

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра геологии нефти и газа

огического факультета Примина

Рабочая программа дисциплины

ЭЛК.ДВ.04.02 Моделирование бассейнов и дисциплины Наименование нефтегазоносных систем

Специальность 21.05.02 Прикладная геология Специализация Геология месторождений нефти и газа Квалификация выпускника - Горный инженер-геолог Форма обучения заочная

Согласовано

геологического УМК

Рекомендовано кафедрой:

факультета

Протокол № 3 от «23» марта 2023 г.

Председатель ___

Летунов С.П. Вени

Протокол № 7

От «07» марта 202

Зав. кафедрой_

С.П. Примина

Оглавление

1. Цели и задачи дисциплины:	3
2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО	
3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
4. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ	
4.1 Содержание дисциплины, структурированное по темам, с указанием ви	
учебных занятий и отведенного на них количества академических часов	
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине	
4.3. Содержание учебного материала	
4.3.1. Перечень семинарских, практических занятий и лабораторных работ	12
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изуче	
студентами в рамках самостоятельной работы (СРС)	
4.4. Методические указания по организации самостоятельной работы студентов.	13
4.5. Примерная тематика курсовых работ (проектов)	13
V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕН	ΗИЕ
ДИСЦИПЛИНЫ	
а) основная литература	13
б) периодические издания	14
в) список авторских методических разработок:	14
г) базы данных, информационно-справочные и поисковые системы	
VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	15
6.1. Учебно-лабораторное оборудование:	15
6.2. Программное обеспечение:	15
6.3. Технические и электронные средства:	
VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	
VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	И
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	16
VII.1 Программа оценивания контролируемой компетенции	16
VII.2 Текущий контроль успеваемости	
VII.3. Промежуточная аттестация	
VII.3.1.Оценка запланированных результатов по дисциплине	
VII.3.3 Оценочные материалы, обеспечивающие диагностику сформированно	
компетенций (или индикаторов компетенций), заявленных в рабочей програм	мме
лиспиплины	23

1. Цели и задачи дисциплины:

Цели:

- освоение теоретических основ геолого-геохимического метода анализа углеводородных систем; - приобретение практических навыков применения метода бассейнового моделирования при решении региональных, поисковых и разведочных задач в нефтегазовой геологии.

Задачи:

- изучить основы сбора и подбора необходимого и достаточного исходного материала (данных) для проведения бассейнового моделирования;
 - изучить алгоритмы построения геолого-геохимических моделей
- ознакомление студентов с основами термодинамики для решения физико-химических проблем в геохимии;
- обучение представлению моделей геохимических процессов в терминах термодинамики, а также методам обработки экспериментальных данных;
- анализ геологической информации, интерпретация результатов и формулировка выводов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина <u>ЭЛК.ДВ.04.02 Моделирование бассейнов и</u> нефтегазоносных систем относится к элективным дисциплинам.
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: «Химия», «Общая геология», «Физическая химия».
- 2.3. Знания, умения и навыки, формируемые данной учебной дисциплиной, необходимы для написания и защиты выпускной квалификационной работы.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций в соответствии с $\Phi \Gamma OC$ ВО и ОПВО по программе специалитета 21.05.02 Прикладная геология:

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
	компетенций	

ПК-2

Способен самостоятельно или в составе производственного коллектива осуществлять сбор и анализ данных для составления отчетов по результатам выполненных научно-исследовательских работ или исследований

ИДК_{ПК-2.2} Осуществляет самостоятельно или в составе производственного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научноисследовательских работ

Знать правила постановки и проведения геологогеохимических исследований особенности интерпретации химического, данных минералогического, петрографического анализов; Уметь обрабатывать результаты,

полученные анализировать и осмысливать ИΧ учётом имеющихся литературных данных;

представлять ИТОГИ выполненной работы в виде рефератов, отчётов, статей, оформленных соответствующим образом.

Владеть: навыками проведения эксперимента методами обработки его результатов;

- Способами обработки и интерпретации геологической информации, навыками сравнительного анализа

4. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 4 зачетные единицы, 144 часа, в том числе 0,05 зачетные единицы, 2 часа на зачет

Из них реализуется с использованием электронного обучения и дистанционных образовательных технологий 14 часов Из них 0 часов — практическая подготовка

Форма промежуточной аттестации: зачет с оценкой

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

				еская ихся		Виды учебн ая самостоятельну ктическую подгот (в ча				
№ п/п Раздел дисциплины/темы		Семестр	Всего часов	Из них практическая подготовка обучающихся	К	онтактная работа обучающими		Самостоятельная работа	Формы текущего контроля успеваемости; Форма промежуточной аттестации	
				ЛГОП	Лекции	Семинарские /практические /лабораторные занятия	Консультации	Самостояте	(по семестрам)	
1	Раздел 1. Введение. Основы бассейнового моделирования — цели, возможности и ограничения, нефтяная система и ее элементы.		22		1			21	Устный опрос	
2	Раздел 2. Типы осадочных бассейнов, история их развития и термической эволюции)		22		1			21	Устный опрос	
3	Раздел 3. Общие сведения о законах термодинамики.		23			2		21	Устный опрос	

		þ	00B	гэ них подготовка			ую работу обучают овку и трудоемко	-	Формы текущего контроля
№ п/п	Раздел дисциплины/темы	Семестр	Всего часов	практическая по практическая по с самостоятел выда в работа преподавателя с работа работа по работа работа		успеваемости; Форма промежуточной аттестации (по семестрам)			
	Раздел 4. Характеристика								
4	современных программных комплексов		22					21	Устный опрос
	физико-химического моделирования.]							
5	Раздел 5. Сведения о программном		26		1	4		21	Устный опрос
	комплексе «Селектор».				1	7		21	э стиви опрос
	Раздел 6. Методы и способы								
6	моделирования прикладных		26		1 4 21		21	Устный опрос	
	геохимических задач.								
	Итого часов		140		4	10		126	

