

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической и прикладной органической химии и полимеризационных процессов

химический је сј факух ТВЕРЖДАЮ

Декан химического факультета, доц. А.И. Вильмс

> "9" июня 2023 г

Рабочая программа дисциплины ФТД.03

Наименование дисциплины Компьютерное моделирование молекулярных систем: от схемы до механизма реакции

Направление подготовки 04.03.01 - Химия

Направленности: Химия

Квалификация выпускника – БАКАЛАВР

Форма обучения очная

Согласовано с УМК_химического

факультета

Рекомендовано кафедрой теоретической и прикладной органической химии и полимеризационных процессов:

Протокол № 9 от «2» июня 2023 г.

Зав. кафедрой О.А. Эдельштейн

Иркутск 2023 г..

Содержание

		стр
I. Цели	и задачи дисциплины	3
II. Мест	о дисциплины в структуре ОПОП ВО	3
III. Треб	ования к результатам освоения дисциплины	4
IV. Соде	ержание и структура дисциплины	5
4.1 Соде	ржание дисциплины, структурированное по темам	5
4.2 План	н внеаудиторной самостоятельной работы обучающихся	
по д	исциплине	6
4.3 Соде	ржание учебного материала	7
4.3.1 Пер	речень семинарских, практических занятий и	
лабор	раторных работ	7
4.3.2 Пе	еречень тем (вопросов), выносимых на самостоятельное	8
изуче	ение самостоятельной работы студентов	
4.3.3 Me	етодические указания по организации самостоятельной	8
работ	гы студентов	
4.4 При	имерная тематика курсовых работ (проектов) (при	8
нали	чии)	
V. Учеб	бно-методическое и информационное обеспечение	
дисц	иплины:	8
а) основі	ная литература;	8
б) допол	нительная литература;	9
в) перио	дические издания;	9
г) списо	к авторских методических разработок;	9
д) базы	и данных, поисково-справочные и информационные	9
систе	емы	
VI. Mate	ериально-техническое обеспечение дисциплины (модуля)	9
6.1 Учеб	но-лабораторное оборудование	9
6.2. Прог	граммное обеспечение	10
6.3. Texh	нические и электронные средства	10
VII. Обра	зовательные технологии	10
VIII. Ouer	ночные средства (ОС)	10

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели: формирование базовых навыков компьютерного моделирования молекулярных систем и химических реакций.

Залачи:

- 1. дать представление о современных квантовохимических подходах к изучению свойств молекул и моделированию механизмов реакций;
- 2. научить студентов выполнять основные виды квантовохимических расчетов молекулярных систем с использованием программных пакетов для квантовохимических расчетов;
- 3. сформировать умение применять на практике полученные знания.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» относится к факультативной дисциплинам по выбору вариативной части учебного плана подготовки бакалавров по направлению 04.03.01 Химия (ФТД.03).
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами, а именно:
- «Математика» (Б1.О.10),
- «Общая химия. Химия неметаллов» (Б1.О.16),
- «Органическая химия» (Б1.О.20),
- «Информатика» (Б1.О.22),
- «Информатика и вычислительная техника» (Б1.О.23),
- «Физическая химия. Химическая термодинамика» (Б1.О.24),
- «Физическая химия. Электрохимия. Химическая кинетика и катализ» (Б1.О.25),
- «Квантовая механика» (Б1.О.30),
- «Математическая теория эксперимента» (Б1.В.02).
- «Надежность современных методов вычислительной химии» (ФТД.02)
 - 2.3 Перечень последующих учебных дисциплин программы бакалавриата по направлению 04.03.01, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)),
- и магистратуры по направлению 04.04.01:
- «Квантовая химия» (Б1.О.04),
- «Информационные технологии в химических исследованиях» (Б1.В.08),
- «Компьютерные технологии в науке» (Б1.О.05),
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)).

