

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» $\Phi \Gamma EO Y$ ВО «ИГУ»

Факультет бизнес-коммуникаций и информатики Кафедра естественнонаучных дисциплин

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Б1.В.06 А	е Б1.В.06 Алгоритмы на графах		
направление подготовки	09.03.03 Прикладная информатика		
направленность (профиль)	Прикладная информатика (разработка программного обеспечения)		

Одобрен УМК факультета бизнес-коммуникаций		Разработан в соответствии с ФГОС ВО	
и информатики		с учетом требован	ий проф. стандарта
Председатель УМК		Синчурина пь, ученая степень, звание	подпись, печать
Разработчики:		доцент	М.А. Сокольская
(подпись)	(занима	емая должность)	(инициалы, фамилия)

Цель фонда оценочных средств. Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Б1.В.06 Алгоритмы на графах». Перечень видов оценочных средств соответствует рабочей программе дисциплины.

Фонд оценочных средств включает контрольные материалы для проведения текущего контроля (в следующих формах: тест, решение задач, глоссарий по предмету, практ-ическое задание) и промежуточной аттестации в форме вопросов и заданий к зачету.

Структура и содержание заданий – задания разработаны в соответствии с рабочей программой дисциплины «Б1.В.06 Алгоритмы на графах».

1. Паспорт фонда оценочных средств

Компетенция	Индикаторы компетенций	Результаты обучения
ПК-1 Способность воспринимать математические, естественнонаучные, социально-экономические, инженерные знания, самостоятельно приобретать, развивать и применять их для формализации и решения задач разработки и модификации программного обеспечения	ПК-1.1	Знать специальные разделы математики, естественнонаучных и социально-экономических дисциплин необходимые для логического осмысления и обработки информации в профессиональной деятельности Уметь применять системный подход и математические методы в формализации решения прикладных задач разработки и модификации
	ПК-1.3	программных приложений Владеть навыками использования математических, естественнонаучных, социально-экономических, инженерных знаний в разработке компьютерных моделей и прототипов программного обеспечения для решения проектных и научно-исследовательских задач

Компетенция	Индикаторы компетенций	Результаты обучения
ПК-2 Способность разрабатывать, внедрять и адаптировать	ПК-2.1	Знать технологии разработки программного обеспечения: методы, средства, процедуры и инструменты
прикладное программное обеспечение	ПК-2.2	Уметь внедрять и адаптировать прикладное программное обеспечение
	ПК-2.3	Владеть навыками решения задач реализации и модификации ПО: планирования и оценки проекта по разработке ПО; анализа системных и программных требований; проектирования алгоритмов, структур данных и программных структур; кодирования с использованием различных языков программирования и разметки; рефакторинга ПО; тестирования и отладки программного кода; сопровождения

2. Показатели и критерии оценивания компетенций, шкалы оценивания

2.1. Показатели и критерии оценивания компетенций

Nο	Р од но и томо	Код индикатора	Наименование ОС	
п/п	Раздел, тема	компетенции	ТК	ПА
1	Основные понятия теории графов	ПК-1.1, ПК-2.1, ПК-2.3	Тест, РЗ, Гл	Тест
2	Основные алгоритмы на графах	ПК-1.1, ПК-2.1, ПК-2.3	РЗ, Пз	Нет!
3	Задачи о раскраске	ПК-1.1, ПК-2.1, ПК-2.3	РЗ, Пз	Нет!
4	Изоморфность графов	ПК-1.1, ПК-2.1, ПК-2.3	РЗ, Пз	Нет!

2.2. Критерии оценивания результатов обучения для текущего контроля успеваемости и промежуточной аттестации

Оценочное средство	Критерии оценивания	Шкала оценивания
Тест	Студентом даны правильные ответы на 91-100% заданий	Отлично
	Студентом даны правильные ответы на 81-90% заданий	Хорошо
	Студентом даны правильные ответы на 71-80% заданий	Удовлетворительно
	Студентом даны правильные ответы менее чем на 70% заданий	Неудовлетворительно
Решение задач	Решение задачи выполнено верно. Выбран оптимальный путь решения. Присутсвует развернутое описание алгоритма решения	Отлично
	Решение выполнено верно. Допущены негрубые логические ошибки при описании алгоритма решения. Отсутствуют пояснения к решению задачи	Хорошо
	Ход решения задачи верный, но допущены ошибки приведшие к неправильному ответу	Удовлетворительно
	В задаче получен неверный ответ, связанный с грубыми ошибками допущенными в ходе решения, либо решение отсутсвует полностью	Неудовлетворительно
Глоссарий по предмету	В результате работы студента представлены основные соответствующие термины. Присутствует многоаспектность интерпретации терминов и конкретизация их трактовки в соответствии со спецификой изучения дисциплины. Оформление результатов соответствует требованиям и представлено в срок	Отлично
	Студентом проработан материал источников, выбраны главные термины, непонятные слова, подобраны и записаны основные определения или расшифровка понятий, критически осмыслены подобранные определения и предпринята попытка их модифицировать, работа оформлена и представлена в срок	Хорошо
	Студнетом проработан материал источников, выбраны главные термины, непонятные слова, работа оформлена и представлена в срок	Удовлетворительно
	Студентом не был проработан материал источников, выбраны не все главные термины (в малом количестве), работа не оформлена и/или представлена не в срок	Неудовлетворительно

