

федеральное государственное бюджетное образовательное учреждение

высшего образования «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и экспериментальной физики

Декан физического факульта

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля) : <u>ФТД.03 Пропедевтический курс по математике</u>					
	<u>и физике</u>				
Направление подготовки : <u>03.03.02</u> Физика					
Тип образовательной программы: академиче	ский бакалавриат				
Направленность (профиль) подготовки: <u>Фун</u>	даментальная физика				
Квалификация выпускника: бакалавр					
Форма обучения: очная					
Согласовано с УМК:	Рекомендовано кафедрой:				
физического факультета	общей и экспериментальной физики				
Протокол № <u>25</u> от « <u>21</u> » <u>апреля</u> 2020 г.	Протокол № <u>6</u>				
П	от « <u>13</u> » <u>апреля</u> 2020_г.				
Председатель: д.фм.н., профессор	Зав. кафедрой д.фм.н., доцент				
Н.М. Буднев	А.А. Гаврилюк				

Иркутск 2020 г.

Содержание

1. Цели и задачи дисциплины	3
2. Место дисциплины в структуре ОПОП	3
3. Требования к результатам освоения дисциплины	3
4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам об ния)	-
5. СОДЕРЖАНИЕ ПРОГРАММЫ	5
5.1 Содержание разделов и тем дисциплины	5
5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последую дисциплинами	
5.3. Разделы и темы дисциплин и виды занятий	5
6. Перечень семинарских, практических занятий и лабораторных работ	6
6.1. План самостоятельной работы студентов	7
6.2. Методические указания по организации самостоятельной работы студентов	7
7. Примерная тематика курсовых работ (проектов) (при наличии):	7
8. Учебно-методическое и информационное обеспечение дисциплины (модуля):	8
9. Материально-техническое обеспечение дисциплины	88
10. Образовательные технологии	8
11. Оценочные средства (ОС)	9

1. Цели и задачи дисциплины

Пропеде́втика (греч. προπαιδέυω, предварительно обучаю) — введение в какую-либо науку, предварительный вводный курс, систематически изложенный в сжатой и элементарной форме.

Т.к. большинство студентов приходят на 1-й курс не имея представления о содержании, методике и формате преподавания курса общей физики, погружение их в учебный процесс сопряжено с существенными трудностями адаптационного характера. В первую очередь студент испытывает психологический стресс от самой необходимости перехода на математический язык при изучении физических процессов и явлений. Имея, как правило, недостаточную подготовку даже на уровне средней школы, строгость подходов к описанию явлений с использований элементов математического анализа и векторной алгебры, высокий темп подачи материала, отпугивают студента и служат для него сильнейшим демотивирующим фактором. Высокий уровень демотивации определяется также тем, что с большинством элементарных понятий математического анализа студент, в рамках указанной дисциплины, знакомится лишь во второй половине 1-го семестра, либо ближе к его окончанию. Пропедевтический курс по математике для студентов-физиков предназначен для частичного облегчения вышеозначенных трудностей.

Задачи дисциплины:

- 1. Облегчить первичную адаптацию студентов к принятому на факультете формату учебы (лекции, практические занятия).
- 2. Облегчить первичную адаптацию студентов к высоким темпам подачи материала.
- 3. Познакомить студентов с элементарными понятиями математического анализа и векторной алгебры.
- 4. Научить студентов простейшим навыкам работы с теми инструментами математического анализа и векторной алгебры, которые активно используются в курсе общей физики (механика).

2. Место дисциплины в структуре ОПОП

Пропедевтический курс является факультативной дисциплиной и проводится в начале первого семестра. Знания и умения, полученные студентами по окончанию курса будут использоваться во всех профильных дисциплинах в рамках основной образовательной программы по направлению 03.03.02 **Физика**.

Общая трудоемкость дисциплины – 2 зачетных единиц.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующей компетенции:

• способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2);

В результате изучения дисциплины студент должен:

<u>Иметь представление</u> о том, что такое вектор, координаты вектора, скалярное произведение векторов, векторное произведение векторов, ортонормированный базис, график функции, производная, неопределенный интеграл от элементарных функций, полярная, цилиндрическая, сферическая системы координат.

<u>Владеть навыками</u> элементарных алгебраических операций с векторами, разложения вектора по ортонормированному базису, взятия производных и неопределенных интегралов от элементарных функций, анализа функций и построения их графиков, восстановления функции по простым комбинациям их производных.

