

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и неорганической химии

УТВЕРЖДАЮ

Декан химического факультета,

А.И. Вильмс 15.04.2022 г.

Рабочая программа дисциплины ФТД.02

Наименование дисциплины: Надежность современных методов вычислительной химии

Рекомендуется для направления подготовки: 04.03.01 «Химия»

Направленность Химия.

Степень (квалификация) выпускника: Бакалавр

Согласовано с УМК химического факультета Протокол №4 от 15.04.2022 г. Председатель А.И. Вильмс

Рекомендовано кафедрой Общей и неорганической химии, Протокол № 4 от 11.04/2022 г. Зав. кафедрой, А.Ю.Сафронов

Иркутск 2022 г.

Содержание

	стр.
1. Цели и задачи дисциплины	3
2. Место дисциплины в структуре ОПОП.	3
3. Требования к результатам освоения дисциплины	4
4. Содержание и структура дисциплины	5
4.1 Содержание дисциплины, структурированное по темам	5
4.2 План внеаудиторной самостоятельной работы обучающихся по	6
дисциплине	
4.3 Содержание учебного материала	8
4.3.1 Перечень семинарских, практических занятий,	8
лабораторных работ, план самостоятельной работы студентов,	
методические указания по организации самостоятельной работы	
студентов	
4.3.2 Перечень тем (вопросов), выносимых на самостоятельное	9
изучение самостоятельной работы студентов	
4.3.3 Методические указания по организации самостоятельной	9
работы студентов	
4.4 Примерная тематика курсовых работ (проектов) (при наличии)	9
5. Учебно-методическое и информационное обеспечение	
дисциплины:	9
а) основная литература;	9
б) дополнительная литература;	10
в) периодические издания;	10
г) список авторских методических разработок;	10
д) базы данных, поисково-справочные и информационные системы	10
6. Материально-техническое обеспечение дисциплины (модуля)	10
7. Образовательные технологии	11
8. Оценочные средства (ОС)	11

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Цели: формирование базовых представлений о современных методах квантовохимического моделирования и навыков выбора методов вычислительной химии, адекватных решаемой проблеме.

Задачи:

- 1. дать представление о современных квантовохимических методах исследования строения и свойств химических соединений, методах моделирования механизмов реакций;
- 2. научить студентов химического факультета правильно ориентироваться в иерархической системе квантовохимических расчетных схем;
- 3. сформировать умение применять на практике полученные знания.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина «Надежность современных методов вычислительной химии» относится к факультативной дисциплинам по выбору вариативной части учебного плана подготовки бакалавров по направлению 04.03.01 Химия (ФТД.02).
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами, а именно:
- «Математика» (Б1.О.10),
- «Общая химия. Химия неметаллов» (Б1.О.16),
- «Органическая химия» (Б1.О.20),
- «Информатика» (Б1.О.22),
- «Информатика и вычислительная техника» (Б1.О.23),
- «Физическая химия. Химическая термодинамика» (Б1.О.24),
- «Физическая химия. Электрохимия. Химическая кинетика и катализ» (Б1.О.25),
- «Квантовая механика» (Б1.О.30),
- «Математическая теория эксперимента» (Б1.В.02).
 - 2.3 Перечень последующих учебных дисциплин программы бакалавриата по направлению 04.03.01, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:
- «Компьютерное моделирование молекулярных систем: от схемы до механизма реакции» (ФТД.03),
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)),
- и магистратуры по направлению 04.04.01:
- «Квантовая химия» (Б1.О.04),
- «Информационные технологии в химических исследованиях» (Б1.В.08),
- «Компьютерные технологии в науке» (Б1.О.05),
- «Преддипломная практика» (Б2.О.01(Пд)),
- «Подготовка к процедуре защиты и защита выпускной квалификационной работы» (Б3.01(Д)).

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций (элементов следующих компетенций) в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки 04.03.01 «Химия», профиль: Химия.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
	компетенций	
ПК-6	ИДК _{ПК6.1}	Знать:
Способен применять	Знает теоретические	современные подходы,
основные естественно-	основы базовых	используемые при моделировании
научные законы и	химических дисциплин	пространственного и электронного
закономерности развития	(неорганической,	строения молекулярных систем,
химической науки при	органической,	механизмов реакций;
анализе полученных	аналитической,	возможности и ограничения
результатов	физической химии) и	расчетных методов квантовой
	способы их	химии при решении практических
	использования	задач;
	при решении	Уметь:
	конкретных	ориентироваться в иерархической
	химических задач	системе квантовохимических
		расчетных схем, пользоваться
		современным программным
		обеспечением и
		профессиональными базами
		данных для решения задач в
		избранной области химии или
		смежных наук;
		Владеть:
		навыками использования сети
		Интернет для поиска учебной и
		научной информации;
		современными квантово-
		химическими методами и
		программами.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 1 зачетную единицу, 36 часов.