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций (элементов следующих компетенций) в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки 04.03.01 «Химия», профиль: Химия.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
	компетенций	
ПК-6	ИДК _{ПК6.1}	Знать:
Способен применять	Знает теоретические	основные методы компьютерного
основные естественно-	основы базовых	моделирования химических
научные законы и	химических дисциплин	процессов, типы стационарных
закономерности развития	(неорганической,	точек на поверхности
химической науки при	органической,	потенциальной энергии и способы
анализе полученных	аналитической,	их идентификации,
результатов	физической химии) и	квантовохимические концепции
	способы их	реакционной способности;
	использования	Уметь:
	при решении	выполнять основные виды
	конкретных	квантовохимических расчетов
	химических задач	электронного строения молекул, а
		также переходных состояний
		химических реакций, проводить
		анализ реакционной способности
		соединений с применением
		различных индексов реакционной
		способности;
		Владеть:
		методологией основных видов
		квантовохимических расчетов
		молекулярных систем и навыками
		оценки реакционной способности
		на основе результатов
		квантовохимических расчетов.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 1 зачетную единицу, 36 часов.

Форма промежуточной аттестации: зачет

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Раздел дисциплины/темы		Виды учебной работы, включая самостоятельную рабо обучающихся и трудоемкость (в часах) Контактная работа преподавателя с обучающимися				Формы текущего контроля успеваемости; Форма промежуточной
			Лекции	Семинарские (практические занятия)	КСР + консультации + КО	Самостоятельная работа	аттестации (по семестрам)
1	Введение. Основные этапы выполнения квантовохимических расчётов.	6	2	2	2	2	Устный опрос, практическое задание
2	Поверхность потенциальной энергии. Реакционная способность молекул.	6	2	2	2	2	Устный опрос, практическое задание
3	Расчёт термодинамических характеристик химических реакций.	6	2	3	3	2	Устный опрос, практическое задание
4	Моделирование механизма химической реакции. Поиск переходных состояний.	6	2	3	3	2	Устный опрос, практическое задание
	Итого часов		8	10	10	8	Зачет

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная работа обучают	цихся			Учебно-методическое
Сомостр	Поэрогина раздала, тами			Затраты	Оценочное	обеспечение
Семестр	Название раздела, темы	Вид самостоятельной работы	выполнен	времени	средство	самостоятельной
			ия	(час.)		работы
	Введение. Основные этапы	Поиск и анализ литературы о программных				см. список
_	выполнения	пакетах, позволяющих обрабатывать и		2	устный	рекомендуемой
_	квантовохимических расчётов.	визуализировать результаты расчётов.		2	опрос	литературы
	квантоволимических расчетов.	Составление входных заданий для ПО Firefly.				
6	Поверхность потенциальной	Поиск и анализ литературы о				см. список
	эпергии Реакшиоппад	квантовохимических методах оценки		2	устный	рекомендуемой
	способность молекул.	реакционной способности соединений,			опрос	литературы
	enocoonocib mosickysi.	изучаемых в рамках НИР или ВКР				
6	Расчёт термодинамических	Поиск и анализ литературы о				см. список
	характеристик химических	квантовохимических методах оценки		2	устный	рекомендуемой
	กลายานนั	термодинамических характеристик химических		_	опрос	литературы
	решкции	реакций, изучаемых в рамках НИР или ВКР				
6	Моделирование механизма	Поиск и анализ литературы о				см. список
	химической реакции Поиск	квантовохимических методах оценки		2		рекомендуемой
	перехолицу состояний	кинетических характеристик химических		_	опрос	литературы
	-	реакций, изучаемых в рамках НИР или ВКР		8		
	Общая трудоемкость самостоятельной работы по дисциплине (час)					
	Бюджет времени самостоятельной работы, предусмотренный учебным планом для данной					
дисцип.	пины (час)			8		

Контактная работа может быть аудиторной, внеаудиторной, а также проводиться в электронной информационно-образовательной среде. Контактная работа при проведении учебных занятий по дисциплинам (модулям) включает в себя:

занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, обучающимся),

занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), групповые консультации,

индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях (в том числе индивидуальные консультации);

иную контактную работу (при необходимости), предусматривающую групповую или индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, определяемую организацией самостоятельно.

