

# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

# «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и неорганической химии

**УТВЕРЖДАЮ** 

Декан химического факультета,

— А.И. Вильмс мически 15.04.2022 г.

### Рабочая программа дисциплины ФТД.03

Наименование дисциплины: Компьютерное моделирование молекулярных систем: от схемы до механизма реакции

Рекомендуется для направления подготовки: 04.03.01 «Химия»

Направленность Химия.

Степень (квалификация) выпускника: Бакалавр

Согласовано с УМК химического факультета Протокол №4 от 15.04.2022 г. Председатель 🗸 🦳 А.И. Вильмс

Рекомендовано кафедрой кафедры теоретической и прикладной органической химии и полимеризационных процессов

ACC

Протокол № 5 от 14.04.2022 г. Зав. кафедрой,

Кижняев В.Н.

# Содержание

|      |                                                             | стр. |
|------|-------------------------------------------------------------|------|
| I    | . Цели и задачи дисциплины                                  | 3    |
| II   | . Место дисциплины в структуре ОПОП ВО                      | 3    |
| III  | . Требования к результатам освоения дисциплины              | 4    |
| IV   | . Содержание и структура дисциплины                         | 5    |
|      | 4.1 Содержание дисциплины, структурированное по темам       | 5    |
|      | 4.2 План внеаудиторной самостоятельной работы обучающихся   |      |
|      | по дисциплине                                               | 6    |
|      | 4.3 Содержание учебного материала                           | 7    |
|      | 4.3.1 Перечень семинарских, практических занятий и          |      |
|      | лабораторных работ                                          | 7    |
|      | 4.3.2 Перечень тем (вопросов), выносимых на самостоятельное | 8    |
|      | изучение самостоятельной работы студентов                   |      |
|      | 4.3.3 Методические указания по организации самостоятельной  | 8    |
|      | работы студентов                                            |      |
|      | 4.4 Примерная тематика курсовых работ (проектов) (при       | 8    |
|      | наличии)                                                    |      |
| V    | . Учебно-методическое и информационное обеспечение          |      |
|      | дисциплины:                                                 | 8    |
|      | а) основная литература;                                     | 8    |
|      | б) дополнительная литература;                               | 9    |
|      | в) периодические издания;                                   | 9    |
|      | г) список авторских методических разработок;                | 9    |
|      | д) базы данных, поисково-справочные и информационные        | 9    |
|      | системы                                                     |      |
| VI   | . Материально-техническое обеспечение дисциплины (модуля)   | 9    |
|      | 6.1 Учебно-лабораторное оборудование                        | 9    |
|      | 6.2. Программное обеспечение                                | 10   |
|      | 6.3. Технические и электронные средства                     | 10   |
| VII  | . Образовательные технологии                                | 10   |
| VIII | . Оценочные средства (ОС)                                   | 10   |

#### І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

**Цели:** формирование базовых навыков компьютерного моделирования молекулярных систем и химических реакций.

#### Залачи:

- 1. дать представление о современных квантовохимических подходах к изучению свойств молекул и моделированию механизмов реакций;
- 2. научить студентов выполнять основные виды квантовохимических расчетов молекулярных систем с использованием программных пакетов для квантовохимических расчетов;
- 3. сформировать умение применять на практике полученные знания.

#### **II.** МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» относится к факультативной дисциплинам по выбору вариативной части учебного плана подготовки бакалавров по направлению 04.03.01 Химия (ФТД.03).
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами, а именно:
- «Математика» (Б1.О.10),
- «Общая химия. Химия неметаллов» (Б1.О.16),
- «Органическая химия» (Б1.О.20),
- «Информатика» (Б1.О.22),
- «Информатика и вычислительная техника» (Б1.О.23),
- «Физическая химия. Химическая термодинамика» (Б1.О.24),
- «Физическая химия. Электрохимия. Химическая кинетика и катализ» (Б1.О.25),
- «Квантовая механика» (Б1.О.30),
- «Математическая теория эксперимента» (Б1.В.02).
- «Надежность современных методов вычислительной химии» (ФТД.02)
  - 2.3 Перечень последующих учебных дисциплин программы бакалавриата по направлению 04.03.01, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)),
- и магистратуры по направлению 04.04.01:
- «Квантовая химия» (Б1.О.04),
- «Информационные технологии в химических исследованиях» (Б1.В.08),
- «Компьютерные технологии в науке» (Б1.О.05),
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)).

# ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций (элементов следующих компетенций) в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки 04.03.01 «Химия», профиль: Химия.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

| Компетенция             | Индикаторы           | Результаты обучения              |  |  |
|-------------------------|----------------------|----------------------------------|--|--|
| ,                       | компетенций          |                                  |  |  |
| ПК-6                    | ИДК <sub>ПК6.1</sub> | Знать:                           |  |  |
| Способен применять      | Знает теоретические  | основные методы компьютерного    |  |  |
| основные естественно-   | основы базовых       | моделирования химических         |  |  |
| научные законы и        | химических дисциплин | процессов, типы стационарных     |  |  |
| закономерности развития | (неорганической,     | точек на поверхности             |  |  |
| химической науки при    | органической,        | потенциальной энергии и способы  |  |  |
| анализе полученных      | аналитической,       | их идентификации,                |  |  |
| результатов             | физической химии) и  | квантовохимические концепции     |  |  |
|                         | способы их           | реакционной способности;         |  |  |
|                         | использования        | Уметь:                           |  |  |
|                         | при решении          | выполнять основные виды          |  |  |
|                         | конкретных           | квантовохимических расчетов      |  |  |
|                         | химических задач     | электронного строения молекул, а |  |  |
|                         |                      | также переходных состояний       |  |  |
|                         |                      | химических реакций, проводить    |  |  |
|                         |                      | анализ реакционной способности   |  |  |
|                         |                      | соединений с применением         |  |  |
|                         |                      | различных индексов реакционной   |  |  |
|                         |                      | способности;                     |  |  |
|                         |                      | Владеть:                         |  |  |
|                         |                      | методологией основных видов      |  |  |
|                         |                      | квантовохимических расчетов      |  |  |
|                         |                      | молекулярных систем и навыками   |  |  |
|                         |                      | оценки реакционной способности   |  |  |
|                         |                      | на основе результатов            |  |  |
|                         |                      | квантовохимических расчетов.     |  |  |

## IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 1 зачетную единицу, 36 часов.

Форма промежуточной аттестации: зачет

# 4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

|       | № п/п Раздел дисциплины/темы                                            |   | Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах) |                                    |                            |                           | Формы текущего                             |  |
|-------|-------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------------|--|
| № п/п |                                                                         |   |                                                                                          | Контактная работа обучающим        | -                          | ельная                    | контроля успеваемости; Форма промежуточной |  |
|       |                                                                         |   | Лекции                                                                                   | Семинарские (практические занятия) | КСР + консультации +<br>КО | Самостоятельная<br>работа | аттестации<br>(по семестрам)               |  |
| 1     | Введение. Основные этапы выполнения квантовохимических расчётов.        | 6 | 2                                                                                        | 2                                  | 2                          | 2                         | Устный опрос,<br>практическое задание      |  |
| 2     | Поверхность потенциальной энергии.<br>Реакционная способность молекул.  | 6 | 2                                                                                        | 2                                  | 2                          | 2                         | Устный опрос,<br>практическое задание      |  |
| 3     | Расчёт термодинамических характеристик химических реакций.              | 6 | 2                                                                                        | 3                                  | 3                          | 2                         | Устный опрос, практическое задание         |  |
| 4     | Моделирование механизма химической реакции. Поиск переходных состояний. | 6 | 2                                                                                        | 3                                  | 3                          | 2                         | Устный опрос, практическое задание         |  |
|       | Итого часов                                                             |   | 8                                                                                        | 10                                 | 10                         | 8                         | Зачет                                      |  |

