

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Иркутский государственный университет» (ФГБОУ ВО «ИГУ»)

Институт математики, экономики и информатики

УТВЕРЖДАЮ директор института Фалалеев М.В./

" 17 " 04 2019г.

Рабочая программа дисциплины

Индекс дисциплины по УП: Б1.В.ОД.5

Наименование дисциплины: Дифференциальные уравнения, динамические системы и оптимальное управление

Направление подготовки научно-педагогических кадров в аспирантуре 01.06.01 Математика и механика

Направленность программы подготовки кадров высшей квалификации (программы аспирантуры):

Дифференциальные уравнения, динамические системы и оптимальное управление Форма обучения: очная

Согласовано с УМК ИМЭИ ИГУ Программа рассмотрена н Протокол № $\frac{\cancel{9}}{\cancel{9}}$ от « $\frac{\cancel{17}}{\cancel{17}}$ » $\frac{\cancel{0}\cancel{9}}{\cancel{9}}$ 2019 г. кафедры математического

Председатель УМК/ / /В.Г. Антоник /

Программа рассмотрена на заседании анализа

дифференциальных уравнений.

Протокол № 4 от « 22» 03 2019г

Иркутск 2019 г.

Содержание

- 1. Цели и задачи дисциплины (модуля)
- 2. Место дисциплины (модуля) в структуре ОПОП.
- 3. Требования к результатам освоения дисциплины (модуля)
- 4. Объем дисциплины (модуля) и виды учебной работы
- **5.** Содержание дисциплины (модуля)
- 5.1 Содержание разделов и тем дисциплины (модуля)
- **5.2** Разделы дисциплины (модуля) и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами (модулями)
- 5.3 Разделы и темы дисциплин (модулей) и виды занятий
- 5.4 Перечень семинарских, практических занятий и лабораторных работ.
- 6. Примерная тематика рефератов (при наличии)
- 7. Учебно-методическое и информационное обеспечение дисциплины (модуля):
 - а) основная литература;
 - б) дополнительная литература;
 - в) программное обеспечение;
 - г)интернет-ресурсы, базы данных, информационно-справочные и поисковые системы
- 8. Материально-техническое обеспечение дисциплины (модуля).
- 9. Образовательные технологии
- 10. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации
 - 10.1 Оценочные средства текущего контроля
 - 10.2 Оценочные средства для промежуточной аттестации

1. Цели и задачи дисциплины:

В настоящее время математическое моделирование является одним из основных методов решения научных, инженерных, экономических проблем. Основой математических моделей, как правило, являются уравнения математической физики, опыт исследования которых представляет теоретический и практический интерес у специалистов самых разных профессиональных направлений.

Целью преподавания дисциплины «Дифференциальные уравнения, динамические системы и оптимальное управление» является завершение формирования у аспирантов современных теоретических знаний в области методов решения задач математической физики, описывающих некоторые физические процессы, а также практических навыков в их использовании при решении конкретных задач в таких областях науки и деятельности общества, как энергетика, охрана окружающей среды, гидродинамика, теория упругости и др.

2. Место дисциплины в структуре ОПОП:

Дисциплина относится к циклу обязательных дисциплин вариативной части. Для изучения и освоения дисциплины нужны первоначальные знания из курсов математического анализа, линейной алгебры, обыкновенных дифференциальных уравнений, теории функций комплексных переменных, а также навыки, приобретенные при изучении дисциплин по выбору.

Знания и умения, приобретенные аспирантами в результате изучения дисциплины, будут использоваться, при выполнении диссертационных работ, связанных с решением конкретных задач из механики, физики и т.п.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций: ПК-1, ПК-2, ПК-3.

В результате изучения дисциплины аспирант должен:

- знать: основную терминологию по теме дисциплины, основные понятия и определения, основные уравнения математической физики и классические задачи для них, понятие обобщенного решения задачи для уравнения с частными производными.
- уметь: решать задачи по дисциплине изученными методами и приводить анализ полученного решения; ставить задачи в обобщенной постановке для дифференциальных уравнений, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами.
 - владеть: изученными методами решения задач.

4. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего	Курсы			
	часов /				4
	зачетных				
	единиц				
Аудиторные занятия (всего)	48				48
В том числе:	-	-		-	-
Лекции	16				16
Практические занятия (ПЗ)	16				16
Самостоятельная работа (всего)	184				184
В том числе:	-	-		-	-
Выполнение индивидуальных заданий, подготовка	184				184
к экзамену					
Контроль	36				36
Контактная работа	64				64
Вид промежуточной аттестации (зачет, экзамен и	экзамен				экза

др.)				мен
Общая трудоемкость	часы	252		252
	зачетные единицы	7		7

5. Содержание дисциплины5.1. Содержание разделов и тем дисциплины.

№	Наименование	ов и тем дисциплины. Содержание раздела дисциплины
	раздела	
1	Обыкновенные дифференциальны е уравнения	1. Теорема существования и единственности решения задачи Коши для системы обыкновенных дифференциальных уравнений.
		 Гладкость решения задачи Коши по начальным данным и параметрам, входящим в правые части системы уравнений. Продолжение решения. Общая теория линейных уравнений и систем (область существования решения, фундаментальная матрица Коши, формула Лиувилля—Остроградского, метод вариации постоянных и др.). Автономные системы уравнений. Положения равновесия. Предельные циклы. Устойчивость по Ляпунову. Теорема Ляпунова об устойчивости положения равновесия по первому приближению. Задачи оптимального управления. Принцип максимума Понтрягина (без доказательства), приложение к задачам быстродействия для линейных систем. Краевая задача для линейного уравнения или системы уравнений. Функция Грина. Представление решения краевой задачи. Задача Штурма—Лиувилля для уравнения второго порядка. Свойства собственных функций. Системы обыкновенных дифференциальных уравнений с комплексными аргументами. Доказательство теоремы существования и единственности аналитического решения методом мажорант. Дифференциальные уравнения с разрывной правой частью. Теорема существования и единственности решения при условиях Каратеодори. Линейные и квазилинейные уравнения с частными производными первого порядка. Характеристики. Задача Коши. Теория Гамильтона—Якоби.
2	Уравнения с частными производными	Ковалевской. Аналитические решения. Теория Коши- Ковалевской. 2. Классификация линейных уравнений второго порядка на плоскости. Характеристики. 3. Задача Коши и начально-краевые задачи для волнового
		уравнения и методы их решения. Свойства решений (характеристический конус, конечность скорости распространения волн, характер переднего и заднего

,
фронтов волны и др.)
4. Задачи Дирихле и Неймана для уравнения Пуассона и
методы их решения. Свойства решений (принцип
максимума, гладкость, теоремы о среднем и др.)
5. Задача Коши и начально-краевые задачи для уравнения
теплопроводности и методы их решения. Свойства
решений (принцип максимума, бесконечная скорость
распространения, функция источника и др.)
6. Обобщенные функции. Свертка обобщенных функций,
преобразование Фурье.
7. Пространства Соболева W_p^m . Теоремы вложения, следы
функций из $W_p^{\ m}$ на границе области.
8. Обобщенные решения краевых задач для
эллиптического уравнения второго порядка. Задачи на
собственные функции и собственные значения.
9. Псевдодифференциальные операторы (определение,
основные свойства).
10. Нелинейные гиперболические уравнения. Основные
свойства.
11. Монотонные нелинейные эллиптические уравнения.
Основные свойства.
12. Монотонные нелинейные параболические уравнения.
Основные свойства.