4.3 Содержание учебного материала

Содержание разделов и тем дисциплины

1. Введение. Основные этапы выполнения квантовохимических расчётов.

Роль и место квантовохимических исследований в современной науке. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов. Ключевые слова, управляющие работой программы для квантовохимических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя). Анализ результатов расчетов. Структура текстовых оutput-файлов.

2. Поверхность потенциальной энергии. Реакционная способность молекул.

Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки. Расчеты зарядов на атомах в молекуле. Расчеты молекулярных электростатических потенциалов. Расчеты энергий молекулярных орбиталей. Индексы реакционной способности.

3. Расчёт термодинамических характеристик химических реакций.

Принципы расчета термодинамических характеристик методами квантовой химии. Сродство к электрону. Потенциал ионизации. Кислотность и основность в газовой фазе. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вещества.

4. Моделирование механизма химической реакции. Поиск переходных состояний.

Моделирование активированных комплексов химических процессов. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3). Спуск по координате реакции. Расчет энергий активации и кинетических параметров химических реакций.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

п/п	№ раздела и темы дисциплины	Наименование семинаров, практических и лабораторных работ	Трудо- емкост ь (час.)	Из них практическая подготовка	Оценочные средства	Формируемые компетенции
1	2	3	4	5	6	7
1.	1	Введение. Основные этапы выполнения квантовохимических расчётов.	2	2	устный опрос	ПК-6.1
2.	2	Поверхность потенциальной энергии. Реакционная способность молекул.	2	2	устный опрос	ПК-6.1
3.	3	Расчёт термодинамических характеристик химических реакций.	3	3	устный опрос	ПК-6.1
4.	4	Моделирование механизма химической реакции. Поиск переходных состояний.	3	3	устный опрос	ПК-6.1

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение самостоятельной работы студентов

No	Тема	Задание	Формируемая	ИДК
Π/Π			компетенция	
1	1	Поиск и анализ литературы о программных пакетах, позволяющих обрабатывать и визуализировать результаты расчётов. Составление входных заданий для ПО Firefly.	ПК-6	ИДК _{ПК-6.1}
2	2	Поиск и анализ литературы о квантовохимических методах оценки реакционной способности соединений, изучаемых в рамках НИР или ВКР	ПК-6	ИДК ПК-6.1
3	3	Поиск и анализ литературы о квантовохимических методах оценки термодинамических характеристик химических реакций, изучаемых в рамках НИР или ВКР	ПК-6	ИДК _{ПК-6.1}
4	4	Поиск и анализ литературы о квантовохимических методах оценки кинетических характеристик химических реакций, изучаемых в рамках НИР или ВКР	ПК-6	ИДК пк-6.1

4.3.3. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов, связанная с закреплением теоретического материала в виде составления входных заданий для ПО Firefly, поиска и анализа литературных данных о программных пакетах, позволяющих обрабатывать и визуализировать результаты расчётов, а также методах оценки реакционной способности соединений, термодинамических и кинетических характеристик химических реакций для изучаемой в рамках своей научной работы молекулярной системы (систем) проводится во внеаудиторное время.

В ходе подготовки рекомендуется:

- Повторить лекционный материал.
- При необходимости обратиться к рекомендованной учебной литературе.
- Проработать задания, решаемые на практических занятиях.
- При необходимости обратиться за консультацией к преподавателю.

4.4. Примерная тематика курсовых работ (проектов) (при наличии)

Выполнение курсовых работ не планируется

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) основная литература

1. Барановский В.И. Квантовая механика и квантовая химия: Учеб. пособие / В.И. Барановский. - М.: Академия, 2008. – 383 с.

- 2. Трофимов А.Б. Введение в квантовую химию: учеб. пособие / А. Б. Трофимов; Иркутск: Изд-во ИГУ, 2013. 192 с.;
- 3. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть І. / В.Б. Кобычев, А.Б. Трофимов, Н. М. Витковская. Иркутск: Издательство ООО «Издательство «Аспринт», 2015. 120 с.
- 4. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть II. / В.Б. Кобычев, А.Б. Трофимов, Н. М. Витковская. Иркутск: Издательство ООО «Издательство «Аспринт», 2018. 124 с.
- 5. Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. Учеб. пособие. / В.Г.Цирельсон. М.: БИНОМ. Лаборатория знаний, 2012.— 495 с. Режим доступа ЭБС издательства «Лань».