Форма промежуточной аттестации: зачет

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

			Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)				Формы текущего контроля	
№ п/п	Раздел дисциплины/темы	Семестр		Контактная работа обучающим:	-	льная	успеваемости; Форма промежуточной	
			Лекции	Семинарские (практические занятия)	КСР + консультации + КО	Самостоятельная работа	аттестации (по семестрам)	
1	Введение. Метод Хартри-Фока. Базисные наборы.	6	2	2	2	2	Устный опрос	
2	Методы оптимизации геометрии и расчета колебательных поправок. Сравнение ab initio и ТФП подходов	6	2	2	2	2	Устный опрос	
3	Расчеты энергетических характеристик. Учет электронной корреляции в методах ТФП, MPn, связанных кластеров и конфигурационного взаимодействия.	6	2	3	3	2	Устный опрос	
4	Комбинированные подходы. Высокоточные комбинированные процедуры.	6	2	3	3	2	Устный опрос	
	Итого часов		8	10	10	8	Зачет	

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная работа об		Учебно-методическое		
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Затраты времени (час.)	Оценочное средство	обеспечение самостоятельной работы
6	Введение. Метод Хартири-Фока. Базисные наборы.	Решение задач на разбор обозначений базисных наборов, обоснование выбора базиса для решаемой задачи		2	устный опрос	см. список рекомендуемой литературы (1-5)
6	Методы оптимизации геометрии и расчета колебательных поправок. Сравнение ab initio и ТФП подходов.	Поиск и анализ литературы о методах, используемых для оптимизации геометрии молекулярной системы (систем), изучаемой в рамках НИР или ВКР		2	устный опрос	см. список рекомендуемой литературы (1, 2, 6, 8, 9, 10)
6	Расчеты энергетических характеристик. Учет электронной корреляции в методах ТФП, MPn, связанных кластеров и конфигурационного взаимодействия.	Поиск и анализ литературы о методах, используемых для расчета энергии молекулярной системы (систем), изучаемой в рамках НИР или ВКР		2	устный опрос	см. список рекомендуемой литературы (1, 2, 6, 7, 8, 9, 10)
6	Комбинированные подходы. Высокоточные комбинированные процедуры. Учет растворителя.	Подготовка презентации с обоснованием выбранной методики расчета для молекулярной системы (систем), изучаемой в рамках НИР или ВКР		2	· ·	см. список рекомендуемой литературы (1, 2, 6, 7, 8, 9, 10)
	я трудоемкость самостоятельной рабо		8			
	кет времени самостоятельной работ дисциплины (час)	ом для	8			

Контактная работа может быть аудиторной, внеаудиторной, а также проводиться в электронной информационнообразовательной среде.

Контактная работа при проведении учебных занятий по дисциплинам (модулям) включает в себя:

занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, обучающимся),

занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия),

групповые консультации,

индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях (в том числе индивидуальные консультации);

иную контактную работу (при необходимости), предусматривающую групповую или индивидуальную работу обучающихся с педагогическими работниками организации и (или) лицами, привлекаемыми организацией к реализации образовательных программ на иных условиях, определяемую организацией самостоятельно.

4.3 Содержание учебного материала

связанных кластеров.

Содержание разделов и тем дисциплины

1. Введение. Метод Хартри-Фока. Базисные наборы.

Роль и место квантовохимических методов исследования в современной науке. Основные приближения квантовой химии: адиабатическое, одноэлектронное. Определитель Слейтера. Метод Хартри-Фока. Базис. Аббревиатуры наборов базисных функций и их смысл. Типы базисных наборов.

2. Методы оптимизации геометрии и расчета колебательных поправок. Сравнение ab initio и ТФП подходов.

Теория функционала плотности (ТФП). Обменно-корреляционные функционалы. Приближение локальной плотности (LDA). Обобщенное градиентное разложение (GGA). Гибридные функционалы. Сравнение результатов расчета геометрии и колебательных поправок в рамках методов Хартри–Фока и популярных методов ТФП.