4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

	Всего ча-		Семестры		
Вид учебной работы	сов / за-				
, , , , , , , , , , , , , , , , , , ,	четных	1	_	-	
	единиц				
Аудиторные занятия (всего)	36/1,0	36	-	-	
В том числе:	-	-	-	-	
Лекции	18/0,5	18	-	-	
Практические занятия (ПЗ)	18/0,5	18	-	-	
Лабораторные работы (ЛР)	-	-	-	-	
Контроль самостоятельной работы (КСР)			-	-	
Самостоятельная работа (всего)	36/1,0	36	-	-	
В том числе:	-	-	-	-	
Курсовой проект (работа)	-	-	-	-	
Расчетно-графические работы	-	-	-	-	
Промежуточная аттестация - коллоквиум	-	-	-	-	
Домашние работы	36/0,5	36	-	-	
Контроль	2/0,05	2/0,05	-	-	
Общая трудоемкость часы	72	72	-	-	
зачетные единицы	2	2	-	-	

5. СОДЕРЖАНИЕ ПРОГРАММЫ

5.1 Содержание разделов и тем дисциплины

- Тема 1. Основные тригонометрические функции и формулы.
- Тема 2. Понятие вектора. Координаты вектора.
- Тема 3. Скалярное произведение векторов, векторное произведение векторов.
- Тема 4. Разложение вектора по ортонормированному базису. Преобразование векторов при переходе от одного ортонормированного базиса к другому.
- Тема 5. Производная. Правила взятия производных. Производные элементарных функций.
- Тема 6. Анализ функции, построение графиков функций.
- Тема 7. Неопределенный интеграл от элементарных функций.
- Тема 8. Простейшие уравнения с первой производной. Метод разделения переменных.
- Тема 9. Прямоугольная, полярная, цилиндрическая, сферическая системы координат.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

	Темы, владение кото- рыми необходимо при изучении курса механики	Месяц, с которого требу- ется владение разделом	Порядковый № лекции, на которой впервые требуется владение
1	Тема 1	сентябрь	2
2	Тема 2	сентябрь	1
3	Тема 3	сентябрь	2
4	Тема 4	сентябрь	1
5	Тема 5	сентябрь	1
6	Тема 6	сентябрь	4
7	Тема 7	сентябрь	1
8	Тема 8	сентябрь	3
9	Тема 9	сентябрь	2

5.3. Разделы и темы дисциплин и виды занятий

No	Наименование темы		Виды занятий в часах			
п/п			Практ.	CPC	Всего	
11/11		Лекц.	зан.	CPC	DCGLO	
1	Основные тригонометрические функции и форму-	2	2	4	8	
	лы.			۲		
2	Понятие вектора. Координаты вектора.		2	4	8	
3	Скалярное произведение векторов, векторное	2	2	1	8	
	произведение векторов.	_	_	4	0	
4	Разложение вектора по ортонормированному ба-	2	2	4	8	
	зису. Преобразование векторов при переходе от					

	одного ортонормированного базиса к другому				
5	Производная. Правила взятия производных.	2	2	4	8
	Производные элементарных функций.				
6	Анализ функции, построение графиков функций.	2 2		4	8
7	Неопределенный интеграл от элементарных функций.	2	2	4	8
8	Простейшие дифференциальные уравнения первого порядка. Метод разделения переменных.	2	2	4	8
9	Прямоугольная, полярная, цилиндрическая, сферическая системы координат.	2	2	4	8

6. Перечень семинарских, практических занятий и лабораторных работ

№ п/п	№ раздела и темы дисциплины (модуля)	темы практических и кость сциплины дабораторных работ (насы)		Оценочные средства	Формир уемые компете нции
1	2	3	4 5		6
1	Тема 1	Основные тригонометрические функции и формулы.	2	Контрольные вопросы	ОПК-2
2	Тема 2	Понятие вектора. Координаты вектора.	2	Контрольные вопросы	ОПК-2
3	Тема 3	Скалярное произведение векторов, векторное произведение век-торов.	2	Контрольные	
4	Тема 4	Разложение вектора по ортонормированному базису. Преобразование векторов при переходе от одного ортонормированного базиса к другому	2	Контрольные вопросы	ОПК-2
5	Тема 5	Производная. Правила взятия производных. Производные элементарных функций.	2	Контрольные вопросы	ОПК-2
6	Тема 6	Анализ функции, построение графиков функций.	2	Контрольные вопросы	ОПК-2
7	Тема 7	Неопределенный интеграл от элементарных функций.	2	Контрольные вопросы	ОПК-2
8	Тема 8	I VDARHEHUG DEDROFO DODGAKA / / /		Контрольные вопросы	ОПК-2
9	Тема 9	Прямоугольная, полярная, цилиндрическая, сферическая системы координат.	2	Контрольные вопросы	ОПК-2

6.1. План самостоятельной работы студентов

No	Тема	Вид самостоя-	Задание	Рекомендуемая	Количе-
нед.		тельной работы		литература	ство часов
1.	Все темы	самостоятельное	Решить задачу	Вся рекоменду-	18
		решение задач		емая литература	
		на практических			
		занятиях			
2.	Все темы	Решение домаш-	Решить задачу	Вся рекоменду-	12
		них задач		емая литература	
3.	Все темы	Закрепление	Вопросы для	Вся рекоменду-	6
		лекционного	текущего	емая литература	
		материала для	контроля		
		работы на прак-			
		тических заня-			
		ТИЯХ			

6.2. Методические указания по организации самостоятельной работы студентов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

При выполнении практических заданий обращается особое внимание на выработку у студентов умения грамотно выполнять и оформлять документацию, умения пользоваться научно-технической справочной литературой. Каждый студент должен быть готов к показательному решению задачи у доски.