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

|         |                                                                         | Самостоятельная работа обучающихся                                                                                                                           |                         |                        |                 | Учебно-методическое                       |
|---------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-----------------|-------------------------------------------|
| Семестр | Название раздела, темы                                                  | Вид самостоятельной работы                                                                                                                                   | Сроки<br>выполнен<br>ия | Затраты времени (час.) |                 | обеспечение<br>самостоятельной<br>работы  |
| 6       | Введение. Основные этапы выполнения квантовохимических расчётов.        | Поиск и анализ литературы о программных пакетах, позволяющих обрабатывать и визуализировать результаты расчётов. Составление входных заданий для ПО Firefly. |                         | 2                      | устный<br>опрос | см. список<br>рекомендуемой<br>литературы |
|         | Поверхность потенциальной энергии. Реакционная способность молекул.     | Поиск и анализ литературы о квантовохимических методах оценки реакционной способности соединений, изучаемых в рамках НИР или ВКР                             |                         | 2                      | устный<br>опрос | см. список<br>рекомендуемой<br>литературы |
|         | Расчёт термодинамических характеристик химических реакций.              | Поиск и анализ литературы о квантовохимических методах оценки термодинамических характеристик химических реакций, изучаемых в рамках НИР или ВКР             |                         | 2                      | устный<br>опрос | см. список рекомендуемой литературы       |
|         | Моделирование механизма химической реакции. Поиск переходных состояний. | Поиск и анализ литературы о квантовохимических методах оценки кинетических характеристик химических реакций, изучаемых в рамках НИР или ВКР                  |                         | 2                      | устный<br>опрос | см. список<br>рекомендуемой<br>литературы |
| Обща    | Общая трудоемкость самостоятельной работы по дисциплине (час)           |                                                                                                                                                              |                         |                        |                 |                                           |
|         | кет времени самостоятельной г<br>лины (час)                             | работы, предусмотренный учебным планом д.                                                                                                                    | ля данной               | 8                      |                 |                                           |

Контактная работа может быть аудиторной, внеаудиторной, а также проводиться в электронной информационно-образовательной среде. Контактная работа при проведении учебных занятий по дисциплинам (модулям) включает в себя:

занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, обучающимся),

занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), групповые консультации,

индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях (в том числе индивидуальные консультации);

иную контактную работу (при необходимости), предусматривающую групповую или индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, определяемую организацией самостоятельно.

#### 4.3 Содержание учебного материала

#### Содержание разделов и тем дисциплины

#### 1. Введение. Основные этапы выполнения квантовохимических расчётов.

Роль и место квантовохимических исследований в современной науке. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов. Ключевые слова, управляющие работой программы для квантовохимических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя). Анализ результатов расчетов. Структура текстовых оutput-файлов.

#### 2. Поверхность потенциальной энергии. Реакционная способность молекул.

Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки. Расчеты зарядов на атомах в молекуле. Расчеты молекулярных электростатических потенциалов. Расчеты энергий молекулярных орбиталей. Индексы реакционной способности.

#### 3. Расчёт термодинамических характеристик химических реакций.

Принципы расчета термодинамических характеристик методами квантовой химии. Сродство к электрону. Потенциал ионизации. Кислотность и основность в газовой фазе. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вещества.

## 4. Моделирование механизма химической реакции. Поиск переходных состояний.

Моделирование активированных комплексов химических процессов. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3). Спуск по координате реакции. Расчет энергий активации и кинетических параметров химических реакций.

#### 4.3.1. Перечень семинарских, практических занятий и лабораторных работ

| п/п | № раздела<br>и темы<br>дисциплины | Наименование семинаров, практических и лабораторных работ               | Трудо-<br>емкост<br>ь<br>(час.) | Из них практическая подготовка | Оценочные средства | Формируемые компетенции |
|-----|-----------------------------------|-------------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------|-------------------------|
| 1   | 2                                 | 3                                                                       | 4                               | 5                              | 6                  | 7                       |
| 1.  | 1                                 | Введение. Основные этапы выполнения квантовохимических расчётов.        | 2                               | 2                              | устный опрос       | ПК-6.1                  |
| 2.  | 2                                 | Поверхность потенциальной энергии. Реакционная способность молекул.     | 2                               | 2                              | устный опрос       | ПК-6.1                  |
| 3.  | 3                                 | Расчёт термодинамических характеристик химических реакций.              | 3                               | 3                              | устный опрос       | ПК-6.1                  |
| 4.  | 4                                 | Моделирование механизма химической реакции. Поиск переходных состояний. | 3                               | 3                              | устный опрос       | ПК-6.1                  |