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная рабо	та обучаюц	цихся		Учебно-
Семестр	Название раздела, темы	Вид самостоятельной работы Сровыпол		Трудоемкость (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
	Раздел 1. Введение. Основы бассейнового моделирования — цели, возможности и ограничения, нефтяная система и ее элементы.	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
	Раздел 2. Типы осадочных бассейнов, история их развития и термической эволюции)	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
3	Раздел 3. Общие сведения о законах термодинамики.	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
	Раздел 4. Характеристика современных программных комплексов физико-химического моделирования.	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
	Раздел 5. Сведения о программном комплексе «Селектор».	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
	Раздел 6. Методы и способы моделирования прикладных геохимических задач.	Работа с литературными источниками	в течении семестра	21	Устный опрос	Указано в разделе V настоящей программы
	я трудоемкость самостоятельной работы по д	<u> </u>		126		
	их объем самостоятельной работы с испо		бучения и			
дистані	ционных образовательных технологий (час)				

4.3. Содержание учебного материала

Раздел 1. Введение. Основы бассейнового моделирования — цели, возможности и ограничения, нефтяная система и ее элементы.

Раздел 2. Типы осадочных бассейнов, история их развития и термической эволюции).

Раздел 3. Общие сведения о законах термодинамики.

Предмет термодинамики. Общие замечания и основные определения. Обратимые и необратимые процессы. Объекты и методы исследования. Уравнения состояния. Математические соотношения, связывающие параметры состояния. Энергия. Внутренняя энергия. Теплота и работа. Первое начало термодинамики. Применение первого начала термодинамики к химическим реакциям. Термохимия. Энтальпия образования и энтальпия сгорания. Фазовые превращения. Правило фаз Гиббса. Стабильность фаз.

Термодинамическая активность. Коэффициенты активности ионов. Методы расчета активности. Химическое равновесие. Закон действующих масс и гомогенное химическое равновесие.

Термины и символы. Источники, погрешность и согласованность термодинамической информации.

Теоретические основы расчета физико-химических равновесий в сложных многофазных гетерогенных системах.

Раздел 4. Характеристика современных программных комплексов физико-химического моделирования.

Основные этапы развития методов физико-химического моделирования (историческая справка). Методические и теоретические вопросы, связанные с использованием ЭВМ в физико-химическом моделировании в геохимии. Минимизация энергии Гиббса (сравнительное описание существующих программ) Понятие открытых и закрытых систем по Д.С. Коржинскому. Принцип стабильного, метастабильного, частичного равновесия, расчет необратимой эволюции геохимических систем. Обратные физико-химические задачи.

Современное термодинамическое моделирование [Акинфиев, 1995; Борисов, 2000; Гричук, 2000; Белов, 2002; Геологическая эволюция..., 2005; Пальянова, Колонии, 2007; Гаськова, Букаты, 2008; Рыженко, 2008; Кагроv et al., 1997, 2002; Mironenko et al., 2000; Kulik, 2006; Dolejs, Wagner, 2008] представляет основу компьютерного исследования процессов физико-химического взаимодействия и превращения вещества в природных и технологических системах, включая частично равновесные и метастабильные процессы растворения, отложения, кристаллизации, фракционирования, ассимиляции, смешения, контаминации, испарения, конденсации, горения, взрыва. Ключевое значение в таких разработках принадлежит вычислительным алгоритмам и методам, с помощью которых рассчитываются химические равновесия с определением компонентного и фазового состава сложных многокомпонентных, многофазовых и многоагрегатных природных систем.

Исторически сложилось так, что в настоящее время существует два параллельно развиваемых подхода в постановке и решении задач расчета химических равновесий. Первый основан на формализме стехиометрических уравнений реакций и константах их равновесия - расчет по реакциям, второй - на привлечении математического аппарата выпуклого программирования - метод минимизации. Расчет по реакциям использовался химиками и технологами еще в докомпьютерную эру развития науки. С появлением компьютеров различные схемы расчетов по реакциям были формализованы в виде обобщенных математических моделей химических равновесий [Brinkley, 1946, 1947; Boll, 1960; Bethke, 1996], разработаны вычислительные алгоритмы и составлены компьютерные программы. Среди зарубежных геохимиков программы, в основу которых положен метод констант равновесия, получили широкое распространение при изучении процессов взаимодействия "вода - горные породы", главным образом благодаря пионерным работам Г. Хельгесона [Helgeson, 1967, 1968, 1969, 1970; Helgeson et al., 1969, 1970]. Им к началу 1970-х гг. были разработаны математическая модель, вычислительный алгоритм, методы формирования базы термодинамических данных с участием компонентов водных растворов

электролита; создана компьютерная программа и (что, по-видимому, главное) показан принципиально новый подход к моделированию физико-химических процессов с учетом их необратимости на примере модели образования метасоматической зональности.

Большинство же зарубежных геохимиков и петрологов в подавляющем числе случаев используют серийные рабочие компьютерные программы расчета взаимодействия типа "вода - горные породы", основанные на алгоритмах расчета химических равновесий по константам стехиометрических уравнений реакций [Kharaka et al., 1988; Plummer, 1992; Nordstrom et al., 1993; Parkhurst, Appelo, 1999]. Нельзя сказать, что о возможностях метода минимизации зарубежные геохимики информированы в меньшей мере, чем о расчетах по реакциям. Ими опубликованы работы в ведущих геохимических и петрологических журналах, в которых отмечаются преимущества метода минимизации, предложены различные вычислительные алгоритмы, созданы компьютерные программы, работа этих программ продемонстрирована учебными и тестовыми примерами [Eriks son, 1971, 1974; Eriksson, Rozen, 1973; Harvie, Weare, 1980; Ghiorso, 1985; Capitani, Brown, 1987; Harvie et al., 1987]. С помощью методов минимизации предприняты попытки решения отдельных задач геохимии и петрологии [Heald, Naughton, 1962; Shimazu, 1967; Holloway, Reese, 1974; Saxena, Eriksson, 1983; Harvie et al., 1984]. Среди этих работ необходимо в качестве исключения выделить и отметить замечательные исследования Марка Гиорсоу и Яна Кармайкла [Ghiorso, Carmichael, 1980, 1985; Ghiorso, 1985, 1987]. В течение первой половины 1980-х гг. они осуществили беспримерную научную программу сквозного решения проблемы компьютерного моделирования эволюционных физико-химических процессов в системах с участием магм основного состава. Программа включает создание базы входных термодинамических данных, в том числе компоненты расплава, теоретическое обоснование и математическую постановку, создание вычислительного алгоритма и программы, и в итоге получены нетривиальные геохимические результаты, дающие новое, более глубокое понимание и объяснение термодинамическим механизмам селективной магматической дифференциации и взаимодействия основных интрузий с вмещающими породами.