Текущая работа над учебными материалами включает в себя систематизацию теоретического материала, полученного на лекциях и на каждом практическом занятии, заполнения пропущенных мест, уточнения схем и выделения главных мыслей основного содержания работы. Для этого используются имеющиеся учебно-методические материалы и другая рекомендованная литература.

Также может быть проведено тестирование по всем темам курса. Преподаватель помогает разобраться с проблемными вопросами и задачами (по мере их поступления) в ходе текущих консультаций.

7. Примерная тематика курсовых работ (проектов) (при наличии):

Курсовые работы не предусматривается

8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

- а) основная литература:
- 1. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления [Текст] : учеб. для студ. физ. и механико-математич. спец. вузов: В 3 т. / Г. М. Фихтенгольц. 8-е изд. М. : Физматлит, 2006 . 22 см. **Т.1**. 679 с. : граф. Алф. указ.: с. 671-679. **ISBN** 5-9221-0436-5 : 185.00 р.(97)
- 2. Фихтенгольц, Г.М. Основы математического анализа. В 2-х тт. Том 1 [Электронный ресурс]: учебник. Электрон. дан. СПб.: Лань, 2015. 441 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=65055. Неограниченный доступ.
 - б) дополнительная литература:
- 1. Кудрявцев, Л. Д. Курс математического анализа / Л. Д. Кудрявцев. 6-е изд., стер. М. : Дрофа, 2006. Т.1 : Дифференциальное и интегральное исчисления функций одной переменной. 2006. 703 с. ISBN 5-358-00354-1. (1)
- в) программное обеспечение: стандартные сервисы глобальной сети Интернет, стандартные средства просмотра презентаций и научных публикаций в электронном виде.
- г) базы данных, информационно-справочные и поисковые системы
 - 1) НБ ИГУ http://library.isu.ru/ru
 - 2) ЭЧЗ «Библиотех» https://isu.bibliotech.ru/
 - 3) ЭБС «Лань» http://e.lanbook.com/
 - 4) ЭБС «Руконт» http://rucont.ru
 - 5) ЭБС «Айбукс» http://ibooks.ru
 - 6) В системе образовательного портала ИГУ (http://educa.isu.ru/) размещены методические материалы и задания по данной дисциплине.

9. Материально-техническое обеспечение дисциплины

Для проведения занятий лекционного типа в качестве демонстрационного оборудования используется меловая доска. Наглядность обеспечивается путем изображения схем, диаграмм и формул с помощью мела. Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов, в ходе которой они могут вычитывать научные статьи по темам курса. На лекциях могут использоваться мультимедийные средства: переносной проектор, переносной экран, ноутбук. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

10. Образовательные технологии

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;
- практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- текущий контроль за деятельностью студентов осуществляется на лекционных и практических занятиях в ходе самостоятельного решения задач, в том числе у доски.

11. Оценочные средства (ОС)

11.1. Оценочные средства для входного контроля:

Входной контроль знаний не проводится.

11.2. Оценочные средства текущего контроля:

Контрольные работы (1 шт.), проверка задач для самостоятельного решения в письменной форме и проверка понимания решения - в устной форме, постоянно. Контрольные вопросы. Домашние работы.

Пример письменной контрольной работы

1. Упростить выражение:

1. Найти , если

$$(27 x^{-6})^{\frac{-2}{3}} (81 x^8)^{\frac{-1}{4}}$$

cosx $sinx = \frac{3}{5}$

2. Решить уравнение:

$$2x^6 - 11x^3 - 40 = 0$$

- 3. Построить график функции: $y=(x-2)^2$
- 2. Дано уравнение пути материальной точки $S(t) = 3t^2 + 5t + 2$. Определить значения скорости и ускорения в момент t = 10 с, Нарисовать графики v(t), a(t).
- 3. Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

 $S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$. В какой момент времени ее скорость составляла v = 2 м/с.

- $S(t) = \frac{2}{2t-1}$ Доказать, что сила, 4. Тело массой m₀ движется прямолинейно по закону действующая на тело, пропорциональна кубу пройденного пути.
- 5. Зависимость между количеством х вещества, получаемого в некоторой химической реакции, и временем t выражается уравнением $x = 10 \cdot (1 - e^{-0.2t})$. Вычислить скорость реакции.