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

	(
No	Наименование	№ № разделов и тем данной дисциплины,
п/п	обеспечиваемых	необходимых для изучения обеспечиваемых
	(последующих)	(последующих) дисциплин
	дисциплин	(вписываются разработчиком)
1.	Подготовка	1 – 2
	диссертационной	
	работы	

5.3. Разделы и темы дисциплин (модулей)и виды занятий

	5.5. Разделы и темы дисциплин (модулеи)и виды занятии								
$N_{\underline{0}}$	Наименование	Наименование темы	Виды занятий в часах						
п/	раздела		Лекц	Практ.	CPC	Dagge			
П				зан.	CPC	Всего			
1	Раздел 1	Тема 1	1		8	9			
2	Раздел 1	Тема 2		1	8	9			
3	Раздел 1	Тема 3	1	1	8	10			
4	Раздел 1	Тема 4	1	1	8	10			
5	Раздел 1	Тема 5	1	1	8	10			
6	Раздел 1	Тема 6		1	8	9			
7	Раздел 1	Тема 7		1	8	9			
8	Раздел 1	Тема 8	1		8	9			
9	Раздел 1	Тема 9	1	1	8	10			
10	Раздел 1	Тема 10	1	1	8	10			
11	Раздел 1	Тема 11	1		8	9			
12	Раздел 2	Тема 1		1	8	9			
13	Раздел 2	Тема 2	1		8	9			

14	Раздел 2	Тема 3	1		8	9
15	Раздел 2	Тема 4		1	8	9
16	Раздел 2	Тема 5	1	1	8	10
17	Раздел 2	Тема 6	1	1	8	10
18	Раздел 2	Тема 7		1	8	9
19	Раздел 2	Тема 8	1		8	9
20	Раздел 2	Тема 9		1	8	9
21	Раздел 2	Тема 10	1	1	8	10
22	Раздел 2	Тема 11	1	1	8	10
23	Раздел 2	Тема 12	1		8	9

5.4. Перечень семинарских, практических занятий и лабораторных работ

No	№ раздела	Наименование семинаров,	Труд	Оценочные	Форм
п/п	и темы	практических и лабораторных	оемк	средства	ируем
11, 11	дисциплин	работ	ОСТЬ	op oporan	ые
	ы	Pacci	(часы		компе
)		тенци
			/		И
1	Раздел 1	Тема 1 Теорема существования и			ПК-1,
1	т аздел т	единственности решения задачи			ПК-2,
		Коши для системы обыкновенных			ПК 2, ПК-3.
		дифференциальных уравнений.			111¢ 3.
		дифференциальных уравнении.			
2	Раздел 1	Тема 2 Гладкость решения задачи			-
2	т аздел т	Коши по начальным данным и			
			1		
		параметрам, входящим в правые части системы уравнений.	1		
		1			
3	Раздел 1	Продолжение решения. Тема 3 Общая теория линейных			-
3	газдел 1	_			
		, , , , , , , , , , , , , , , , , , ,			
		существования решения,	1		
		фундаментальная матрица Коши,	1		
		формула Лиувилля—			
		Остроградского, метод вариации			
4	D 1	постоянных и др.).			-
4	Раздел 1	Тема 4 Автономные системы	1		
		уравнений. Положения равновесия.	1		
-	D 1	Предельные циклы.			-
5	Раздел 1	Тема 5 Устойчивость по Ляпунову.			
		Теорема Ляпунова об устойчивости	1		
		положения равновесия по первому			
		приближению.			-
6	Раздел 1	Тема 6 Задачи оптимального			
		управления. Принцип максимума			
		Понтрягина (без доказательства),	1		
		приложение к задачам	_		
		быстродействия для линейных			
		систем.			
7	Раздел 1	Тема 7 Краевая задача для			
		линейного уравнения или системы	1		
		уравнений. Функция Грина.	1		
		Представление решения краевой			