3. Расчеты энергетических характеристик. Учет электронной корреляции в методах ТФП, МРп, связанных кластеров и конфигурационного взаимодействия. Обзор методов учета электронной корреляции. Дважды-гибридные функционалы. Сравнение результатов расчета энергетических характеристик в рамках методов теории возмущений Мёллера-Плессета, дважды-гибридных функционалов, методов

4. Комбинированные подходы. Высокоточные комбинированные процедуры. Учет растворителя.

Принципы конструирования комбинированных расчетных схем. Обзор высокоточных комбинированных процедур G2MP2, G3, G4 и CBS-QB3. Обзор способов учета растворителя: континуальные, кластерные, кластерно-континуальные модели. Некоторые примеры выбора методики расчетов.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

п/п	№ раздела и темы дисциплины	Наименование семинаров, практических и лабораторных работ	Трудо- емкост ь (час.)	Из них практическая подготовка	Оценочные средства	Формируемые компетенции
1	2	3	4	5	6	7
1.	1	Метод Хартри-Фока. Базисные наборы.	2	2	устный опрос	ПК-6.1
2.	2	Методы оптимизации геометрии и расчета колебательных поправок.	2	2	устный опрос	ПК-6.1
3.	3	Учет электронной корреляции в методах ТФП, MPn, связанных кластеров и конфигурационного взаимодействия.	3	3	устный опрос	ПК-6.1
4.	4	Комбинированные подходы. Учет растворителя.	3	3	Оценка презентации и защиты предлагаемого подхода	ПК-6.1

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение самостоятельной работы студентов

No॒	Тема	Задание	Формируемая	ИДК
Π/Π			компетенция	
1	1	Решение задач на разбор обозначений базисных наборов, обоснование выбора	ПК-6	ИДК _{ПК-6.1}
1	1	базиса для решаемой задачи	IIK-0	V1/41\ K-6.
2	2	Поиск и анализ литературы о методах, используемых для оптимизации геометрии молекулярной системы (систем),	ПК-6	ИДК _{ПК-6.1}
		изучаемой в рамках НИР или ВКР Поиск и анализ литературы о методах,		
3	3	используемых для расчета энергии молекулярной системы (систем), изучаемой в рамках НИР или ВКР	ПК-6	ИДК пк-6.1
4	4	Подготовка презентации с обоснованием выбранной методики расчета для молекулярной системы (систем),	ПК-6	ИДК _{ПК-6.1}
		изучаемой в рамках НИР или ВКР		

4.3.3. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов, связанная с закреплением теоретического материала в виде решения задач, поиска и анализа литературных данных о методах используемых для оптимизации геометрии и расчета энергии молекулярной системы (систем), изучаемой в рамках НИР или ВКР, а также в виде подготовки презентации с обоснованием выбора метода расчета для изучаемой в рамках своей научной работы молекулярной системы (систем), проводится во внеаудиторное время.

В ходе подготовки рекомендуется:

- Повторить лекционный материал.
- При необходимости обратиться к рекомендованной учебной литературе.
- Проработать задания, решаемые на практических занятиях.
- При необходимости обратиться за консультацией к преподавателю.

4.4. Примерная тематика курсовых работ (проектов) (при наличии)

Выполнение курсовых работ не планируется

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) основная литература

- 1. Барановский В.И. Квантовая механика и квантовая химия: Учеб. пособие / В.И. Барановский. М.: Академия, 2008. 383 с. (Высшее профессиональное образование: Естественные науки). Библиогр.: с. 379-380.
- 2. Трофимов А.Б. Введение в квантовую химию: учеб. пособие / А. Б. Трофимов; рец.: Н. М. Витковская, В. К. Станкевич; Иркутский гос. ун-т, Хим. фак. Иркутск: Изд-во ИГУ, 2013. 192 с.; 25 см. Библиогр.: с. 180-181.

- 3. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть І. / В. Б. Кобычев, А. Б. Трофимов, Н. М. Витковская,.— Иркутск: Издательство ООО «Издательство «Аспринт», 2015. 120 с.
- 4. Кобычев В.Б. Квантовая механика для химиков. Конспекты лекций. Часть II. / В.Б. Кобычев, А.Б. Трофимов, Н. М. Витковская,.— Иркутск: Издательство ООО «Издательство «Аспринт», 2018. 124 с.
- 5. Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела. Учеб. пособие. / В.Г.Цирельсон.—М.:БИНОМ. Лаборатория знаний, 2012.— 495 с. Режим доступа ЭБС издательства «Лань».