Пример домашней работы

- 1) Точка совершает колебательные движения по закону $x(t)=2\sin 3t$. Докажите, что ускорение пропорционально координате x.
- 2) Найдите силу, действующую на тело массой 3,5 кг, которое совершает перемещение

$$x(t) = \sin^3 \sqrt{t}$$
 при $t = \frac{\pi^2}{36}$

- 3) Закон изменения температуры тела в зависимости от времени задаётся уравнением T = 0,2t2-2t. С какой скоростью изменяется температура тела в момент времени 10c?
- 4) Заряд q на пластинах конденсатора изменяется по закону q = 10^{-6} cos 10^4 πt. Записать закон зависимости силы тока от времени i= i(t), вычислив производную $q_t^{'}$

11.3. Оценочные средства для промежуточной аттестации

В рамках зачёта по дисциплине проводится письменная контрольная работа по вариантам.

Вариант 1.

- 1. Найти вектор **k** такой, что |k| = 1, **k** перпендикулярен вектору $\mathbf{a} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\sin x}{x} + \frac{x^2}{\sin x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{3-7\,x}}; \int \frac{x^2\,dx}{(x-3)^{50}}$$

4. Решить уравнения:

$$yy'-x=0$$
; $y'=\frac{\sin x}{\cos y}$

- 5. Построить график функции: $y(x) = xe^{-x}$
- 6. Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 2 м/c.

Вариант 2.

- 1. Найти вектор **k** такой, что |k| = 1, **k** перпендикулярен вектору $\mathbf{a} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\sin^2 x}{x} + \frac{x^2}{\sin x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{3-5x}}; \int \frac{x^2 dx}{(x+3)^{30}}$$

4. Решить уравнения:

$$yy - 3x = 0$$
; $y = \frac{\sin^2 x}{\cos y}$

- 5. Построить график функции: $y(x) = x^2 e^{-x}$
- 6.Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 3 м/c.

Вариант 3.

- 1. Найти вектор **k** такой, что |k| = 1, **k** перпендикулярен вектору $\mathbf{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\sin x}{x} + \frac{x^2}{\sin^2 x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{3+7x}}; \int \frac{x^2 dx}{(x-3)^{555}}$$

4. Решить уравнения:

$$y y' - 2x = 0$$
; $y' = \frac{\sin x}{\sin^2 y}$

- 5. Построить график функции: $y(x)=xe^{\frac{-x}{2}}$
- 6. Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 4 м/c.

Вариант 4.

- 1. Найти вектор **k** такой, что |k| = 1, **k** перпендикулярен вектору $\mathbf{a} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\sin x}{x} + \frac{x}{\sin x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{5-2x}}; \int \frac{x^2 dx}{(x+3)^5}$$

4. Решить уравнения:

$$3yy'-x=0; y'=\frac{\cos x}{\cos^2 y}$$

- 5. Построить график функции: $y(x) = x^2 e^{\frac{-x}{2}}$
- 6.Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 5 м/c.

Вариант 5.

- 1. Найти вектор **k** такой, что |k| = 1, **k** перпендикулярен вектору $\mathbf{a} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\cos x}{x} + \frac{x^2}{\sin x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{1-x}}; \int \frac{x^2 dx}{(x+3)^6}$$

4. Решить уравнения:

$$5yy' + x = 0; y' = \frac{\cos x}{\sin^2 y}$$

- 5. Построить график функции: $y(x) = \frac{x^3 2}{x^2}$
- 6. Материальная точка начала двигаться прямолинейно согласно закону движения:

Вариант 6.

- 1. Найти вектор ${\bf k}$ такой, что |k| = 1, ${\bf k}$ перпендикулярен вектору ${\bf a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$.
- 2. Найти производную функции:

$$y = \frac{\sin x}{x} + \frac{x^2}{\cos x}$$

3. Найти интегралы:

$$\int \frac{dx}{\sqrt{3-x}}$$
; $\int \frac{x^2 dx}{(x-1)^{5660}}$

4. Решить уравнения:

$$6yy'+5x=0; y'=\frac{\sin x}{\cos^2 y}$$

- 5. Построить график функции: $y(x) = \frac{x^3 + 2}{x^2}$
- 6. Материальная точка начала двигаться прямолинейно согласно закону движения:

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 1 м/c.

$$S(t) = \frac{1}{3}t^3 - 3t^2 - 5t + 3$$

В какой момент времени ее скорость составляла v = 3 м/c.

Разработчик:

к.ф-м.н., доцент А.Б. Танаев

Программа рассмотрена на заседании кафедры общей и экспериментальной физики

«<u>13</u>» апреля 20<u>20</u> г.

_____ Протокол № <u>_6</u> _

Зав. кафедрой

д.ф.-м.н., профессор А.А. Гаврилюк

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.