б) дополнительная литература

- 6. Майер И. Избранные главы квантовой химии / И. Майер; пер. с англ.— М.: Бином, Лаборатория знаний, 2014.— 384 с. Режим доступа ЭБС издательства «Лань».
- 7. Барановский В.И. Квантовохимические расчеты повышенной точности. Учебное пособие, 2015. 89 с.

в) периодические издания (при необходимости)

- 8. Narbe Mardirossian & Martin Head-Gordon (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics, 115:19, 2315-2372, DOI: 10.1080/00268976.2017.1333644.
- 9. Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chemie Int. Ed. 2022, 61 (42). https://doi.org/10.1002/anie.202205735.

г) список авторских методических разработок:

д) базы данных, информационно-справочные и поисковые системы

10. http://www.gchem.ru/lectures/

Курс лекций по квантовой механике и квантовой химии, подготовленный д.х.н., проф. С.Л. Хурсаном (БашГУ)

11. http://bd.viniti.ru/

База данных ВИНИТИ РАН

12. http://webbook.nist.gov/chemistry

База данных NIST Chemistry WebBook

13. https://www.elibrary.ru

Научная электронная библиотека eLIBRARY

VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Учебно-лабораторное оборудование:

Помещения для проведения лекционных и практических занятий, укомплектованные необходимым оборудованием, а именно:

 аудитории, оснащенные мультимедийными средствами, для проведения аудиторных и практических занятий ауд. 5, 402, 426 оборудованы мультимедийными проекторами (InFocus IN 105 (3D Ready), настенными экранами, ноутбуками Samsung NP 300T5A-A0FRU.

– компьютерный класс химического факультета (ауд. 335) оборудован 11 ПК с установленным пакетом MS Office. Имеется локальная сеть.

6.2. Программное обеспечение:

Лицензируемое ПО:

– MS Excel в составе MS Office - 2016

Свободно распространяемые программы:

- Firefly программа неэмпирических расчетов [Alex A. Granovsky, Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html];
- Molecular Modeling and Simulation Kit (MaSK) для визуализации результатов расчетов Firefly, наглядного представления строения молекул и вида MO.

6.3. Технические и электронные средства:

Методической концепцией преподавания предусмотрено использование технических и электронных средств обучения студентов: мультимедийные презентации

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе изучения дисциплины «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения: объяснительно-иллюстративный метод с элементами проблемного изложения, технология профессионально-ориентированного обучения, лекции, самостоятельные работы, разбор конкретных ситуаций.

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства (ОС):

Оценочные средства текущего контроля формируются в соответствии с Положением о балльно-рейтинговой системе университета. Назначение оценочных средств текущего контроля - выявить у обучающихся сформированность компетенций: ПК-6.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

No	Вид контроля	Контролируемые темы (разделы)	Компетенции,
			компоненты
			которых
			контролируются
1	Участие в дискуссиях на	Основные этапы выполнения	ПК-6.
	семинарском занятии	квантовохимических расчётов.	1110
2	Участие в дискуссиях на	Поверхность потенциальной энергии.	ПК-6.
	семинарском занятии	Реакционная способность молекул.	1110
3	Участие в дискуссиях на	Расчёт термодинамических	ПК-6.
	семинарском занятии	характеристик химических реакций.	1110
4	Участие в дискуссиях на	Моделирование механизма химической	ПК-6.
	семинарском занятии	реакции. Поиск переходных состояний.	1110.

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Семинар №1. Основные этапы выполнения квантовохимических расчётов.

- 1. Роль и место квантовохимических исследований в современной науке.
- 2. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов.
- 3. Ключевые слова, управляющие работой программы для квантово-химических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя).
- 4. Анализ результатов расчетов. Структура текстовых output-файлов.

Семинар №2. Поверхность потенциальной энергии. Реакционная способность молекул.