		задачи.		
8	Раздел 1	Тема 8 Задача Штурма-Лиувилля		
		для уравнения второго порядка.		
		Свойства собственных функций.		
9	Раздел 1	Тема 9 Системы обыкновенных		
		дифференциальных уравнений с		
		комплексными аргументами.		
		Доказательство теоремы	1	
		существования и единственности		
		аналитического решения методом		
		мажорант.		
10	Раздел 1	Тема 10 Дифференциальные		
		уравнения с разрывной правой		
		частью. Теорема существования и	1	
		единственности решения при		
		условиях Каратеодори.		
11	Раздел 1	Тема 11 Линейные и		
		квазилинейные уравнения с		
		частными производными первого		
		порядка. Характеристики. Задача		
		Коши. Теория Гамильтона–Якоби.		
12	Раздел 2	Тема 1 Системы уравнений с		
		частными производными типа		
		Ковалевской. Аналитические	1	
		решения. Теория Коши-		
		Ковалевской.		
13	Раздел 2	Тема 2 Классификация линейных		
		уравнений второго порядка на		
		плоскости. Характеристики.		
14	Раздел 2	Тема 3 Задача Коши и начально-		
		краевые задачи для волнового		
		уравнения и методы их решения.		
		Свойства решений		
		(характеристический конус,		
		конечность скорости		
		распространения волн, характер		
		переднего и заднего фронтов волны		
		и др.)		
15	Раздел 2	Тема 4 Задачи Дирихле и Неймана	T	
		для уравнения Пуассона и методы		
		их решения. Свойства решений	1	
		(принцип максимума, гладкость,		
		теоремы о среднем и др.)		
16	Раздел 2	Тема 5 Задача Коши и начально-		
		краевые задачи для уравнения		
		теплопроводности и методы их		
		решения. Свойства решений	1	
		(принцип максимума, бесконечная		
		скорость распространения, функция		
		источника и др.)		
17	Раздел 2	Тема 6 Обобщенные функции.	1	
		Свертка обобщенных функций,	1	

			I	1	1
		преобразование Фурье.]
18	Раздел 2	Тема 7 Пространства Соболева W_p^m . Теоремы вложения, следы функций из W_p^m на границе области.	1		
19	Раздел 2	Тема 8 Обобщенные решения краевых задач для эллиптического уравнения второго порядка. Задачи на собственные функции и собственные значения.			
20	Раздел 2	Тема 9 Псевдодифференциальные операторы (определение, основные свойства).	1		
21	Раздел 2	Тема 10 Нелинейные гиперболические уравнения. Основные свойства.	1		
22	Раздел 2	Тема 11 Монотонные нелинейные эллиптические уравнения. Основные свойства.	1		
23	Раздел 2	Тема 12 Монотонные нелинейные параболические уравнения. Основные свойства.			

6. Примерная тематика рефератов, докладов, проектов (при наличии); перечень вопросов к зачетам, экзаменам и т.п.:

Вопросы к экзамену:

- 1. Теорема существования и единственности решения задачи Коши для системы обыкновенных дифференциальных уравнений.
- 2. Гладкость решения задачи Коши по начальным данным и параметрам, входящим в правые части системы уравнений. Продолжение решения.
- 3. Общая теория линейных уравнений и систем (область существования решения, фундаментальная матрица Коши, формула Лиувилля—Остроградского, метод вариации постоянных и др.).
- 4. Автономные системы уравнений. Положения равновесия. Предельные циклы.
- 5. Устойчивость по Ляпунову. Теорема Ляпунова об устойчивости положения равновесия по первому приближению.
- 6. Задачи оптимального управления. Принцип максимума Понтрягина (без доказательства), приложение к задачам быстродействия для линейных систем.
- 7. Краевая задача для линейного уравнения или системы уравнений. Функция Грина. Представление решения краевой задачи.
- 8. Задача Штурма-Лиувилля для уравнения второго порядка. Свойства собственных функций.
- 9. Системы обыкновенных дифференциальных уравнений с комплексными аргументами. Доказательство теоремы существования и единственности аналитического решения методом мажорант.
- 10. Дифференциальные уравнения с разрывной правой частью. Теорема существования и единственности решения при условиях Каратеодори.
- 11. Линейные и квазилинейные уравнения с частными производными первого порядка. Характеристики. Задача Коши. Теория Гамильтона–Якоби.
- 12. Системы уравнений с частными производными типа Ковалевской. Аналитические

решения. Теория Коши-Ковалевской.