Но в целом, даже с учетом работ М. Гиорсоу и Я. Кармайкла, по сравнению с масштабами распространения компьютерных программ расчета равновесий по константам равновесия программы на основе алгоритмов минимизации распространены за рубежом в существенно меньшей степени. Они применяются эпизодически, от случая к случаю, в основном теми, кто их создает.

Раздел 5. Сведения о программном комплексе «Селектор».

Селектор-Windows является интегрированной модульной системой открытой архитектуры. Полный комплект Селектор представляет совокупность модулей, объединенных с информационной средой в единый комплекс. Макроструктура Селектор включает следующие основные функциональные и информационные блоки.

- 1. Базы моделей. Файлы готовых к использованию моделей: тестовые, учебные, эталонные, рабочие модели наиболее распространенных систем типа морской воды, воды озера Байкал, атмосферы, углеводородной системы С-Н-О-N. Если решаемой проблеме удается сопоставить соответствующую модель из базы, то это может значительно ускорить начальный процесс формирования и отладки модели. База открыта к дополнению новых моделей исследователя.
- 2. Блок формирования моделей. Производится сборка физико-химических моделей различного типа, включая многорезервуарные мегасистемы. Исследователь задает список потенциально возможных в равновесии фаз и зависимых компонентов и состав системы по независимым компонентам, а также согласно входным директивам -сценарий моделирования. Модель может включать следующие виды сценариев:
- 1. В зависимости от условий существования выбирается один из шести термодинамических потенциалов: G(T,P) потенциал Гиббса; A(T,V) потенциал Гельмгольца; -S(H,P) изобарно-изоэнтальпийный потенциал; -S(U,V) изохорно-изоэнергетический потенциал; U(S,V) изохорно-изоэнтропийный потенциал;

- H(S,P) изобарно-изоэнтропийный потенциал. Кроме того, можно максимизировать потенциал Гиббса, меняя знак на противоположный у линейных членов функции G(T,P).
- 2. Выбирается тип модели, в зависимости от характера равновесия: полного, метастабильного или частичного.
- 3. В случае моделирования сложных моделей, состоящих из нескольких систем, формируются многорезервуарная модель.
- 4. Если необходимо оценить влияние неопределенности входных термодинамических данных, химического состава системы по независимым компонентам, коэффициентов активности зависимых компонентов, температур и/или давления на конечное решение, задается модель расчета в условиях неопределенности.
- 5. Решение обратной задачи определения температуры и давления по известному вектору состава зависимых компонентов подразумевает формирование модели геотермобарометра.
- 3. Система баз данных. Включает несколько баз исходных термодинамических данных. Представляет собой компьютерный справочник с программными средствами управления, расчета термодинамических характеристик в широкой области температур и давлений, проверки и сопоставления данных из различных источников, а также обработки, корректировки и визуализации термодинамических данных компонентов водного раствора электролита, газов, жидких углеводородов и конденсированных фаз. Система баз данных постоянно совершенствуется. Она всегда доступна к расширению. Систематически производится ее пополнение и корректировка.
- 4. Вычислительный блок. В этом блоке рассчитываются термодинамические параметры в зависи-мости от температуры, давления и коэффициентов активности и/или фугитивности. В расчетах изотермических изменений термодинамических функций используются: уравнения зависимости изменения объема конденсированных фаз от температуры и давления в базах данных Helgeson et al., 1978, Berman, 1988, Holland and Powell, 1990;

уравнения состояния Ли-Кеслера жидких и газообразных углеводородов; полуэмпирические состояния газов в приведенных параметрах, охватывающие большую область высоких температур и давлений. Термодинамические свойства компонентов водного раствора в области до 1000 °C и 5000 бар рассчитываются по модифицированной модели НКF Хельгесона - Киркхена - Флауэрса (Helgeson et al., 1981; Tanger and Helgeson, 1988). Коэффициенты активности компонентов водного раствора электролита вычисляются по уравнению Дебая-Хюккеля в модификации Хельгесона (Helgeson et al., 1981). фазового и компонентного состава системы осуществляется путем минимизации изобарно-изотермического потенциала (Karpov et al., 1997, 2002). В вычислительном блоке реализован один из самых эффективных алгоритмов выпуклого программирования - метод внутренних точек (МВТ) с одно- и двухсторонними ограничениями на искомые величины. МВТ - одна из модификаций метода возможных направлений Зойтендейка. Выбор начального приближения осуществляется автоматически, с симплекс-метода. модифицированного По сравнению применяющимися у нас и за рубежом алгоритмами минимизации, МВТ демонстрирует исключительно высокую эффективность в решении задач химической термодинамики, поставленных как задачи выпуклого программирования.

- 5. Визуализация и анализ полученных результатов. Специальный программный модуль позволяет выводить на экран табличное и графическое представление результатов моделирования, а также, при необходимости, экспортировать данные в другие программы обработки текстовой и графической информации в средеWindows.
- 6. Корректировка и уточнение модели . На этом шаге делается оценка полученных результатов и, если есть такая необходимость, вносятся в модель соответствующие изменения и уточнения и расчет повторяется.