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение самостоятельной работы студентов

| No        | Тема | Задание                                                                                                                                                      | Формируемая | ИДК                   |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|
| $\Pi/\Pi$ |      |                                                                                                                                                              | компетенция |                       |
| 1         | 1    | Поиск и анализ литературы о программных пакетах, позволяющих обрабатывать и визуализировать результаты расчётов. Составление входных заданий для ПО Firefly. | ПК-6        | ИДК <sub>ПК-6.1</sub> |
| 2         | 2    | Поиск и анализ литературы о квантовохимических методах оценки реакционной способности соединений, изучаемых в рамках НИР или ВКР                             | ПК-6        | ИДК ПК-6.1            |
| 3         | 3    | Поиск и анализ литературы о квантовохимических методах оценки термодинамических характеристик химических реакций, изучаемых в рамках НИР или ВКР             | ПК-6        | ИДК <sub>ПК-6.1</sub> |
| 4         | 4    | Поиск и анализ литературы о квантовохимических методах оценки кинетических характеристик химических реакций, изучаемых в рамках НИР или ВКР                  | ПК-6        | ИДК пк-6.1            |

### 4.3.3. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов, связанная с закреплением теоретического материала в виде составления входных заданий для ПО Firefly, поиска и анализа литературных данных о программных пакетах, позволяющих обрабатывать и визуализировать результаты расчётов, а также методах оценки реакционной способности соединений, термодинамических и кинетических характеристик химических реакций для изучаемой в рамках своей научной работы молекулярной системы (систем) проводится во внеаудиторное время.

В ходе подготовки рекомендуется:

- Повторить лекционный материал.
- При необходимости обратиться к рекомендованной учебной литературе.
- Проработать задания, решаемые на практических занятиях.
- При необходимости обратиться за консультацией к преподавателю.

#### 4.4. Примерная тематика курсовых работ (проектов) (при наличии)

Выполнение курсовых работ не планируется

# V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

#### а) основная литература

1. Барановский В.И. Квантовая механика и квантовая химия: Учеб. пособие / В.И. Барановский. - М.: Академия, 2008. – 383 с.

- 2. Трофимов А.Б. Введение в квантовую химию: учеб. пособие / А. Б. Трофимов; Иркутск: Изд-во ИГУ, 2013. 192 с.;
- 3. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть І. / В. Б. Кобычев, А. Б. Трофимов, Н. М. Витковская. Иркутск: Издательство ООО «Издательство «Аспринт», 2015. 120 с.
- 4. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть II. / В.Б. Кобычев, А.Б. Трофимов, Н. М. Витковская. Иркутск: Издательство ООО «Издательство «Аспринт», 2018. 124 с.
- 5. Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. Учеб. пособие. / В.Г.Цирельсон. М.: БИНОМ. Лаборатория знаний, 2012.— 495 с. Режим доступа ЭБС издательства «Лань».

#### б) дополнительная литература

- 6. Майер И. Избранные главы квантовой химии / И. Майер; пер. с англ.— М.: Бином, Лаборатория знаний, 2014.— 384 с. Режим доступа ЭБС издательства «Лань».
- 7. Барановский В.И. Квантовохимические расчеты повышенной точности. Учебное пособие, 2015. 89 с.

#### в) периодические издания (при необходимости)

- 8. Narbe Mardirossian & Martin Head-Gordon (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics, 115:19, 2315-2372, DOI: 10.1080/00268976.2017.1333644.
- 9. Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best Practice DFT Protocols for Basic Molecular Computational Chemistry\*\*. Angew. Chemie Int. Ed. 2022, 61 (42). https://doi.org/10.1002/anie.202205735.