- 13. Классификация линейных уравнений второго порядка на плоскости. Характеристики.
- 14. Задача Коши и начально-краевые задачи для волнового уравнения и методы их решения. Свойства решений (характеристический конус, конечность скорости распространения волн, характер переднего и заднего фронтов волны и др.)
- 15. Задачи Дирихле и Неймана для уравнения Пуассона и методы их решения. Свойства решений (принцип максимума, гладкость, теоремы о среднем и др.)
- 16. Задача Коши и начально-краевые задачи для уравнения теплопроводности и методы их решения. Свойства решений (принцип максимума, бесконечная скорость распространения, функция источника и др.)
- 17. Обобщенные функции. Свертка обобщенных функций, преобразование Фурье.
- 18. Пространства Соболева W_p^m . Теоремы вложения, следы функций из W_p^m на границе области.
- 19. Обобщенные решения краевых задач для эллиптического уравнения второго порядка. Задачи на собственные функции и собственные значения.
- 20. Псевдодифференциальные операторы (определение, основные свойства).
- 21. Нелинейные гиперболические уравнения. Основные свойства.
- 22. Монотонные нелинейные эллиптические уравнения. Основные свойства.
- 23. Монотонные нелинейные параболические уравнения. Основные свойства.

7. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература
- 1. **Филиппов, Алексей Федорович.** Введение в теорию дифференциальных уравнений [Текст] : учеб. для студ. вузов по группе физ.-мат. напр. и спец. / А. Ф. Филиппов. Изд. стер. М. : Ленанд, 2015. 239 с. **ISBN** 978-5-9710-1499-7. 50 экз.
- 2. **Локшин, Александр Александрович.** Нелинейное волновое уравнение / А. А. Локшин, Е. А. Сагомонян. 3-е изд. М. : Вузовская кн., 2012. 63 с. **ISBN** 978-5-9502-0606-1. всего 1 : нф (1)
- 3. Дерр В.Я. Функциональный анализ: лекции и упражнения. М.: Крокус. 2013. **ISBN** 978-5-406-02728-8. 76 экз.
- 4. **Корпусов, Максим Олегович.** Нелинейный функциональный анализ и математическое моделирование в физике : методы исследования нелинейных операторов / М. О. Корпусов, А. Г. Свешников. М. : Красанд, 2011. 474 с. **ISBN** 978-5-396-00363-7. всего 1 : нф (1)
- 5. **Корпусов, Максим Олегович.** Разрушение в нелинейных волновых уравнениях с положительной энергией / М. О. Корпусов. М. : Либроком, 2012. 254 с. **ISBN** 978-5-397-02453-2. всего 1 : нф (1)
- 6. **Корпусов, Максим Олегович.** Разрушение в параболических и псевдопараболических уравнениях с двойными нелинейностями / М. О. Корпусов. М. : Либроком, 2012. 178 с. **ISBN** 978-5-397-02738-0. всего 1 : нф (1)
- 7. **Локшин, Александр Александрович.** Нелинейное волновое уравнение / А. А. Локшин, Е. А. Сагомонян. 3-е изд. М. : Вузовская кн., 2012. 63 с. **ISBN** 978-5-9502-0606-1 . всего 1 : нф (1)
- 8. **Гражданцева, Елена Юрьевна**. Фундаментальные оператор-функции вырожденных дифференциальных операторов высокого порядка в банаховых пространствах/ Е. Ю. Гражданцева ; рец.: М. В. Фалалеев, Г. А. Свиридюк; Иркутский гос. ун-т. Иркутск: Изд-во ИГУ, 2013. 91 с..
- 9. **Орлов, Сергей Сергеевич**. Обобщенные решения интегро-дифференциальных уравнений высоких порядков в банаховых пространствах/ С. С. Орлов ; рец.: А. Л. Козаков, Д. Н. Сидоров; Иркут. гос. ун-т, Ин-т математики, экономики и информатики. —