- 1. Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи.
- 2. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки.
- 3. Расчеты зарядов на атомах в молекуле.
- 4. Расчеты молекулярных электростатических потенциалов.
- 5. Расчеты энергий молекулярных орбиталей.
- 6. Индексы реакционной способности.

Семинар №3. Расчёт термодинамических характеристик химических реакций.

- 1. Принципы расчета термодинамических характеристик методами квантовой химии.
- 2. Сродство к электрону. Потенциал ионизации.
- 3. Кислотность и основность в газовой фазе.
- 4. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вещества.

Семинар №4. Моделирование механизма химической реакции. Поиск переходных состояний

- 1. Моделирование активированных комплексов химических процессов.
- 2. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3).
- 3. Спуск по координате реакции.
- 4. Расчет энергий активации и кинетических параметров химических реакций.

Промежуточная аттестация (*зачет*) проводится с использованием балльнорейтинговой системы оценивания результатов обучения.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ И ЗАДАНИЙ К ЗАЧЕТУ

- 1. Роль и место квантовохимических исследований в современной науке.
- 2. Подготовка входного задания к программным пакетам для проведения квантовохимических расчетов.
- 3. Ключевые слова, управляющие работой программы для квантово-химических расчетов (задание метода расчета и базисного набора, вычисление энергии, оптимизация геометрии, расчет зарядов на атомах, спектров, учет влияния растворителя).
- 4. Анализ результатов расчетов. Структура текстовых output-файлов.
- 5. Поверхность потенциальной энергии (ППЭ). Энергия нулевых колебаний (ZPVE). Энергия связи.
- 6. Оптимизация геометрии. Точки минимума и седловые точки. Частоты нормальных колебаний. Идентификация стационарной точки.
- 7. Расчеты зарядов на атомах в молекуле.
- 8. Расчеты молекулярных электростатических потенциалов.
- 9. Расчеты энергий молекулярных орбиталей.
- 10. Индексы реакционной способности.
- 11. Принципы расчета термодинамических характеристик методами квантовой химии.
- 12. Сродство к электрону. Потенциал ионизации.
- 13. Кислотность и основность в газовой фазе.
- 14. Расчеты тепловых эффектов химических реакций. Расчеты энтальпии образования вещества
- 15. Моделирование активированных комплексов химических процессов.
- 16. Поиск седловых точек на ППЭ (сканирование ППЭ, алгоритм Берни, QST2, QST3).
- 17. Спуск по координате реакции.
- 18. Расчет энергий активации и кинетических параметров химических реакций.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ДЛЯ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Индикаторы достижения	Результаты обучения	Процедура оценивания
компетенции	(знать, уметь, владеть)	
ИДКпк6.1	Знает: основные методы	Выполнение
Знает теоретические	компьютерного моделирования	практических заданий,
основы базовых	химических процессов, типы	работа на семинарах.
химических дисциплин	стационарных точек на	
(неорганической,	поверхности потенциальной	
органической,	энергии и способы их	
аналитической,	идентификации,	
физической химии) и	квантовохимические концепции	
способы их использования	реакционной способности.	
при решении конкретных	Умеет: выполнять основные	
химических задач	виды квантовохимических	
	расчетов электронного строения	
	молекул, а также переходных	
	состояний химических реакций,	
	проводить анализ реакционной	
	способности соединений с	
	применением различных	
	индексов реакционной	
	способности.	
	Владеет:	
	методологией основных видов	
	квантовохимических расчетов	
	молекулярных систем и	
	навыками оценки реакционной	
	способности на основе	
	результатов квантовохимических	
	расчетов.	