Особенности применения программного комплекса «Селектор» к моделированию геолого-геохимических процессов.

С помощью ПК "Селектор" поставлено и решено большое количество задач в различных областях применения химической термодинамики в геохимии, петрологии, технологических приложениях. Отметим лишь некоторые основные результаты, получение которых стало возможным главным образом потому, что в руках исследователей был такой мощный инструмент физико-химического моделирования, как ПК "Селектор". Это модели изменения атмосферы в докембрии [Дроздовская, 19901: гипергенных процессов рудообразования [Кашик, Карпов, 1978]; процессов, протекающих в латеритных корах выветривания [Копейкин, 1988]; минерало-образования в высокотемпературных флюидных системах [Павлов, 1992]; расчет тепловых балансов геохимических процессов [Чудненко, Карпов, 1990а]; образования железомарганцевых конкреций на дне морей и океанов [Грамм-Осипов, 1991]; обоснования термодинамической устойчивости углеводородов в земной коре и верхней мантии [Зубков, 2005]; осадкообразования в Балтийском море [Kulik et al., 2000]; образования эпитермальных золоторудных месторождений северо-востока России [Карпов и др., 2001а; Кравцова и др., 2003]; почвообразования [Шоба и др., 1992; Шоба, Карпов, 2004]; экологических задач Кольского Севера [Мазухина, 2005]; взаимодействия подземных вод с горными породами в зоне гипергенеза [Дутова, 2004]; изучения диспропорционирования и фракционирования углерода в природных водах [Павлов и др., 2008]; развития надастеносферных флюидных систем [Шарапов, 2005]; геокатализ [Шарапов и др., 2007]; геотермобарометрия [Чудненко и др., 2007]; моделирование минеральных ассоциаций в метаморфических породах [Авченко и др., 2009].

Раздел 6. Методы и способы моделирования прикладных геохимических задач.

Взрыв - быстрое расширение вещества до объема, во много раз превышающего его первоначальные размеры. Значительное разрушающее действие взрывчатых веществ (ВВ) связано не с экстремальным запасом энергии, содержащемся в ВВ, а с тем, что энергия концентрирована в весьма малом объеме и скорость ее выделения исключительно высока. Детонация является особым типом экзотермической реакции, сопровождаемой ударной волной и протекающей с такой большой скоростью, что вся энергия, заключенная в ВВ, освобождается до того момента, когда наступает сколько-нибудь заметное расширение вешества.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№ π/ π	№ раздела и темы дисципли ны	Наименование семинаров, практических и лабораторных работ	ос (ча Всег о	оемк ть ас.) іх практ ическа	Оценочные средства	Формируемы е компетенции * (индикаторы)
				подго товка		
1	2	3	4	5	6	7
1	Раздел 2	Раздел 2. Типы осадочных бассейнов, история их развития Построение классификационных диаграмм	2		устный опрос, зачет задания	ПК-2 ИДК _{ПК2.2}
2	Раздел 5	Сведения о программном комплексе «Селектор». Работа с базами данных термодинамических величин. Росчет модели дождевой воды.	4		устный опрос, зачет задания	ПК-2 ИДК _{ПК2.2}
6	Раздел 6	Раздел 6. Методы и способы моделирования прикладных геохимических задач. Моделирование процесса выветривания гранитоидов.	4		устный опрос, зачет задания	ПК-2 ИДК _{ПК2.2}

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

№	Тема	Задание	Формируемая	ИДК
$\Pi\Pi/\Pi$			компетенция	
1	Предмет термодинамики.	Конспект,	ПК-2	ИДК _{ПК2.2}
	Математическое выражение	реферат		
	законов термодинамики.			
3	Открытые и закрытые	Конспект	ПК-2	ИДК _{ПК2.2}
	системы по Д.С.			
	Коржинскому. Принципы			
	частичного равновесия и			
	алгоритм расчета			
	необратимой эволюции			
	геохимических систем.			
4	Расчет эмпирических	Реферат,	ПК-2	ИДК _{ПК2.2}
	коэффициентов уравнения	презентация		
	теплоемкости			
5	Многомерные	Реферат,	ПК-2	ИДК _{ПК2.2}
	статистические модели.	презентация.		
	Область применения			
	многомерных			
	статистичсеких моделей в			
	геологии. (основа метода,			
	принципы расчета,область			
	применения в геологии,			
	примеры использования)			
6	Принцип стабильного,	Реферат.	ПК-2	ИДК _{ПК2.2}
	метастабильного, частичного			
	равновесия, расчет			
	необратимой эволюции			
	геохимических систем.			
7	Физико-химическая	Реферат.	ПК-2	ИДК _{ПК2.2}
	модель растворения кремния			
	щелочными растворами			

4.4. Методические указания по организации самостоятельной работы студентов

Студентам предложены темы для самостоятельного углубленного изучения дисциплины. Самостоятельная работа включает изучение фондовой, учебной литературы и материалов из сети Интернет, их конспектирование и обсуждение на практическом занятии.

4.5. Примерная тематика курсовых работ (проектов)

написание курсовых работ по дисциплине не предусмотрено учебным планом

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) основная литература

1. Крайнов С.Р. Геохимия подземных вод/ С.Р.Крайнов, Б.Н.Рыженко, Б.Н.Швец. – М.:

Hаука, 2004. − 678 с.