- Иркутск: Изд-во ИГУ, 2014. 149 с..
- 10. **Фалалеев, Михаил Валентинович.** Обобщенные функции и действия над ними [Текст] : учеб.-метод. пособие / М. В. Фалалеев ; Иркутский гос. ун-т. 2-е изд., испр. и доп. Иркутск : Изд-во ИГУ, 2011. 106 с.
- 11. **Мартынов, Георгий Александрович.** Классическая статистическая механика. Теория жидкостей / Г. А. Мартынов. Долгопрудный : Интеллект, 2011. 325 с. **ISBN** 978-5-91559-086-0 . всего 1 : $\mathrm{h}\varphi$ (1)
- 12. **Коддингтон, Эрл А.** Теория обыкновенных дифференциальных уравнений / Э. А. Коддингтон, Н. Левинсон; пер. с англ., авт. предисл. Б. М. Левитан. 3-е изд. М.: Изд-во ЛКИ, 2010. 470 с. **ISBN** 978-5-382-01137-0. всего 3: физмат (3)
- 13. **Асташова, И. В.** Дифференциальные уравнения [Электронный ресурс] : учеб.-практ. пособие, учеб. для студ. вузов, обуч. по спец. "Мат. методы в экономике" и др. мат. спец. / И. В. Асташова, В. А. Никишкин. ЭВК. М. : Изд. центр ЕАОИ . Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. **Ч. 2**. 2011. **ISBN** 978-5-374-00487-8
- 14. **Филиппов, Алексей Федорович.** Введение в теорию дифференциальных уравнений [Текст] : учеб. для студ. вузов по группе физ.-мат. напр. и спец. / А. Ф. Филиппов. Изд. стер. М. : Ленанд, 2015. 239 с. **ISBN** 978-5-9710-1499-7. 50 экз.
- 15. **Асташова, И. В.** Дифференциальные уравнения [Электронный ресурс] : учеб.-практ. пособие, учеб. для студ. вузов, обуч. по спец. "Мат. методы в экономике" и др. мат. спец. / И. В. Асташова, В. А. Никишкин. ЭВК. М. : Изд. центр ЕАОИ . Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. **Ч. 2**. 2011. **ISBN** 978-5-374-00487-8
- 16. **Головко Е.А.** Уравнения математической физики. Руководство к решению задач. В 2ч. Ч.1: учеб.пособие/ Е.А.Головко. Иркутск: Изд-во ИГУ, 2014.—142с. **ISBN** 978-5-964-1200-9, **ISBN** 978-5-964-1201-6.
- 17. **Головко Е.А.** Уравнения математической физики. Руководство к решению задач. В 2ч. Ч.2: учеб.пособие/ Е.А.Головко. Иркутск: Изд-во ИГУ, 2014.—142с. **ISBN** 978-5-964-1200-9, **ISBN** 978-5-964-1202-3.

