четырехмерное вариационное усвоение данных.

Примерный список вопросов к экзамену

- 1. Постановка задачи численного прогноза погоды.
- 2. Системы уравнений гидротермодинамики в различных системах координат (декартовой, изобарической, сферической), используемые для численного прогноза погоды.
- 3. Изобарическая система координат. Система уравнений гидротермодинамики в изобарической системе координат.
- 4. Конечно-разностная аппроксимация дифференциальных операторов, порядок аппроксимации, направленные, центральные разности.
- 5. Понятия ограниченности, сходимости, устойчивости конечно-разностной схемы.
- 6. Методы анализа устойчивости численных схем (прямой, энергетический, метод Неймана, метод дискретных возмущений).
- 7. Возникновение ошибок в численных схемах одномерного уравнения адвекции. Условие устойчивости Куранта-Фридрихса-Леви.
- 8. Особенности конечно-разностной аппроксимации производных по времени, одношаговые, двухшаговые, двухуровенные, явные, неявные схемы. Преимущество неявных схем.

- 9. Что такое множитель перехода; неустойчивые, нейтральные, диссипативные, ускоряющие, замедляющие схемы. Пример расчета множителя перехода для простой схемы.
- 10. Схема решения системы полных уравнений гидротермодинамики в изобарической системе координат с учетом начальных и граничных условий.
- 11. Спектральные методы решения уравнений гидротермодинамики.
- 12. Решение уравнений гидротермодинамики методом расщепления.
- 13. Подготовка начальных данных. Основные этапы технологии численных прогнозов. Что такое объективный анализ данных.
- 14. Метод полиномиальной интерполяции.
- 15. Метод оптимальной интерполяции.
- 16. Расчет и параметризация радиационного притока тепла.
- 17. Параметризация турбулентных переносов тепла, количества движения, примесей.
- 18. Методы повышения качества прогнозов. Сверхдолгосрочные прогнозы погоды.
- 19. Примеры расчета величин в численных схемах.

11.3. Оценочные средства для промежуточной аттестации (в форме экзамена или зачета).

№	Вид контроля	Контролируемые темы (разделы)	Компетенции,
Π/Π			компоненты которых
			контролируются
1	проверочная работа	Постановка задачи численного	ПК-1
		прогноза	ПК-2

Материалы для проведения текущего и промежуточного контроля знаний студентов:

Демонстрационный вариант заданий к проверочной работе

1. Построение алгоритма расчетов основных параметров гидрометеорологических процессов синоптического масштаба

Критерии оценки:

- оценка «зачтено» выставляется бакалавру, если основной материал усвоен, бакалавр приобрел необходимые знания и умения;
- оценка «не зачтено» если основной материал усвоен недостаточно, бакалавр не приобрел необходимых знаний и умений.

Оценочные средства, обеспечивающие диагностику сформированности компетенций, заявленных в рабочей программе дисциплины (модуля)

Результат диагностики	Показатели	Критерии	Соответствие/ несоответстви	Зачет /экза
сформированности			e	мен
компетенций				
ПК-1	Способен	Дал грамотный и	Соответствие	зачет
	самостоятельно	развернутый ответ		
	проводить	на вопросы по		
	научно-	теоретическим		
	исследовательс	вопросам курса.		
	кую	Выполнены все		
	деятельность с	практические		
	использованием	работы.		
	современных			
	методов	Не ответил или		

	исследования,	ответил	Несоответствие	177-17
	применяемых в	неправильно на		
	гидрометеороло	вопросы для		
	гии, включая	подготовки по		
	статистические	теоретическим		
	методы,	вопросам курса.		1775
	применение	Практические		
	геоинформацио	работы не		
	нных систем,	выполнены.		
	численных	h _i		
	методов			199
	прогнозировани			
	Я			
	гидрометеороло			
	гической			
	информации			-
ПК-2	Способен	Дал грамотный и	Соответствие	зачет
	анализировать	развернутый ответ		
	гидрометеороло	на вопросы по		
	гическую	теоретическим	,	
	информацию,	вопросам курса.		
	проводить	Выполнены все		
	самостоятельно	практические		
	е исследование	работы.	V'	
	по оценке	F (1)		
	воздействий	Не ответил или	Несоответствие	
	гидрометеороло	ответил		
	гических	неправильно на		
	факторов на	вопросы для		
	различные	подготовки по		
	сферы	теоретическим		
	деятельности	вопросам курса.		,,-
	человека	Практические		
	Tolloboliu	работы не		
		выполнены.	9	
		DDITIONITICIDI.		

Разработчик:	مالك .	
Deden	доцент	Е.В. Девятова
(подпись)	(занимаемая должность)	(инициалы, фамилия)

Программа рассмотрена на заседании кафедры метеорологии и физики околоземного космического пространства

Протокол №7 от «25» апреля 2019 г. и.о.зав. кафедрой _________ И.В. Латышева

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.