2. Голубева Н.В. Математическое моделирование систем и процессов [Электронный ресурс] / Н.В. Голубева. – «Лань», 2016. - 191 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=76825, - ЭБС "Лань"

б) периодические издания

Журнал физической химии. — Москва, Российская академия наук. 1934-2023. Статьи доступны на https://www.elibrary.ru, https://sciencejournals.ru/list-issues/fizkhim/)

в) список авторских методических разработок:

- 1. Бычинский В.А., Исаев В.П., Тупицын А.А. Физико-химическое моделирование в нефтегазовой геохимии. Часть 1. Теория и методология физико-химического моделирования: Учебное пособие.-Иркутск: ИГУ, 2004.-131с.
- 2. Бычинский В.А., Исаев В.П., Тупицын А.А. Физико-химическое моделирование в нефтегазовой геохимии. Часть 2. Модели гетерогенных систем: Учебное пособие.-Иркутск: ИГУ, 2004.-150с.
- 3. В. А. Бычинский. Физико-химическое моделирование в нефтегазовой геохимии [Электронный ресурс] : учеб. пособие / В. А. Бычинский, В. П. Исаев, А. А. Тупицын ; Иркутский гос. ун-т, Науч. б-ка. Электрон. текстовые дан. Иркутск : Изд-во НБ ИГУ, 2005 Тупицын А.А., Мухетдинова А. В., Бычинский В.А. Подготовка термодинамических свойств индивидуальных веществ к физико-химическому моделированию высокотемпературных технологических процессов / Изд-во ИГУ, 2009. 303 с

г) базы данных, информационно-справочные и поисковые системы

Научная библиотека Российского государственного университета нефти и газа им. И.М. Губкина – www.gybkin.ru

Научная библиотека МГУ – www.lib.msm.su

Электронная библиотека Московского государственного университета экономики, статистики и информатики (МГУЭСиИ) – www.ibc.mesi.ru

Библиотека Санкт-Петербургского университета – www.unilib.neva.ru

Научно-техническая библиотека СибГТУ – www.lib.sibstru.kts.ru

Российская Государственная библиотека – www.rsl.ru

Государственная публичная научно-техническая библиотека – www.gpntb.ru

Библиотека естественных наук PAH – www.ben.irex.ru

Всероссийская государственная библиотека иностранной литературы – www.libfl.ru

Библиотека Академии наук – www.spb.org.ru/ban

Национальная электронная библиотека – www.nel.ru

Библиотека ВНИИОЭНГ - www.vniioeng.mcn.ru

Всероссийский институт научной информации по техническим наукам (ВИНИТИ) – www.fuji,viniti.msk.su

Российская национальная библиотека, г. Санкт-Петербург – www.nlr.ru

Геология нефти и газа – www.geoinform.ru

Газовая промышленность – www.gas-journal.ru

Нефтяное хозяйство – www.oil-industry.ru

Нефтегазовая вертикаль - <u>www.ngv.ru</u>

Oil Gas Journal – www.ogj.com

Нефть России. Oil of Russia – www.press.lukoil.ru

Нефть и капитал – www.oilcapital.ru

Нефть, газ и право – www.oilgaslaw.ru

ТЭК России. Нефтегазодобывающая и нефтеперерабатывающая промышленность — www.ratex.ru

Известия вузов «Геология и разведка» - www.msgpa.edu.ru

Мировая энергетическая политика – www.wep.ru

Минеральные ресурсы России. Экономика и управление – www.geoinform.ru

Geological Society of America Bulletin – www.geosociety.org/pubs/journals.ru Электронно-библиотечные системы (ЭБС) ИГУ

- 1. Электронный читальный зал «БиблиоТех» (адрес доступа https://isu.bibliotech.ru)
- 2. ЭБС «Издательство «Лань» (адрес доступа http://e.lanbook.com)
- 3. ЭБС Национальный цифровой ресурс «РУКОНТ» (адрес доступа http://rucont.ru)
- 4. ЭБС «Айбукс» (адрес доступа http://ibooks.ru)
- 5. Образовательная платформа «Юрайт» (адрес доступа https://urait.ru)

VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1. Учебно-лабораторное оборудование:

Компьютерный класс геологического факультета (ауд. 221). Оборудован техническими средствами обучения: Компьютеры — моноблоки ROSCOM с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации, проектор CASIOXL-V-2, ноутбук ASUSK50NGseries, экран на треноге Da-LiteVersatol 178*178, колонки.

6.2. Программное обеспечение:

№	Наименование программного продукта	Кол-во	Обоснование для пользования ПО(Лицензия, Договор, счёт, акт или иное)	Дата выдачи лицензии	Срок действия права пользовани я
1	GoogleChrome 57.0.2987.133 (ежегодно обновляемое ПО)	Условия правообла дателя	Условия использования по ссылке: https://www.google.ru/chrome/browser/privac y/eula_text.html	Условия правооблада теля	бессрочно
2	Microsoft Office 2003 Win32 Russian Academic OPEN No Level	40	Номер Лицензии Microsoft 41251593	24.10.2006	бессрочно
3	Corel Draw Graphics Suite X6 AE	3	1031 Государственный контракт № 03- 019-13	11.06.2013	бессрочно
4	Acrobat Professional 11 AcademicEdition License Russian Multiple Platforms Adobe	20	Договор подряда 04-040-12 от 21.09.2012	31.07.2015	бессрочно
5	ПК Селектор	3	Договор о прохождении практики студентов ИГУ в Институте геохимии им. А.П. Виноградова СО РАН	-	-

6.3. Технические и электронные средства:

При реализации программы дисциплины аудиторные занятия проходят с использованием стационарного мультимедийного проектора и персонального компьютера для демонстрации презентаций материала в лекционной аудитории, оборудованной экраном.

Электронные средства обучения по дисциплине размещены на образовательном портале ИГУ (educa.isu.ru).

Для материально-технического обеспечения дисциплины используются: компьютерный класс геологического факультета ИГУ, в котором все компьютеры имеют выход в сеть «Интернет» и установленное специальное программное обеспечение

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Обучение производится с использованием частично электронного обучения и дистанционных образовательных технологий: Образовательный портал ИГУ educa.isu.ru

В рамках дисциплины предусмотрено участие в видеоконференциях, проводимых научными институтами. Ссылки на проводимые мероприятия обновляются в электронной среде educa.isu.ru

Практикуется экскурсия в лабораторию моделирования геохимических процессов Института геохимии им. А.П. Виноградова СО РАН. Студенты могут познакомиться с научными проектами в области моделирования, задать свои вопросы ученым и попробовать самостоятельно разработать и описать термодинамическую модель геологических процессов, использую в дальнейшем полученные данные для написания курсовых проектов, дипломов или тезисов на конференцию.