б) дополнительная литература

- 6. Майер И. Избранные главы квантовой химии / И. Майер; пер. с англ.— М.: Бином, Лаборатория знаний, 2014.— 384 с. Режим доступа ЭБС издательства «Лань».
- 7. Барановский В.И. Квантовохимические расчеты повышенной точности. Учебное пособие, 2015. С. 89.

в) периодические издания (при необходимости)

- 8. Leszczynski J. Handbook of Computational Chemistry // Handbook of Computational Chemistry / ed. Leszczynski J. Dordrecht: Springer Netherlands, 2012. 1–1430 p.
- 9. Narbe Mardirossian & Martin Head-Gordon (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics, 115:19, 2315-2372, DOI: 10.1080/00268976.2017.1333644.
- 10. Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chemie Int. Ed. 2022, 61 (42). https://doi.org/10.1002/anie.202205735.

г) список авторских методических разработок:

д) базы данных, информационно-справочные и поисковые системы

11. http://www.gchem.ru/lectures/

Курс лекций по квантовой механике и квантовой химии, подготовленный д.х.н., проф. С.Л. Хурсаном (БашГУ)

- 12. http://www.chem.msu.su/rus/teaching/borschevskii/1part.pdf
 - А.Я. Борщевский Строение атомных частиц. Водородоподобные атомы.
- 13. http://www.chem.msu.su/rus/teaching/borschevskii/2part.pdf
 - А.Я. Борщевский Строение атомных частиц. Многоэлектронные атомы.

VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Учебно-лабораторное оборудование:

Помещения для проведения лекционных и практических занятий, укомплектованные необходимым оборудованием, а именно:

– аудитории, оснащенные мультимедийными средствами, для проведения аудиторных и практических занятий ауд. 5, 402, 426 оборудованы мультимедийными проекторами

- (InFocus IN 105 (3D Ready), настенными экранами, ноутбуками Samsung NP 300T5A-A0FRU.
- компьютерный класс химического факультета (ауд. 209) оборудован 12 ПК Intel Pentium IV с установленным пакетом MS Office. Имеется локальная сеть.

6.2. Программное обеспечение:

Лицензируемое ПО:

– MS Excel в составе MS Office - 2016

Свободно распространяемые программы:

- Firefly программа неэмпирических расчетов [Alex A. Granovsky, Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html];
- Molecular Modeling and Simulation Kit (MaSK) для визуализации результатов расчетов Firefly, наглядного представления строения молекул и вида МО.

6.3. Технические и электронные средства:

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе изучения дисциплины «Надежность современных методов вычислительной химии» используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения: объяснительно-иллюстративный метод с элементами проблемного изложения, технология профессионально-ориентированного обучения, лекции, самостоятельные работы, разбор конкретных ситуаций.

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства (ОС):

Оценочные средства текущего контроля формируются в соответствии с Положением о балльно-рейтинговой системе университета. Назначение оценочных средств текущего контроля - выявить у обучающихся сформированность компетенций: ПК-6.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

No	Вид контроля	Контролируемые темы (разделы)	Компетенции,
			компоненты
			которых
			контролируются
1	Участие в дискуссиях на семинарском занятии	Метод Хартри-Фока. Базисные наборы.	ПК-6.
2	Участие в дискуссиях на семинарском занятии	Методы оптимизации геометрии и расчета колебательных поправок.	ПК-6.
3	Участие в дискуссиях на семинарском занятии	Учет электронной корреляции в методах ТФП, MPn, связанных кластеров и конфигурационного	ПК-6.

		взаимодействия.	
4	Участие в дискуссиях на семинарском занятии	Комбинированные подходы. Учет растворителя.	ПК-6.

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Семинар №1. Метод Хартри-Фока. Базисные наборы.

- 1. Роль и место квантовохимических методов исследования в современной науке.
- 2. Основные приближения квантовой химии: адиабатическое, одноэлектронное.
- 3. Определитель Слейтера. Метод Хартри-Фока.
- 4. Базис. Аббревиатуры наборов базисных функций и их смысл. Типы базисных наборов.

Семинар №2. Методы оптимизации геометрии и расчета колебательных поправок.