#### г) список авторских методических разработок:

#### д) базы данных, информационно-справочные и поисковые системы

10. http://www.gchem.ru/lectures/

Курс лекций по квантовой механике и квантовой химии, подготовленный д.х.н., проф. С.Л. Хурсаном (БашГУ)

11. http://bd.viniti.ru/

База данных ВИНИТИ РАН

12. http://webbook.nist.gov/chemistry

База данных NIST Chemistry WebBook

13. https://www.elibrary.ru

Научная электронная библиотека eLIBRARY

# VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Учебно-лабораторное оборудование:

Помещения для проведения лекционных и практических занятий, укомплектованные необходимым оборудованием, а именно:

 аудитории, оснащенные мультимедийными средствами, для проведения аудиторных и практических занятий ауд. 5, 402, 426 оборудованы мультимедийными проекторами (InFocus IN 105 (3D Ready), настенными экранами, ноутбуками Samsung NP 300T5A-A0FRU.

– компьютерный класс химического факультета (ауд. 335) оборудован 11 ПК с установленным пакетом MS Office. Имеется локальная сеть.

#### 6.2. Программное обеспечение:

#### Лицензируемое ПО:

– MS Excel в составе MS Office - 2016

#### Свободно распространяемые программы:

- Firefly программа неэмпирических расчетов [Alex A. Granovsky, Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html];
- Molecular Modeling and Simulation Kit (MaSK) для визуализации результатов расчетов Firefly, наглядного представления строения молекул и вида MO.

#### 6.3. Технические и электронные средства:

Методической концепцией преподавания предусмотрено использование технических и электронных средств обучения студентов: мультимедийные презентации

#### VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе изучения дисциплины «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения: объяснительно-иллюстративный метод с элементами проблемного изложения, технология профессионально-ориентированного обучения, лекции, самостоятельные работы, разбор конкретных ситуаций.

### VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

#### Оценочные средства (ОС):

Оценочные средства текущего контроля формируются в соответствии с Положением о балльно-рейтинговой системе университета. Назначение оценочных средств текущего контроля - выявить у обучающихся сформированность компетенций: ПК-6.

# Материалы для проведения текущего и промежуточного контроля знаний студентов:

| № | Вид контроля            | Контролируемые темы (разделы)        | Компетенции,   |
|---|-------------------------|--------------------------------------|----------------|
|   |                         |                                      | компоненты     |
|   |                         |                                      | которых        |
|   |                         |                                      | контролируются |
| 1 | Участие в дискуссиях на | Основные этапы выполнения            | ПК-6.          |
|   | семинарском занятии     | квантовохимических расчётов.         | 1110           |
| 2 | Участие в дискуссиях на | Поверхность потенциальной энергии.   | ПК-6.          |
|   | семинарском занятии     | Реакционная способность молекул.     | 1110           |
| 3 | Участие в дискуссиях на | Расчёт термодинамических             | ПК-6.          |
|   | семинарском занятии     | характеристик химических реакций.    | 1110           |
| 4 | Участие в дискуссиях на | Моделирование механизма химической   | ПК-6.          |
|   | семинарском занятии     | реакции. Поиск переходных состояний. | 1110.          |

#### ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Семинар №1. Основные этапы выполнения квантовохимических расчётов.

- 1. Роль и место квантовохимических исследований в современной науке.
- 2. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов.
- 3. Ключевые слова, управляющие работой программы для квантово-химических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя).
- 4. Анализ результатов расчетов. Структура текстовых output-файлов.

**Семинар №2.** Поверхность потенциальной энергии. Реакционная способность молекул.

- 1. Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи.
- 2. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки.
- 3. Расчеты зарядов на атомах в молекуле.
- 4. Расчеты молекулярных электростатических потенциалов.
- 5. Расчеты энергий молекулярных орбиталей.
- 6. Индексы реакционной способности.

Семинар №3. Расчёт термодинамических характеристик химических реакций.

- 1. Принципы расчета термодинамических характеристик методами квантовой химии.
- 2. Сродство к электрону. Потенциал ионизации.
- 3. Кислотность и основность в газовой фазе.
- 4. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вещества.

**Семинар №4.** Моделирование механизма химической реакции. Поиск переходных состояний

- 1. Моделирование активированных комплексов химических процессов.
- 2. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3).
- 3. Спуск по координате реакции.
- 4. Расчет энергий активации и кинетических параметров химических реакций.

Промежуточная аттестация (*зачет*) проводится с использованием балльнорейтинговой системы оценивания результатов обучения.

### ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ И ЗАДАНИЙ К ЗАЧЕТУ

- 1. Роль и место квантовохимических исследований в современной науке.
- 2. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов.
- 3. Ключевые слова, управляющие работой программы для квантово-химических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя).
- 4. Анализ результатов расчетов. Структура текстовых output-файлов.
- 5. Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи.
- 6. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки.
- 7. Расчеты зарядов на атомах в молекуле.
- 8. Расчеты молекулярных электростатических потенциалов.
- 9. Расчеты энергий молекулярных орбиталей.
- 10. Индексы реакционной способности.
- 11. Принципы расчета термодинамических характеристик методами квантовой химии.
- 12. Сродство к электрону. Потенциал ионизации.
- 13. Кислотность и основность в газовой фазе.
- 14. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вешества
- 15. Моделирование активированных комплексов химических процессов.
- 16. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3).
- 17. Спуск по координате реакции.
- 18. Расчет энергий активации и кинетических параметров химических реакций.

# ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ДЛЯ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

| Индикаторы достижения    | Результаты обучения                 | Процедура оценивания  |
|--------------------------|-------------------------------------|-----------------------|
| компетенции              | компетенции (знать, уметь, владеть) |                       |
| ИДКпк6.1                 | Знает: основные методы              | Выполнение            |
| Знает теоретические      | компьютерного моделирования         | практических заданий, |
| основы базовых           | химических процессов, типы          | работа на семинарах.  |
| химических дисциплин     | стационарных точек на               |                       |
| (неорганической,         | поверхности потенциальной           |                       |
| органической,            | энергии и способы их                |                       |
| аналитической,           | идентификации,                      |                       |
| физической химии) и      | квантовохимические концепции        |                       |
| способы их использования | реакционной способности.            |                       |
| при решении конкретных   | Умеет: выполнять основные           |                       |
| химических задач         | виды квантовохимических             |                       |
|                          | расчетов электронного строения      |                       |
|                          | молекул, а также переходных         |                       |
|                          | состояний химических реакций,       |                       |
|                          | проводить анализ реакционной        |                       |
|                          | способности соединений с            |                       |
|                          | применением различных               |                       |
|                          | индексов реакционной                |                       |
|                          | способности.                        |                       |
|                          |                                     |                       |
|                          | Владеет:                            |                       |
|                          | методологией основных видов         |                       |
|                          | квантовохимических расчетов         |                       |
|                          | молекулярных систем и               |                       |
|                          | навыками оценки реакционной         |                       |
|                          | способности на основе               |                       |
|                          | результатов квантовохимических      |                       |
|                          | расчетов.                           |                       |

# Программа оценивания контролируемых компетенций:

| Тема или раздел дисциплины <sup>1</sup>                             | Код индикатора компетенции                                                                                                                       | Планируемый результат          | Показатель                                                                                                                                                                                                                  | Критерий<br>оценивания                                                                                                                                         | Наимено         |           |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
|                                                                     |                                                                                                                                                  |                                |                                                                                                                                                                                                                             |                                                                                                                                                                | TK <sup>3</sup> | $\Pi A^4$ |
| Основные этапы выполнения квантово-<br>химических расчётов.         | ИДКпк-6.1 Знает теоретические основы базовых химических дисциплин (неорганической, органической, аналитической химии) и способы их использования |                                | Знает: способы задания координат молекул, ключевые слова, управляющие работой программ. Умеет: строить координаты молекулы, создавать входное задание для программ Владеет: навыками проведения квантовохимических расчётов | Владеет материалом, представленным в разделе «Вопросы для собеседования», семинар 1, № 1-4. Активно отвечал на семинарах. Выполнил 2/3 самостоятельной работы. | УО, ПЗ          | Зачет     |
| Поверхность потенциальной энергии. Реакционная способность молекул. | при решении конкретных химических задач                                                                                                          | способы расчётов характеристик | зарядов на атомах, энергий                                                                                                                                                                                                  | Владеет материалом, представленным в разделе «Вопросы                                                                                                          | УО, ПЗ          | 3ar       |