Наименование тем занятий с использованием активных форм обучения:

No	Тема занятия	Вид	Форма / Методы	Кол-во
J10	киткнае тема занятия	занятия	интерактивного обучения	часов
	Сведения о	практичес	Группория пискуссии	
1	программном комплексе	кое	Групповые дискуссии,	2
	«Селектор».	занятие	анализ ситуации	
	Методы и способы	практичес	Группория пискуссии	
2	моделирования прикладных	кое	Групповые дискуссии,	2
	геохимических задач.	занятие	анализ ситуации	
	Ито	ого часов		4

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Паспорт фонда оценочных средств определяет перечень формируемых дисциплиной компетенций (индикаторов их достижений), соотнесенных с результатами обучения в виде характеристики дескрипторов «знать», «уметь», «владеть» (см. раздел III настоящей РПД); программу оценивания контролируемой компетенции (индикаторов достижения компетенции), содержащую наименование оценочных материалов для обеспечения текущего контроля и промежуточной аттестации (табл. VII.1), соотнесенных с контролируемыми темами и/или разделами дисциплины и планируемыми результатами, показателем и критериями оценивания, а также характеристику оценочных материалов для обеспечения текущего контроля и промежуточной аттестации по дисциплине, в том числе оценку запланированных результатов и перечень оценочных материалов (средств) и характеристику критерии их оценивания.

VII.1 Программа оценивания контролируемой компетенции

Тема или	Код	Планируемый		Показатель	Критерий	Наиме	нован
раздел	индикатора	результат			оценивания	И	e
дисциплин	компетенции					O	C
Ы						TK	ПА
Раз	ИДК _{ПК2.2}	Знать: понятие	o	Владеет	Отвечает на	УО	3
дел 1.	Осуществляе	моделировании	И	материалом и	устные		
Введение.	m	моделях в геохимии;		терминологие	опросы из		

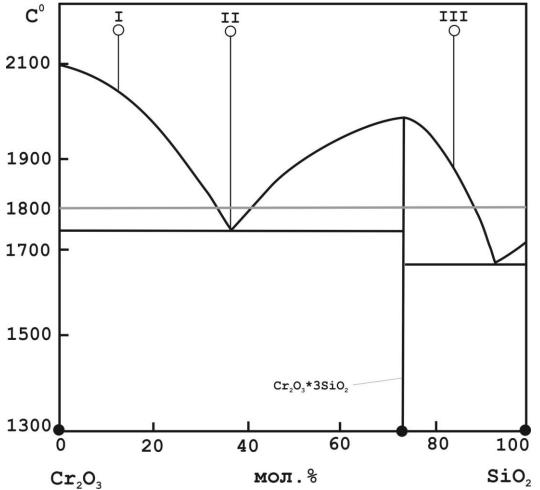
Основы бассейново го моделиров ания — цели, возможнос ти и ограничен ия, нефтяная система и ее элементы.	самостоятел ьно или в составе производстве нного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научно- исследовател ьских работ	Уметь: - искать исходную термодинамическую информацию для моделирования геологических систем Владеть: Базовыми навыками работы на ПК, поиска и анализа информации в сети Интернет	й по теме	перечня вопросов текущей успеваемости		
Раздел 2. Типы осадочных бассейнов, история их развития и термическ ой эволюции	ИДК _{ПК2.2} Осуществляе т самостоятельно или в составе производстве нного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научно-исследовательских работ	Знать: Первый и второй законы термодинамики; правило фаз Гиббса Уметь: рассчитывать степень свободы в системе; Анализировать фазовые диаграммы, диаграммы состояния, бинарные диаграммы. Владеть: навыками анализа и интерпретации исходной геологической информации;	Владеет материалом и терминологие й по теме	Отвечает на устные опросы из перечня вопросов текущей успеваемости	yo T	3
Разд ел 3. Общие сведения о законах термодина мики	ИДК _{ПК2.2} Осуществляе т самостоятел ьно или в составе производстве нного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научно- исследовател ьских работ	Знать правила постановки и проведения геолого-геохимических исследований Уметь обрабатывать полученные результаты, анализировать и осмысливать их с учётом имеющихся литературных данных; - представлять итоги выполненной работы в виде отчётов, рефератов, статей, оформленных соответствующим образом. Владеть: навыками работы в МС Excel, использовать	Владеет материалом и терминологие й по теме	Отвечает на устные опросы из перечня вопросов текущей успеваемости	УО	3

		статистические				
Разд ел 4. Характери стика современн ых программн ых комплексо в физико-химическо го моделиров ания	ИДК _{ПК2.2} Осуществляе т самостоятел ьно или в составе производстве нного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научно- исследовател ьских работ	статистические функции для расчетов Знать принципы постановки и проведения геологогеохимических исследований; Уметь решать стандартные задачи профессиональной деятельности на основе методов равновесной термодинамики с применением технологии компьютерного моделирования физико-химических процессов протекающих в осадочных бассейнах -Владеть современными методами анализа и математической обработки петрологического и петрохимического материала	Владеет материалом и терминологие й по теме	Отвечает на устные опросы из перечня вопросов текущей успеваемости	УО	3
Разде л 5 Свед ения о программн ом комплексе «Селектор ».	ИДК _{ПК2.2} Осуществляе т самостоятел вно или в составе производстве нного коллектива сбор и анализ данных для подготовки геологических отчетов по результатам выполненных научно- исследовател	применением компьютерного моделирования Знать о физико-химических процессах образования осадочных пород; Уметь выбирать необходимые методы компьютерного моделирования, исходя из конкретных задач геологических исследований; Владеть навыками проведения эксперимента и методами обработки его результатов	Владеет материалом и терминологие й по теме	Отвечает на устные опросы из перечня вопросов текущей успеваемости	УО	3
Разд ел 6. Мет оды и способы	ьских работ ИДК _{ПК2.2} Осуществляе т самостоятел ьно или в	Знать: о физико- химических процессах образования углеводородов; Уметь выбирать	Владеет материалом и терминологие й по теме	Отвечает на устные опросы из перечня вопросов	УО	3

моделиров	составе	необходимые методы	текущей	
ания	производстве	компьютерного	успеваемости	
прикладны	нного	моделирования,		
X	коллектива	исходя из конкретных		
геохимиче	сбор и анализ	задач геологических		
ских задач	данных для	' '		
отт зада г	подготовки	Владеть навыками		
	геологических	проведения		
	отчетов по	эксперимента и		
	результатам	методами обработки		
	выполненных	его результатов		
	научно-			
	исследовател			
	ьских работ			

Принятые сокращения: УО – устный опрос, T – тест, 3 – зачет

VII.2 Текущий контроль успеваемости


Текущий контроль успеваемости — оценивание хода освоения элементов образовательной программы дисциплины в соответствии с настоящей рабочей программой, в том числе проверку уровня усвоения знаний, умений, навыков и отдельных элементов компетенций, полученных обучающимися в процессе освоения дисциплины.

Примерный список вопросов для устного опроса по теме 1

- 1. Понятие о моделировании и моделях в геохимии.
- 2. Методические и теоретические вопросы, связанные с использованием ЭВМ в физико-химическом моделировании в геохимии
- 3. Основные этапы развития методов физико-химического моделирования (историческая справка).
- 4. Виды и типы моделей, используемых в геологии и геохимии;
- 5. Термодинамическая система. Подразделения систем по числу компонентов, по числу фаз. Изолированные, закрытые, открытые системы.
- 6. Что такое фаза термодинамической системы?
- 7. Что такое компонент термодинамической системы?
- 8. Что такое параметры термодинамической системы?
- 9. Дать определение следующим понятиям: ликвидус, солидус.
- 10. Чему равна степень свободы системы в точке эвтектики?

Пример задания для практической работы по теме 1

Практическая работа 1 Интерпретация диаграмм плавления

- 1. Дать определение терминам: «ликвидус», «солидус», «субликвидус», «субсолидус», «эвтектика»
 - 2. Подписать все области, линии или точки на фазовой диаграмме.
- 3. Описать изменение системы по точкам I- III (Интервал температур, состав и количество фаз примеры в презентации и лекции)

Указать, какие фазы и в каком количестве присутствуют в системе при температуре 1800°С (использовать правило рычага).

Критерии оценивания:

«отлично» - правильно выполнена работа, описательная часть выполнена полностью – есть ответы на поставленные вопросы, ответ развернутый, аргументированный, последовательный.

«хорошо» - студент хорошо понимает используемые термины, корректно подписаны области на диаграмме; есть ошибки в интерпретации последовательности изменения состояния системы.

«удовлетворительно» - дано определение терминам и подписаны области диаграммы; «неудовлетворительно» - ошибки в работе, неполнота ответа, неаккуратность.

Пример тестового задания

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет»

(ФГБОУ ВО «ИГУ»)

Геологический факультет

ТЕСТОВЫЕ ЗАДАНИЯ (по разделу I-III)

Тест №1

Тестовое комплексное задание для контроля знаний по разделам I,II,III. *Инструкция:*

Прежде чем приступить к выполнению тестового задания, внимательно прочитайте вопросы. Если Вы затрудняетесь ответить на вопрос, переходите к следующему, но не забудьте вернуться к пропущенному заданию.

Время выполнения теста – 45 мин.

Каждый правильный ответ на вопрос оценивается в 1 балл;

- 1. Из числа предложенных соединений укажите кислоту:
- a) $Mg(OH)_2$
- б) H₂SO₄;
- в) NaAlSi3O₈;
- 2. Первое начало термодинамики может быть записано как:
- а) количество внутренней энергии системы зависит от продолжительности наблюдений за ней:
- б) при любых физических взаимодействиях энергия не возникает и не исчезает, а только передается от одних тел другим или превращается из одной формы в другую,
- в) при любых физических взаимодействиях масса системы остается постоянной
- 3. При каких условиях протекают изотермические процессы:
- а) при постоянном давлении,
- б) при постоянной температуре,
- в) при постоянном объеме.
- 4. Физически однородная часть системы или совокупность таких тождественных частей, которые ограничены поверхностями раздела и могут быть (в принципе) отделены от других частей системы механическими средствами называется
- а) независимый компонент
- б) зависимый компонент
- в) фаза
- 5. Система состоит из водного пара и жидкой воды. Сколько в системе фаз?

- a) 1
- б) 2
- B) 3
- 6. Термодинамические процессы, протекающие при постоянстве внешнего давления, называются:
- а) изотермические
- б) изобарные
- в) изохорные
- 7. Прибор для измерения количества теплоты, выделявшейся или поглощающейся в химических, физических и биологических процессах называют:
- а) фотометр,
- б) калориметр,
- в) барометр.
- 8. Значения рН системы равное 1 обозначает, что в системе среда
- а) кислая,
- б) нейтральная,
- в) щелочная
- 9. Индекс химического выветривания СІА имеет вид:
- a) Al₂O₃/SiO₂
- б) Al₂O₃/(SiO₂+TiO₂)
- в) Al₂O₃/(Al₂O₃+CaO+Na₂O+K₂O)*100
- 10. Рассматривается система С-Н-О. Независимые компоненты этой системы это:
- а) С- углерод, Н-водород, О кислород,
- б) соединения СН4, СО, СО2 и пр.,
- в) уравнения реакций, которые можно составить между элементами,

Критерии оценивания теста

Отметка «отлично» ставится при правильном выполнении 81-100% заданий теста.

Отметка «хорошо» ставится при правильном выполнении 46-80% заданий теста.

Отметка «удовлетворительно» ставится при правильном выполнении 21-45% заданий теста.

Отметка «неудовлетворительно» ставится при правильном выполнении 20-0% заданий теста. Ключ к тесту: 16, 26, 36, 4в, 56, 66, 76, 8а, 9в, 10а

VII.3. Промежуточная аттестация

По дисциплине «Моделирование бассейнов и нефтегазоносных систем» предусмотрена промежуточная аттестация в форме зачета с оценкой.

VII.3.1.Оценка запланированных результатов по дисциплине

Код компетенции	Код оцениваемого	Результаты обучения	Показатели
	индикатора		
ПК-2	ИДК _{ПК2,2}	Знает:	Дает правильное
Способен	Осуществляет	основы термодинамики	определение понятиям
самостоятельно или	самостоятельно или	природных процессов.	«фаза», «зависимый
в составе	в составе		компонент»,

производственного	производственного		«независимый
коллектива	коллектива сбор и		компонент», параметры
осуществлять сбор и	анализ данных для		системы;
анализ данных для	подготовки	Умеет:	Может формулировать и
составления отчетов	геологических	выбирать необходимые	решать геологические
по результатам	отчетов по	методы	задачи методами физико-
выполненных	результатам	компьютерного	химического
научно-	выполненных научно-	моделирования, исходя	моделирования
исследовательских	исследовательских	из конкретных задач	_
работ или	работ	геологических	
исследований		исследований	
		Владеет:	Анализирует и
		Способами обработки	интерпретирует
		и интерпретации	имеющуюся
		геологической	геологическую
		информации	информацию, обладает
		навыками извлечения	навыками
		информации из	сравнительного анализа
		научной литературы по	
		различным аспектам	_
		геологии и геохимии	

VII.3.3 Оценочные материалы, обеспечивающие диагностику сформированности компетенций (или индикаторов компетенций), заявленных в рабочей программе дисциплины

Зачет проходит в виде собеседования. Студент раскрывает основные понятия и термины, используемые в рамках курса, а также имеет возможность свободно порассуждать по предложенным темам и привести примеры из опыта. Примерный список тем представлен ниже.

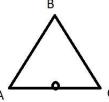
Критерии оценки:

- оценка «отлично» выставляется студенту, если он в полном объеме отвечает на вопросы, свободно владеет терминами и понятиями курса, способен дискутировать по предложенным вопросам, способен аргументировано обосновать свою позицию; при ответах на вопросы может совершать небольшие ошибки;
- оценка «хорошо» выставляется студенту, если он ответил на все предложенные вопросы, раскрыв их основную суть, но делает незначительные ошибки, способен ответить на большую часть дополнительных вопросов;
- оценка «удовлетворительно» выставляется студенту, если он ответил на два из трех предложенных вопроса, при этом совершает умеренные ошибки; или ответил на три вопроса, не раскрыв в двух из них основную суть, но при этом ответ на один из трех вопросов был наиболее полным, с раскрытием его сути. Не отвечает на большинство дополнительных вопросов.
- оценка «неудовлетворительно» выставляется, если: студент не ответил ни на один вопрос; студент не раскрыл сути ни одного вопроса и не ответил на подавляющее большинство дополнительных вопросов; ответил на один из трех вопросов, не раскрыв/почти не раскрыв его сути или и совершал грубые ошибки, а на два вопроса не дал ответов. Не знает базовых терминов и сущности предмета.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

Nº	Вид контроля	Контролируемые темы (разделы)	Контролируемые компетенции/
			индикаторы
1	2	3	4
1	Зачет	Раздел 1-3	ПК-2, ИДК _{ПК-2.2} ,
2	Текущий контроль	Раздел 1-3	ПК-2, ИДК _{ПК-2.2} ,

Примерный список вопросов к зачету:


Примеры вопросов на оценку знаний

- 1. Основные этапы развития методов физико-химического моделирования
- 2. Термодинамическая система. Термодинамические системы: открытые, закрытые, изолированные. Привести примеры.
 - 3. Первый закон термодинамики. Определение, физический смысл.
 - 4. Дать определение терминам: фаза, зависимый компонент, независимый компонент.
- 5. Температура. Определение, единицы измерения Какую температуру принято считать стандартной?

Примеры вопросов на оценку умений

- 1. Единицы измерения концентрации вещества: pph, ppt, ppm, ppb. Как соотносятся весовые проценты, ppm и г/т?
 - 2. Рассчитайте содержание Ti в ильмените FeTiO3 (атомный Bec Fe 56, Ti 48, O 16)
 - 3. Как строятся классификационные диаграммы для осадочных пород?
 - 4. Назовите последовательность расчета индекса выветривания СІА.
- 5. Правило фаз Гиббса. Степени свободы. Как расчитываются? Какую степень свободы имеет система в точке эвтектики?

Вопросы, формирующие дескриптор «владеть»

- 1. А С Какому содержанию компонентов соответствует выделенная точка на тройной диаграмме?
 - 2. Петрохимические модули. Основные модули. Принцип расчета. Область применения.
- 3. Равновесная система представляет собой водный раствор хлорида натрия и этилового спирта, находящийся в равновесии с кристаллами соли и насыщенным паром. Назовите число фаз и компонентов системы. Рассчитайте степень свободы системы.
- 4. Построение корреляционной матрицы в программе MC Excel. Интерпретация полученных данных.
- 5. Расчет уравнения регрессии в программе MC Excel. Интерпретация полученных данных.

Разработчики:

(подпись)

доцент (занимаемая должность)

В.А. Бычинский (инициалы, фамилия)

(подпись)

старший преподаватель (занимаемая должность)

А.В. Ощепкова (инициалы, фамилия)

Программа составлена в соответствии с требованиями ФГОС ВО № 953 от 12.08.2020 по специальности 21.05.02 Прикладная геология и специализации «Геология месторождений нефти и газа».

Программа рассмотрена на заседании кафедры геологии нефти и газа

«07» марта 2023 г.

Протокол № 07_Зав. Кафедрой

Примина С.П.

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.