Программа оценивания контролируемых компетенций:

Тема или раздел дисциплины ¹	Код индикатора компетенции	Планируемый результат	Показатель	Критерий оценивания	Наимено	
					TK ³	ΠA^4
Основные этапы выполнения квантово-химических расчётов.	ИДКпк-6.1 Знает теоретические основы базовых химических дисциплин (неорганической, органической, аналитической химии) и способы их		Знает: способы задания координат молекул, ключевые слова, управляющие работой программ. Умеет: строить координаты молекулы, создавать входное задание для программ Владеет: навыками проведения квантовохимических расчётов	Владеет материалом, представленным в разделе «Вопросы для собеседования», семинар 1, № 1-4. Активно отвечал на семинарах. Выполнил 2/3 самостоятельной работы.	УО, ПЗ	er
Поверхность потенциальной энергии. Реакционная способность молекул.	использования при решении конкретных химических задач	способы расчётов характеристик	зарядов на атомах, энергий	Владеет материалом, представленным в разделе «Вопросы	УО, ПЗ	Зачет

		<u>,</u>		
	Владеть: навыками	атомах, энергий молекулярных		
	проведения	орбиталей, молекулярных		
	квантовохимических	электростатических потенциалов,		
	расчётов характеристик	индексов реакционной		
	реакционной	способности.		
	способности молекул			
Расчёт	Знать: Принципы расчета	Знает: подходы для расчётов	Владеет	УО, ПЗ
термодинами-	термодинамических	сродства к электрону, потенциала	материалом,	
ческих	характеристик методами	ионизации, кислотности и	представленным в	
характеристик	квантовой химии	основности в газовой фазе,	разделе «Вопросы	
химических	Уметь: рассчитывать	тепловых эффектов химических	для	
реакций.	термодинамические	реакций и энтальпии образования	собеседования»,	
	характеристики молекул	вещества	семинар 3, № 1-4.	
	и химических реакций	Умеет: рассчитывать сродство к	_	
	методами квантовой	электрону, потенциал ионизации,	Активно отвечал	
	химии	кислотность и основность в	на семинарах.	
	Владеть: навыками	газовой фазе, тепловые эффекты	Выполнил 2/3	
	проведения	химических реакций и энтальпию	самостоятельной	
	квантовохимических	образования вещества	работы.	
	расчётов	Владеет: навыками анализа		
	термодинамических	результатов расчёта сродства к		
	характеристик молекул	электрону, потенциала ионизации,		
	и химических реакций	кислотности и основности в		
	,	газовой фазе, тепловых эффектов		
		химических реакций и энтальпии		
		образования вещества.		
Моделирование	Знать: Принципы расчета	Знает: подходы поиска седловых	Владеет	УО, ПЗ
механизма	1 1 1	точек на ППЭ и спуска по		, -
химической	кинетических параметров	3	представленным в	
реакции. Поиск	химических реакций	<u> </u>	разделе «Вопросы	
переходных	_	идентифицировать переходные	для	
состояний.	химии	состояния, рассчитывать энергии	собеседования»,	
	Уметь: рассчитывать	активации и кинетические	семинар 4, № 1-4.	
	энергии активации и	характеристики химических	• ′	
			Активно отвечал	

	методами квантовой химии	Владеет: навыками анализа результатов расчёта переходных состояний при помощи алгоритма Берни, методов QST2 и QST3	на семинарах. Выполнил 2/3 самостоятельной работы.		
--	-----------------------------	--	--	--	--

УО – устный опрос, ПЗ – практическое задание.

КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ:

а) промежуточная аттестация - зачет

В соответствии с балльно-рейтинговой системой ИГУ для получения зачета по дисциплине «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» студенту необходимо набрать не менее 60 баллов.

- 1. Обязательным условием является выполнение студентом 4 практических заданий по данной дисциплине.
- 2. Отчет по каждой практической работе оценивается в 25 баллов. Оценивается полнота и правильность выполненного задания, а также сроки предоставления.

P	азра	абот	чик:

K.X.H.

к.х.н., доцент кафедры А.С. Бобков (занимаемая должность) (инициалы, фамилия)

Программа составлена в соответствии с требованиями ФГОС ВО и учетом рекомендаций ПООП по направлению и профилю подготовки 04.03.01 – «Химия».

Программа рассмотрена на заседании кафедры теоретической и прикладной органической химии и полимеризационных процессов

Протокол № 9 от «2» июня 2023 г.

Зав. кафедрой (Делен) /

Вучень / О.А. Эдельштейн /

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.