|                | Владеть: навыками       | атомах, энергий молекулярных     |                   |           |
|----------------|-------------------------|----------------------------------|-------------------|-----------|
|                | проведения              | орбиталей, молекулярных          |                   |           |
|                | квантовохимических      | электростатических потенциалов,  |                   |           |
|                | расчётов характеристик  | индексов реакционной             |                   |           |
|                | реакционной             | способности.                     |                   |           |
|                | способности молекул     |                                  |                   |           |
| Расчёт         | Знать: Принципы расчета | Знает: подходы для расчётов      | Владеет           | УО, ПЗ    |
| термодинами-   | термодинамических       | сродства к электрону, потенциала | материалом,       |           |
| ческих         | характеристик методами  | ионизации, кислотности и         | представленным в  |           |
| характеристик  | квантовой химии         | основности в газовой фазе,       | разделе «Вопросы  |           |
| химических     | Уметь: рассчитывать     | тепловых эффектов химических     | для               |           |
| реакций.       | термодинамические       | реакций и энтальпии образования  | собеседования»,   |           |
|                | характеристики молекул  | вещества                         | семинар 3, № 1-4. |           |
|                | и химических реакций    | Умеет: рассчитывать сродство к   | _                 |           |
|                | методами квантовой      | электрону, потенциал ионизации,  | Активно отвечал   |           |
|                | химии                   | кислотность и основность в       | на семинарах.     |           |
|                | Владеть: навыками       | газовой фазе, тепловые эффекты   | Выполнил 2/3      |           |
|                | проведения              | химических реакций и энтальпию   | самостоятельной   |           |
|                | квантовохимических      | образования вещества             | работы.           |           |
|                | расчётов                | Владеет: навыками анализа        |                   |           |
|                | термодинамических       | результатов расчёта сродства к   |                   |           |
|                | характеристик молекул   | электрону, потенциала ионизации, |                   |           |
|                | и химических реакций    | кислотности и основности в       |                   |           |
|                | r · · · · ·             | газовой фазе, тепловых эффектов  |                   |           |
|                |                         | химических реакций и энтальпии   |                   |           |
|                |                         | образования вещества.            |                   |           |
| Моделирование  | Знать: Принципы расчета | Знает: подходы поиска седловых   | Владеет           | УО, ПЗ    |
| механизма      | 1 1                     | точек на ППЭ и спуска по         |                   | , , , , , |
| химической     | кинетических параметров | 3                                | представленным в  |           |
| реакции. Поиск | химических реакций      | * *                              | разделе «Вопросы  |           |
| переходных     | =                       | идентифицировать переходные      | для               |           |
| состояний.     | химии                   | состояния, рассчитывать энергии  | собеседования»,   |           |
|                | Уметь: рассчитывать     | активации и кинетические         | семинар 4, № 1-4. |           |
|                | энергии активации и     | характеристики химических        | • ′               |           |
|                | January III             |                                  | Активно отвечал   |           |

| методами кван химии Владеть: нав проведения квантовохимически: | вой результатов расчёта переходных состояний при помощи алгоритма Берни, методов QST2 и QST3 | на семинарах. Выполнил 2/3 самостоятельной работы. |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|

УО – устный опрос, ПЗ – практическое задание.

#### КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ:

а) промежуточная аттестация - зачет

В соответствии с балльно-рейтинговой системой ИГУ для получения зачета по дисциплине «Компьютерное моделирование молекулярных систем: от схемы до механизма

реакции» студенту необходимо набрать не менее 60 баллов.

- 1. Обязательным условием является выполнение студентом 4 практических заданий по данной дисциплине.
- 2. Отчет по каждой практической работе оценивается в 25 баллов. Оценивается полнота и правильность выполненного задания, а также сроки предоставления.

Разработчик:

к.х.н., доцент кафедры А.С. Бобков

Программа составлена в соответствии с требованиями ФГОС ВО и учетом рекомендаций ПООП по направлению и профилю подготовки 04.03.01 – «Химия».

Программа рассмотрена на заседании кафедры теоретической и прикладной органической химии и полимеризационных процессов Протокол № 5 от 14.04. 2022 г.

зав. кафедрой Кижняев В.Н.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы