

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и неорганической химии

УТВЕРЖДАЮ Декан химического факультета,

> А.И. Вильмс "15" апреля 2025 г.

Рабочая программа дисциплины ФТД.04

Наименование дисциплины

ОСНОВЫ ХИМИЧЕСКИХ РЕАКЦИЙ

Направление подготовки 04.03.01 – Химия

Направленность подготовки: Химия

Квалификация выпускника – бакалавр

Форма обучения очная

Согласовано с УМК химического

факультета.

Протокол № 4 от «15» апреля 2025 г.

Председатель А.И. Вильмс

Рекомендовано кафедрой общей и

неорганической химии.

Протокол № 4 от «11» апреля 2025 г.

Зав. кафедрой

А.Ю.Сафронов

- 1. Цели и задачи дисциплины
- 2. Место дисциплины в структуре ОПОП.
- 3. Требования к результатам освоения дисциплины
- 4. Объем дисциплины и виды учебной работы
- 5. Содержание дисциплины
 - 5.1 Содержание разделов и тем дисциплины
 - 5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами
 - 5.3 Разделы и темы дисциплин и виды занятий
- 6. Перечень семинарских, практических занятий, лабораторных работ, план самостоятельной работы студентов, методические указания по организации самостоятельной работы студентов
 - 6.1. План самостоятельной работы студентов
 - 6.2. Методические указания по организации самостоятельной работы студентов
- 7. Примерная тематика курсовых работ (проектов) (при наличии)
- 8. Учебно-методическое и информационное обеспечение дисциплины (модуля):
 - а) основная литература;
 - б) дополнительная литература;
 - в) программное обеспечение;
 - г) базы данных, поисково-справочные и информационные системы
- 9. Материально-техническое обеспечение дисциплины
- 10. Образовательные технологии
- 11. Оценочные средства (ОС)

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Цель дисциплины — Дать студентам — химикам знания в области совре- менной теории химических реакций.

Задачи курса — Основная задача теоретического курса — освоение студентами взаимосвязи между строением молекул и их химическими свойствами.

ІІ. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина «Основы химических реакций» ФТД.02 относится к факультативной части учебного плана программы подготовки по направлению 04.03.01 Химия.
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: «Общая и неорганическая химия», «Физика», «Математика».
- 2.3. Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

Освоение дисциплины «Основы химических реакций» служит естественной базой для более глубокого усвоения таких дисциплин, как: «Органическая химия», «Химические основы биологических процессов», при выполнения квалификационных работ.

III. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по данному направлению подготовки 04.03.01 Химия.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компетенций	Результаты обучения
ОПК-3 Применяет теоретические и полуэмпирические модели при решении задач химической направленности	ИДК опк-з.1 Предлагает интерпретацию результатов расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии	Знать: фундаментальные разделы химии, необходимые для проведения исследований (состав, строение и химические свойства основных простых веществ и химических соединений, связь строения вещества и протекания химических процессов). Уметь: анализировать литературные и экспериментальные данные; применять основные законы химии при обсуждении полученных ре зультатов. Владеть: навыками использования

химического и физико-
математического аппарата,
необходимого для профессиональной
деятельности; навыками описания
свойств веществ на основе
закономерностей, вытекающих из
периодического закона и
ериодической системы химических
элементов.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 1 зачетную единицу, 36 часов. Форма промежуточной аттестации: зачет.

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Раздел дисциплины/темы	Семестр			ы, включая самостоятель и трудоемкость (в час	ax)		Формы текущего контроля успеваемости; Форма
		Cei	Лекции	Лаб Всего	ораторные занятия) Из них практическая	Консультации/	Самостоятельная	промежуточной аттестации
				часов	подготовка			(по семестрам)
1.	Введение	2	2					
2.	Строение атома	2	4			Не предусмотре	2	
3.	Ковалентная химическая связь	2	4	Не	е предусмотрены	НЫ	4	
4.	Реакции и реагенты	2	4			/2	6	
5.	Алгоритм анализа химических свойств	2	4				4	
	Зачёт	2						
	Итого часов		18			0/2	16	

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная раб	бота обучающих	ся		Учебно-
Семестр 2	Название раздела, темы	Вид самостоятельной работы	Задание	Затраты времен и (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
	Строение атома	Подготовка к самостоятельной работе	Составление электронных формул	2	Самостоятельная работа №1	См. список лит- ры №1, 2
	Ковалентная химическая связь	Работа с литературой, материалом лекций	Решение задач по теме.	4	Устный опрос №2, вопросы 1-8	См. список лит- ры №1, 3
	Реакции и реагенты. Типы химических реакций	Подготовка отчета по ЛР, подготовка к устному опросу №2	Решение задач по теме. Написание отчетов по ЛР	6	Устный опрос №2, вопросы 9-11	См. список литры №1, 2, 3
	Алгоритм анализа химических свойств	подготовка к устному опросу №1	Написание отчетов по ЛР	4		См. список лит- ры №2, 3
Обща	я трудоемкость самостоятельной работы	по дисциплине (16 час)		16		
	кет времени самостоятельной работы, пред пины (16 час)	дусмотренный учебным план	ном для данной	16		

Контактная работа при проведении учебных занятий по дисциплине включает в себя:

занятия лекционного типа, индивидуальную работу обучающихся с преподавателем.

4.3 Содержание учебного материала

Введение

Строение атома

Уравнение Шрёдингера. Полярные координаты. Атомные волновые функции и орбитали.

Электронное строение атомов элементов, исходя из результатов решения уравнения Шрёдингера. Связь строения атома и положения элемента в Периодической системе химических элементов Д.И.Менделеева. Связь «Строение – Положение в ПС – Свойства».

Потенциал ионизации и сродство к электрону, электроотрицательность атомов.

Химическая связь

Качественное описание ковалентной связи в рамках теории молекулярных орбиталей (МО ЛКАО). Эффективное перекрывание атомных орбиталей различной симметрии. Симметрия МО (σ- и π-связи).

Гибридизация — модель или физическое явление? Взаимное отталкивание электронов в атоме. Тетрагональная, тригональная и линейная гибридизация s- и p-орбиталей атома углерода.

Локализованная ковалентная связь. Связи углерод - углерод и углерод - гетероатом. Неподеленные электронные пары (НЭП). Несвязывющие орбитали. Полярность связи. Структура связывающих и разрыхляющих орбиталей (оценка вкладов атомных орбиталей в зависимости от их потенциала ионизации).

Распределение электронной плотности. Индуктивный эффект и эффект поля.

Делокализованная связь. Взаимодействие p- и π -орбиталей в органических молекулах. π -приближение в теории MO. Делокализованные π -MO и метод резонансных структур. Полярное и неполярное сопряжение. Прямое полярное сопряжение. Кросс-сопряжение.

Физические характеристики связи: длина, валентные углы, энергия, полярность, поляризуемость, дипольный момент.

Спектральные характеристики свойств химической связи:

ФЭС (фотоэлектронная) — спектроскопия. ПИ (потенциал ионизации) и энергия занятых орбиталей.

УФ (ультрафиолетовая) — спектроскопия. Максимум поглощения и энергия перехода ВЗМО — НСМО. Типы электронных переходов.

ИК (инфракрасная) — спектроскопия. Вращательные и колебательные спектры. Частота валентного колебания (v) и кривизна потенциальной ямы («упругость» связи).

ЯМР (ядерного магнитного резонанса) — спектроскопия на ядрах ¹³С. Химический сдвиг и степень электронного экранирования углеродного ядра.

Реакции и реагенты. Типы химических реакций

Субстрат (реакционный центр), реагент, интермедиат, продукт. Реакции присоединения (А), замещения (S), отщепления (элиминирования, E), перегруппировки (R). Окислительновосстановительные (Red-Ox) реакции (формальная степень окисления углеродного атома в органических молекулах). Полимеризация (P). Циклизация (C).

Гетеролитический и гомолитический разрыв связи. Гетеролитические (нуклеофильные и электрофильные) реакции.

Кислоты и основания, как реагенты в гетеролитических реакциях — электрофилы (E) и нуклеофилы (N). Качественная и количественная р K_a оценка кислотности и стабильности сопряженных оснований.

Незаряженные кислоты Бренстеда. X-H, O-H, S-H, N-H, и C-H — кислоты.

НЭП-основность.

Основания, сопряженные незаряженным кислотам Бренстеда.

Кислоты Льюиса. Протон (H^+). Положительно заряженные X-, S-, N- и C- электрофилы и методы их генерирования.

Принцип ЖМКО (жесткие и мягкие кислоты и основания). Гомолитические (свободнорадикальные) реакции. Методы генерирования свободнорадикальных реагентов.

Кинетические и термодинамические аспекты органических реакций.

Константа скорости и энергия активации. Переходное состояние. Синхронные и стадийные реакции. Лимитирующая стадия. Порядок и молекулярность реакции. Сечение поверхности потенциальной энергии на координату реакции (СППЭ). Постулат Хэммонда.

Алгоритм анализа химических свойств

Анализ структурной формулы (отбор по типу реакции: A, S, E, Red-Ox, R, P, C). Анализ распределения электронной плотности, электронные эффекты, структура граничных МО (Отбор по типу разрыва связи. Кислотность и основность). Выбор реагентов.

4.3.1. Перечень практических занятий и лабораторных работ

Учебным планом не предусмотрены

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение самостоятельной работы студентов

No.	Тема	Задание	Формируемая	идк
$\frac{\Pi/\Pi}{1}$	Companying among	Состорующи	компетенция	ишс
1	Строение атома	Составление	ОПК-3.1. Применяет	ИДК опк-3.1
		электронных	теоретические и	Предлагает интерпретацию
		формул	полуэмпирические	результатов расчетно-
		элементов	модели при решении	теоретических работ с
		на	задач химической	использованием теоретических
		основании их	направленности	основ традиционных и новых
		положения в		разделов химии
		ПС		
2	Химическая связь	Качественно	То же	То же
	74HWH TECKUM CDMSB	е описание	10 Me	10 же
		ковалентной		
		связи в		
		рамках		
		теории		
		молекулярн		
		ых		
		орбиталей.		
3		Распределен	То же	То же
		ие		
		электронной		
		плотности.		
		Индуктивны		
		йи		
		мезомерный		
		эффекты.		
4	Реакции и	Реакции	То же	То же
	реагенты. Типы химических	присоединен		
	реакций	ия,		
	P • • • • • • • • • • • • • • • • • • •	замещения,		
		отщепления		
5		Кислоты и	То же	То же
		основания.		
		Электрофил		
		ыи		
		нуклеофилы.		
		Радикалы		

6 Алгоритм анализа химических свойств	Анализ структурной формулы. Анализ рас- пределения электронной плотности, электронные эффекты, структура	То же	То же
	граничных MO		

4.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов, связанная с закреплением теоретического материала в виде решении заданий и подготовке к устному собеседованию, проводится во внеаудиторное время. Примеры решения типовых задач представлены в рекомендуемых учебных пособиях и задачниках.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

Электронная информационно-образовательная среда университета обеспечивает доступ к электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочей программе дисциплины.

При использовании в образовательном процессе печатных изданий библиотечный фонд укомплектован печатными зданиями из расчета не менее 0,25 экземпляра каждого из изданий, указанных в рабочей программе дисциплины, на одного обучающегося из числа лиц, одновременно осваивающих соответствующую дисциплину.

Обучающимся обеспечен доступ к современным профессиональным базам данных и информационным справочным системам.

1. а) основная литература

1. Неорганическая химия. Химия элементов [Электронный ресурс] : учеб. для студ. вузов, обуч. по напр. 510500 "Химия" и спец. 011000 "Химия" / Ю. Д. Третьяков и др. - 2-е изд., перераб. и доп. - ЭВК. - М. : Изд-во МГУ : Академкнига, 2007. - Режим доступа: Электронный читальный зал "Библиотех". - ISBN 978-5-211-05330-4. - ISBN 978-5-94628-297-0.

T. 1. - 545 c. - ISBN 978-5-211-05332-2. - ISBN 978-5-94628-298-7.

- 2. Основы неорганической химии / Коттон Ф, Уилкинсон Дж. 1979 680 с.
- 3. Химия. [Электронный ресурс] Электрон. дан. Кемерово: КемГУ, 2015. 95 с. Режим доступа: http://c.lanbook.com/book/69987

6) программное обеспечение, базы данных, информационно-справочные и поисковые системы

https://isu.bib1iotech.ru/ http://foroff.phys.msu.ru/phys/ http://www.gomulina.orc.ru/index1.html http://wasp.phys.msu.ru/forum/lofiversion/index.php?t51.html http://www.physics.ru/

VI.MATEPИAЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Учебно-лабораторное оборудование:

Учебные аудитории №5, 6 оснащены мультимедийным оборудованием, имеются демонстрационные модели (шаро-стержневые, Бриглеба-Стюарта, объёмные) для наглядного представления о взаимном пространственном расположении атомных орбиталей, молекулярных структур.

VII. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе изучения дисциплины используются как традиционные так и инновационные технологии, активные и интерактивные методы и формы обучения: технология объяснительно-иллюстративного объяснения с элементами проблемного изложения, технология профессионально-ориентированного обучения, лекции, объяснительно-иллюстративный метод с элементами проблемного изложения, контрольные и самостоятельные работы, разбор конкретных ситуаций.

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства (ОС):

- 11.1. Оценочные средства для входного контроля нет.
- 11.2. Назначение оценочных средств текущего контроля выявить сформированность составляющих частей компетенций ОПК 3.1. Формируются в соответствии с ЛНА университета в виде устных опросов, выполнения самостоятельных работ.

Задания для самостоятельной работы:

- 1. Положение символа в периодической системе и орбитальное строение со ответствующего атома.
- 2. Физический смысл номера столбца периодической системы.
- 3. Физический смысл номера строки периодической системы.
- 4. Физический смысл главного, орбитального и магнитного чисел атомной волновой функции.
- 5. Радиальные и аксиальные узлы волновой функции.
- 6. Форма и расположение атомных орбиталей с заданными наборами квантовых чисел.
- 7. Эффективное (связывающее или разрыхлящее) перекрывание волновых функций и соответствущие им молекулярные орбитали.
- 8. Неэффективное перекрывание. Эффективные и неэффективные столкновения атомов и молекул.

11.3. Оценочные средства для промежуточной аттестации (в форме зачёта).

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЁТУ.

Вопросы для зачета

- 1. Потенциал ионизации, сродство к электрону, электроотрицательнось атомов.
- 2. Типы химических связей. Ионная, ковалентная (полярная, неполярная).
- 3. Метод МО ЛКАО для ковалентной связи.
- 4. Связывающие, несвязывающие и разрыхляющие МО.
- 5. Структурные формулы и геометрия молекул.
- б. Химическая реакция процесс, сопровождающийся разрывом и (или) образованием химических связей. Реакционный центр. Субстрат, реагент, продукты
- 7. Синхронные и стадийные реакции.
- 8. Механизм реакции.
- 9. Энергетический профиль реакции сечение поверхности потенциальной энергии реакции. Лимитирующая стадия.
- 10. Типы химических реакций. Диссоциация, ассоциация, замещение, присоединение.
- 11. Кислоты и основания Бренстеда.
- 12. Кислоты и основания Льюиса.
- 13.Гомолитические и гетеролитические реакции.
- 14.Окислителвно-восстановительные реакции.

Планируемые результаты обучения для формирования компетенций

Индикаторы достижения	Результаты обучения	Процедура оценивания
компетенции	(знать, уметь, владеть)	
ИДК опк-з.1 Предлагает интерпретацию результатов расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии	Знать: фундаментальные разделы химии, необходимые для проведения исследований (состав, строение и химические свойства основных простых веществ и химических соединений, связь строения вещества и протекания химических процессов). Уметь: анализировать литературные и экспериментальные данные; применять основные законы химии при обсуждении полученных результатов. Владеть: навыками использования химического и физико-математического аппарата, необходимого для профессиональной деятельности; навыками описания свойств веществ на основе	См.вопросы для текущего контроля Выполнение самостоятельных работ.

периодического закона и Периодической системы химических элементов.	закономерностей, в	ытекающих	С ИЗ
	периодического	закона	И
химических элементов.	Периодической	систе	емы
	химических элемен	нтов.	

Материалы для проведения текущего и промежуточного контроля знаний студентов представлены в разделе 4.3.2., главе YIII.

Критерии оценивания результатов обучения:

1. Необходимо выполнить весь перечень самостоятельных работ (см. пункт 4.3.2.) Оценивается полнота и качество выполнения, оформление (максимум 60 баллов).

Для получения зачета по дисциплине необходимо выполнить самостоятельные работы, ответить на вопросы текущего контроля. Необходимо набрать минимум 50 баллов.

Критерии оценивания ответов на зачёте:

Оценка «не зачтено»

фрагментарное знание предмета, отсутствие умений и навыков применения методов и подходов изучаемой дисциплины при решении учебных задач (менее 50 баллов).

Оценка «зачтено»

в целом, сформированные, возможно, содержащие отдельные пробелы знания предмета, умение применять методы и подходы изучаемой дисциплины при решении учебных задач с минимальным количеством ошибок непринципиального характера, наличие навыков применения методов и подходов изучаемой дисциплины при решении учебных задач.

Разработчик: доцент Б.Н. Баженов

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 04.03.01 Химия.

Программа рассмотрена на заседании кафедры общей и неорганической химии

«11» апреля 2025 г., протокол № 4.

Зав. кафедрой д.х.н., профессор

А.Ю.Сафронов

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.