Оценочное средство	Критерии оценивания	Шкала оценивания
Практическое задание	Задание выполнено верно. Выбран оптимальный путь решения. Присутсвует развернутое описание алгоритма решения	Отлично
	Задание выполнено верно. Допущены негрубые логические ошибки при описании алгоритма решения. Отсутствуют пояснения к решению задания	Хорошо
	Ход решения задания верный, но допущены ошибки приведшие к неправильному ответу	Удовлетворительно
	В работе получен неверный ответ, связанный с грубыми ошибками допущенными в ходе решения, либо решение отсутсвует полностью	Неудовлетворительно

2.3. Оценочные средства для текущего контроля (примеры)

2.3.1. Материалы для компьютерного тестирования обучающихся

Общие критерии оценивания

Процент правильных ответов	Оценка
91% – 100%	5 (отлично)
81% – 90%	4 (хорошо)
71% – 80%	3 (удовлетворительно)
Менее 70%	2 (неудовлетворительно)

Соответствие вопросов теста индикаторам формируемых и оцениваемых компетенций

№ вопроса в тесте	Код индикатора компетенции
1	ПК-2.1
2	ПК-2.1
3	ПК-2.3
4	ПК-1.1
5	ПК-1.1

Ключ ответов

№ вопроса в тесте	Номер ответа (или ответ, или соответствие)
1	смежные, смежными
2	взвешенный
3	петля
4	b
5	ориентированный

Перечень тестовых вопросов

№ 1. Задание открытой формы. Введите ответ.

Как называются вершины графа, соединённые ребром

№ 2. Задание открытой формы. Введите ответ.

Как называется граф, с каждым ребром которого связано некоторое число?

№ 3. Задание открытой формы. Введите ответ.

Каак называется ребро, начало и конец которого находятся в одной вершине

№ 4. Задание с единичным выбором. Выберите один правильный ответ.

Выберите корректное определение графа

- а. множество линий, соединяющих некоторые пары точек;
- b. пара двух конечных множеств: множество точек и множество линий, соединяющих некоторые пары точек;
 - с. пара двух конечных множеств: множество точек и множество линий.
- d. пара двух бесконечных множеств: множество точек и множество линий, соединяющих некоторые пары точек;
 - № 5. Задание открытой формы. Введите ответ.

Как называется граф, в котором для каждой дуги указано направление?

2.3.2. Глоссарий по предмету для оценки компенетции «ПК-1.1»

№ 1. Составления глоссария с базовыми терминами.

2.3.3. Глоссарий по предмету для оценки компенетции «ПК-2.1»

№ 2. Составления глоссария с базовыми терминами.

2.3.4. Глоссарий по предмету для оценки компенетции «ПК-2.3»

№ 3. Составления глоссария с базовыми терминами.

2.3.5. Практические задания для оценки компенетции «ПК-1.1»

№ 4. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 5. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может

переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 6. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, M — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 7. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, М — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 8. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2. Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

№ 9. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2. Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

2.3.6. Практические задания для оценки компенетции «ПК-2.1»

№ 10. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 11. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 12. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, М — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 13. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, М — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 14. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2. Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

№ 15. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2. Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

2.3.7. Практические задания для оценки компенетции «ПК-2.3»

№ 16. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает

пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 17. Самостоятельная работа над реализацией одного из алгоритмов работы с графами.

Пример задачи 1.

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает пры-

гать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.

Пример задачи 2

На квадратной доске расставлены целые неотрицательные числа. Черепашка, находящаяся

в левом верхнем углу, мечтает попасть в правый нижний. При этом она может переползать только в клетку справа или снизу и хочет, чтобы сумма всех чисел, оказавшихся у нее на пути, была бы максимальной. Определить эту сумму.

№ 18. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, М — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 19. Решение задач с применением известных алгоритмов.

Пример задачи 1.

Найдите минимальное остовное дерево с помощью алгоритма Крускала в заданном графе, начиная с вершины А. Подсчитайте число посещений каждого ребра.

Пример задачи 2.

На вход дается N — количество мальчиков, М — количество девочек и список, какой мальчик с какой из девочек хочет танцевать (таких может быть несколько). Надо определить максимальное количество одновременно танцующих пар.

Пример задачи 3

У паркета NxM, некоторые клетки могут быть испорчены. Их необходимо закрыть новыми плитками. Плитки бывают размером 2x1 (можно поворачивать, но нельзя разрезать) ценой A, и 1x1 ценой B. Спрашивается, какую минимальную сумму нужно потратить, что бы заложить испорченные плитки паркета. Естественно, новые плитки не должны перекрывать никакие другие плитки.

№ 20. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2 . Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

№ 21. Решение задач.

Пример задачи 1.

Для заданного помеченного дерева составить код Прюфера и по полученному коду восстановить исходное дерево

Пример задачи 2

Даны два графа, G1 и G2. Множество вершин первого графа обозначим V1, а второго — V2. Пусть $|V1| > |V2| = \pi$. Требуется написать программу, отвечающую на вопрос: найдется ли в графе G1 подграф H, изоморфный графу G2?

3. Промежуточная аттестация

3.1. Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и опыта деятельности

Зачет является заключительным этапом процесса формирования компетенций обучающегося при изучении дисциплины и имеет целью проверку и оценку знаний обучающегося по теории, и применению полученных знаний, умений и навыков при решении практических задач.

Зачет проводится по расписанию, сформированному учебно-методическим управлением, в сроки, предусмотренные календарным учебным графиком. Зачет принимается преподавателем, ведущим лекционные занятия.

Зачет проводится только при предъявлении обучающимся зачетной книжки и при условии выполнения всех контрольных мероприятий, предусмотренных учебным планом и рабочей программой дисциплины. Обучающимся на зачету представляется право выбрать один из билетов. Время подготовки к ответу составляет 30 минут. По истечении установленного времени обучающийся должен ответить на вопросы билета. Результаты зачета оцениваются по четырехбалльной системе и заносятся в зачетно-экзаменационную ведомость и зачетную книжку. В зачетную книжку заносятся только положительные оценки. Подписанный преподавателем экземпляр ведомости сдаётся не позднее следующего дня в деканат.

В случае неявки обучающегося на зачет в зачетно-экзаменационную ведомость

делается отметка «не явка». Обучающиеся, не прошедшие промежуточную аттестацию по дисциплине, должны ликвидировать академическую задолженность в установленном локальными нормативными актами порядке.

3.2. Вопросы к зачету

NΩ	Вопрос	Код компетенции
1.	Определение графа. Виды графов.	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
2.	Теорема о числе рёбер полного графа.	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
3.	Лемма о рукопожатиях	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
4.	Поиск в глубину и ширину	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
5.	Деревья. Каркас графа	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
6.	Минимальное остовное дерево. Алгоритм Прима	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
7.	Связность графа. Циклические графы. Эйлеровы и гамильтоновы циклы	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
8.	Алгоритм Дейкстры.	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
9.	Алгоритм Флойда	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
10.	Понятие правильной раскраски	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
11.	Поиски минимальной раскраски вершин графа	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
12.	Потоки в сетях и паросочетания	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
13.	Понятие изоморфных графов	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
14.	Поиск изоморфных подграфов. Сложность задачи	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3
15.	NP-полные алгоритмы. Их связь с изоморфными графами	ПК-1.1, ПК-2.1, ПК-2.3, ПК-1.1, ПК-2.1, ПК-2.3

3.3. Тематика курсовых работ

По данной дисциплине выполнение курсовых проектов (работ) не предусматривается.

3.4. Материалы для компьютерного тестирования обучающихся

Общие критерии оценивания

Процент правильных ответов	Оценка
91% – 100%	5 (отлично)
81% – 90%	4 (хорошо)

Процент правильных ответов	Оценка
71% – 80%	3 (удовлетворительно)
Менее 70%	2 (неудовлетворительно)

Соответствие вопросов теста индикаторам формируемых и оцениваемых компетенций

№ вопроса в тесте	Код индикатора компетенции
1	ПК-2.1
2	ПК-2.1
3	ПК-2.3
4	ПК-1.1
5	ПК-1.1

Ключ ответов

№ вопроса в тесте	Номер ответа (или ответ, или соответствие)
1	смежные, смежными
2	взвешенный
3	петля
4	b
5	ориентированный

Перечень тестовых вопросов

№ 1. Задание открытой формы. Введите ответ.

Как называются вершины графа, соединённые ребром

№ 2. Задание открытой формы. Введите ответ.

Как называется граф, с каждым ребром которого связано некоторое число?

№ 3. Задание открытой формы. Введите ответ.

Каак называется ребро, начало и конец которого находятся в одной вершине

№ 4. Задание с единичным выбором. Выберите один правильный ответ.

Выберите корректное определение графа

- а. множество линий, соединяющих некоторые пары точек;
- b. пара двух конечных множеств: множество точек и множество линий, соединяющих некоторые пары точек;
 - с. пара двух конечных множеств: множество точек и множество линий.
- d. пара двух бесконечных множеств: множество точек и множество линий, соединяющих некоторые пары точек;
 - № 5. Задание открытой формы. Введите ответ.

Как называется граф, в котором для каждой дуги указано направление?