- 1. Теория функционала плотности (ТФП). Обменно-корреляционные функционалы.
- 2. Приближение локальной плотности (LDA).
- 3. Обобщенное градиентное разложение (GGA).
- 4. Гибридные функционалы.
- 5. Сравнение результатов расчета геометрии и колебательных поправок в рамках методов Хартри-Фока и популярных методов ТФП.

Семинар №3. Учет электронной корреляции в методах ТФП, МРп, связанных кластеров и конфигурационного взаимодействия.

- 1. Методы учета электронной корреляции.
- 2. Дважды-гибридные функционалы.
- 3. Сравнение результатов расчета энергетических характеристик в рамках методов теории возмущений Мёллера-Плессета, дважды-гибридных функционалов, методов связанных кластеров.

Семинар №4. Комбинированные подходы. Учет растворителя.

- 1. Принципы конструирования комбинированных расчетных схем.
- 2. Высокоточные комбинированные процедуры G2MP2, G3, G4 и CBS-QB3.
- 3. Способы учета растворителя: континуальные, кластерные, кластерно-континуальные молели.

Промежуточная аттестация (*зачет*) проводиться с использованием бальнорейтинговой системы оценивания результатов обучения.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ И ЗАДАНИЙ К ЗАЧЕТУ

- 1. Роль и место квантовохимических методов исследования в современной науке.
- 2. Основные приближения квантовой химии: адиабатическое, одноэлектронное.
- 3. Определитель Слейтера. Метод Хартри-Фока.
- 4. Базис. Аббревиатуры наборов базисных функций и их смысл. Типы базисных наборов.
- 5. Теория функционала плотности (ТФП). Обменно-корреляционные функционалы.

- 6. Приближение локальной плотности (LDA).
- 7. Обобщенное градиентное разложение (GGA).
- 8. Гибридные функционалы.
- 9. Сравнение результатов расчета геометрии и колебательных поправок в рамках методов Хартри-Фока и популярных методов ТФП.
- 10. Методы учета электронной корреляции.
- 11. Дважды-гибридные функционалы.
- 12. Сравнение результатов расчета энергетических характеристик в рамках методов теории возмущений Мёллера-Плессета, дважды-гибридных функционалов, методов связанных кластеров.
- 13. Принципы конструирования комбинированных расчетных схем.
- 14. Высокоточные комбинированные процедуры G2MP2, G3, G4 и CBS-QB3.
- 15. Способы учета растворителя: континуальные, кластерные, кластерно-континуальные модели.
- 16. Примеры выбора методики расчетов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ДЛЯ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Индикаторы достижения	Результаты обучения	Процедура оценивания
компетенции	(знать, уметь, владеть)	
<i>ИДК_{ПК6.1}</i>	Знает: современные подходы,	Выполнение
Знает теоретические	используемые при	практических заданий,
основы базовых	моделировании	работа на семинарах.
химических дисциплин	пространственного и	Защита презентации с
(неорганической,	электронного	обоснованием выбранной
органической,	строения молекулярных систем,	методики расчета для
аналитической,	механизмов реакций;	молекулярной системы
физической химии) и	возможности и ограничения	(систем), изучаемой в
способы их использования	расчетных методов квантовой	рамках НИР или ВКР
при решении конкретных	химии при решении	
химических задач	практических задач.	
	Умеет: ориентироваться в	
	иерархической системе	
	квантовохимических расчетных	
	схем, пользоваться современным	
	программным обеспечением и	
	профессиональными базами	
	данных для решения задач в	
	избранной области химии или	
	смежных наук.	
	Владеет:	
	навыками использования сети	
	Интернет для поиска учебной и	
	научной информации;	
	современными квантово-	
	химическими методами и	
	программами.	
	1 1	

Программа оценивания контролируемых компетенций:

Тема или раздел дисциплины ¹	Код индикатора компетенции	Планируемый результат	Показатель	Критерий оценивания	Наимено OC ²	
					TK ³	ΠA^4
Метод Хартри-Фока. Базисные наборы.	ИДКпк-6.1 Знает теоретические основы базовых химических дисциплин (неорганической, органической, аналитической химии) и способы их использования при решении конкретных	Знать: теоретические основы решения уравнения Шредингера методом Хартри- Фока, построения базисных наборов. Уметь: определять смысл принятых обозначений базисных наборов, обосновывать выбор базиса для решаемой задачи	одноэлектронное; аббревиатуры наборов базисных функций и их	Владеет материалом, представленным в разделе «Вопросы для собеседования», семинар 1, № 1-4. Активно отвечал на семинарах. Выполнил 2/3 самостоятельной работы.	УО, ПЗ	Зачет
Методы оптимизации геометрии и расчета колебательных поправок.	химических задач	Знать: теоретические основы популярных методов оптимизации геометрии и расчета колебательных поправок. Уметь: ориентироваться в современных методах	Знает: используемые для оптимизации геометрии и расчета колебательных поправок методы: общую характеристику, границы и области применения. Умеет: обосновывать выбор метода оптимизации геометрии и расчета колебательных поправок для решаемой задачи	представленным в разделе «Вопросы для собеседования»,	УО, ПЗ	

	оптимизации	Владеет: навыками			
		анализа и отбора			
	геометрии и расчета	наиболее адекватных			
	расчета колебательных	, ,			
		задаче методов			
	поправок	оптимизации геометрии и			
	Владеть: навыками	расчета колебательных			
	выбора адекватного	поправок, а также			
	задаче метода	построения собственных			
	оптимизации	вариантов расчетных			
	геометрии и	схем.			
	расчета				
	колебательных				
	поправок				
Учет электронной	Знать:	Знает: методы,	Владеет материалом,	УО, ПЗ	
корреляции в методах	теоретические	используемые для расчета	представленным в		
ТФП, MPn, связанных	основы популярных	энергетических	разделе «Вопросы		
кластеров и	методов расчета	характеристик	для собеседования»,		
конфигурационного	энергетических	молекулярных систем и	семинар 3, № 1-3.		
взаимодействия.	характеристик для	реакций: общую	_		
	молекулярных	характеристику, границы и	Активно отвечал на		
	систем и реакций	области применения.	семинарах.		
	Уметь:	Умеет: обосновывать	-		
	ориентироваться в	выбор метода расчета	Выполнил 2/3		
	современных	энергетических	самостоятельной		
	методах расчета	характеристик	работы.		
	энергетических	молекулярных систем и	-		
	характеристик для	реакций для решаемой			
	молекулярных	задачи.			
	систем и реакций	Владеет: навыками			
	Владеть:	анализа и отбора			
	навыками выбора	наиболее адекватных			
	адекватного	задаче методов расчета			
	задаче метода	энергетических			

	расчета	характеристик			
	энергетических	молекулярных систем и			
	характеристик для	реакций, а также			
	молекулярных	построения собственных			
	систем и реакций	вариантов расчетных			
		схем.			
Комбинированные	Знать:	Знает: знает принципы	Владеет материалом,	УО,	
подходы. Учет	теоретические	конструирования	представленным в	Презентация	
растворителя.	основы	расчетных схем; методы	разделе «Вопросы		
	конструирования	высокоточных	для собеседования»,		
	комбинированных	комбинированных	семинар 4, № 1-3.		
	расчетных схем,	процедур: общую			
	высокоточных	характеристику, границы и	Активно отвечал на		
	комбинированных	области применения.	семинарах.		
	процедур, методов	Умеет: обосновывать			
	учета растворителя	выбор полной расчетной	Представил и		
	Уметь:	схемы, способы учета	защитил презентацию		
	ориентироваться в	растворителя.	с обоснованием		
	принципах		выбора метода		
	конструирования		расчета для		
	комбинированных		предполагаемой НИР		
	расчетных схем,		или ВКР		
	способах учета				
	растворителя				

УО – устный опрос, ПЗ – практическое задание.

КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ:

а) промежуточная аттестация - зачет

В соответствии с бально-рейтинговой системой ИГУ для получения зачета по дисциплине «Надежность современных методов вычислительной химии» студенту необходимо набрать не менее 60 баллов.

- 1. Обязательным условием является выполнение студентом 4 практических заданий по данной дисциплине, подготовка и защита презентации по теме выбора методики расчета. При выполнении практических заданий оценивается полнота решенных задач, в защите презентации оценивается стройность доклада, качество иллюстративного материала, ответы на вопросы.
- 2. Отчет по каждой практической работе оценивается в 20 баллов. Оценивается полнота и правильность выполненного задания, а также сроки предоставления.
- 3. Подготовка и защита презентации оценивается в 40 баллов.

Разработчик:

канд. хим. наук В.Б. Орел

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО и учетом рекомендаций ПООП по направлению и профилю подготовки 04.03.01- «Химия».

Программа рассмотрена на заседании кафедры общей и неорганической химии «11» апреля 2022 г. Протокол № 4

Зав. кафедрой / А.Ю. Сафронов /

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.