б) дополнительная литература

- 1. **Краснов, Михаил Леонтьевич.** Обыкновенные дифференциальные уравнения [Текст] : задачи и примеры с подробными решениями: Учеб. пособие для студ. втузов / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. 5-е изд., испр. М. : КомКнига, 2005. 253 с. **ISBN** 5-484-00193-5. 40 экз.
- 2. **Треногин, Владилен Александрович.** Обыкновенные дифференциальные уравнения : учебник / В. А. Треногин. М. : Физматлит, 2009. 311 с. **ISBN** 978-5-9221-1063-1. 50 экз.
- 3. **Филиппов, Алексей Федорович.** Сборник задач по дифференциальным уравнениям [Текст] : учеб. пособие / А. Ф. Филиппов. 4-е изд. М. : Либроком, 2011. 237 с. **ISBN** 978-5-397-02914-8. 29 экз.
- 4. Свешников, Алексей Георгиевич. Нелинейный функциональный анализ и его приложения к уравнениям в частных производных / А. Г. Свешников, А. Б. Альшин, М. О. Корпусов. М.: Науч. мир, 2008. 399 с. **ISBN** 978-5-91522-011-8. всего 2: нф (1),
- 5. **Никольский, Сергей Михайлович.** Избранные труды : в 3 т. / С. М. Никольский ; ред. О. В. Бесов ; Рос. акад. наук, Мат. ин-т им. В. А. Стеклова. М. : Наука, 2006 **ISBN** 5-02-034150-09. **Т. 3** : Уравнения в функциональных пространствах / ред., сост. С. И. Похожаев. 2009. 479 с. **ISBN** 978-5-02-036129-4. всего 1 : нф (1)
- 6. **Физико-химические процессы в** газовой динамике : справочник / В. М. Жданов [и др.]. М. : Физматлит, 1995 **Т. 3** : Модели процессов молекулярного переноса в физико-химической газодинамике / ред. С. А. Лосев. 2012. 282 с. - **ISBN** 978-5-9221-1158-4 . всего 1 : нф (1)
- 7. **Ильин, Арлен Михайлович.** Уравнения математической физики : учеб. пособие / А. М. Ильин. М. : Физматлит, 2009. 192 с. **ISBN** 978-5-9221-1036-5 . всего 1 : нф (1)

- 8. **Горбузов, Виктор Николаевич.** Интегралы дифференциальных систем / В. Н. Горбузов; Гродненский гос. ун-т им. Янки Купалы. Гродно: Изд-во ГрГУ, 2006. 447 с. **ISBN** 985-417-476-х. 1 экз. (нф)
- 9. **Горбузов, Виктор Николаевич.** Целые решения алгебраических дифференциальных уравнений / В. Н. Горбузов ; Гродненский гос. ун-т им. Янки Купалы. Гродно : Изд-во ГрГУ, 2006. 255 с. **ISBN** 985-417-475-1. всего 1 : нф (1)
- 10. **Коддингтон, Эрл А.** Теория обыкновенных дифференциальных уравнений / Э. А. Коддингтон, Н. Левинсон; пер. с англ., авт. предисл. Б. М. Левитан. 2-е изд., испр. М.: Изд-во ЛКИ, 2007. 474 с. **ISBN** 978-5-382-00044-2. всего 1: нф (1)
- 11. **Филипс,** Г. Дифференциальные уравнения : пер. с англ. / Г. Филипс ; ред. А. Я. Хинчин. 5-е изд. М. : Изд-во ЛКИ, 2008. 104 с. **ISBN** 978-5-382-00727-4.всего 1 : нф (1)
- 12. **Демидович, Борис Павлович.** Лекции по математической теории устойчивости : учеб. пособие / Б. П. Демидович. 3-е изд., стер. СПб. : Лань, 2008. 480 с. **ISBN** 978-5-8114-0891-7. всего 1 : нф (1)
- 13. **Асимптотические методы в** механике твердого тела : учеб. пособие / С. М. Бауэр [и др.]. М. ; Ижевск : Регуляр. и хаотич. динамика : Ин-т компьютер. исслед., 2007. 355 с. **ISBN** 978-5-93972-475-3. всего 1 : нф (1)
- 14. **Голоскоков, Дмитрий Петрович.** Уравнения математической физики : решение задач в системе Maple: Учеб. для вузов / Д. П. Голоскоков. СПб. : Питер, 2004. 539 с. **ISBN** 5-94723-670-2 . всего 3 : нф (1), физмат (2)
- 15. **Никифоров, Арнольд Федорович.** Лекции по уравнениям и методам математической физики : учеб. пособие / А. Ф. Никифоров. Долгопрудный : Интеллект, 2009. 133 с. **ISBN** 978-5-91559-031-0 . всего 1 : нф (1)
 - в) программное обеспечение

Программное обеспечение:

Microsoft Windows 7 Pro 64 bit (Сублицензионный договор №570 от 07.03.2017г.);

OpenOffice 4.1.3 Условия использования по ссылке: https://www.openoffice.org/licenses/PDL.html;

LibreOffice Условия использования по ссылке: http://www.LibreOffice.org/about-us/licenses/;

VLC Player 2.2.4 Условия использования по ссылке: http://www.videolan.org/legal.html; PDF24Creator 8.0.2 Условия использования по ссылке: https://en.pdf24.org/pdf/lizenz_en_de.pdf;

7zір 16.04 Условия использования по ссылке:

http://7-zip.org/license.txt.

Браузер Google Chrome; Браузер Mozilia Firefox.

Программное обеспечение:

Microsoft Windows 7 Pro 64 bit (Сублицензионный договор №570 от 07.03.2017г.);

LibreOffice (распространяется бесплатно). Acrobat Reader (распространяется бесплатно).

- г) базы данных, информационно-справочные и поисковые системы
- 1. https://isu.bibliotech.ru электронно-библиотечная система ИГУ
- 2. http://e.lanbook.com электронно-библиотечная система ЛАНЬ
- 3. http://rucont.ru электронная библиотека РУКОНТ
- 4. http://ibooks.ru электронно-библиотечная система ibooks
- 5. http://e-library.ru научная электронная библиотека eLIBRARY
- 6. http://educa.isu.ru образовательный портал ИГУ
- 8. Материально-техническое обеспечение дисциплины:

Аудитория оборудована специализированной мебелью (столы, стулья, одинарная стеклянная меловая доска) на 49 рабочих мест, и техническими средствами обучения, служащими для представления информации в большой аудитории (стационарный проектор Casio XJ-M256, XGA1024*768, ноутбук ASUS X51L Intel Celeron 560, 2.13 GHz., экран).

Наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации, соответствующие рабочей программе дисциплины.

Компьютерный класс, оборудованный учебной мебелью на 25 посадочных мест, компьютерами: моноблок Hewlett-Packard DualCore Intel Core i3-3240, 3.40 GHz (25 шт.) с неограниченным доступом к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду организации; доска для маркеров; мобильный проектор Epson EB-X12, XGA1024*768.

9. Образовательные технологии:

- 1. Научная электронная библиотека eLIBRARY.RU, более 20 полнотекстовых версий журналов по тематике курса. Доступ с любого компьютера, подключенного через прокси-сервер Иркутского государственного университета.
- 2. Электронная библиотека "Труды ученых ИГУ" (http://ellib.library.isu.ru). Доступ к полным текстам учебных пособий, монографий и статей сотрудников университета, осуществляемый с любого компьютера сети Иркутского государственного университета.
- 3. Общероссийский математический портал информационная система Math-Net.Ru доступ к российским математическим журналам и обзорам ВИНИТИ РАН
- 4. Журнал "Известия Иркутского университета. Серия Математика". Свободный доступ к электронным полнотекстовым версиям с 2007 г. осуществляется с сайта университета http://www.isu.ru/izvestia
- 5. Архив научных журналов JSTOR (http://www.jstor.org). Доступ с любого компьютера, подключенного через прокси-сервер Иркутского государственного университета.

10. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации

10.1 Оценочные средства текущего контроля:

Формы текущего контроля успеваемости студентов – отчет по индивидуальным заданиям по каждой теме.

Примеры индивидуальных заданий:

Задача 1

Однородная бесконечная струна возбуждена начальным отклонением, имеющим форму полуокружности $u(x,0)=\sqrt{1-x^2}\,, \quad -1 \le x \le 1.$ Начальные скорости отсутствуют. Начертите положение струны для моментов времени $t=1/2,\,t=1,\,t=2,\,$ считая для простоты a=1.

Залача 2.

Решить задачи Коши

a)
$$u_{tt} = u_{xx}$$
 $u(x,0) = 1/(1+x^2)$, $u_{tt}(x,0) = 0$

b)
$$u_{tt} = 2u_{xx}$$
 $u(x,0) = 0$, $u_{tt}(x,0) = xe^{-x^2/2}$

Задача 3.

Решить задачи:

$$u_{tt} = 16u_{xx};$$
1 $u|_{x=0} = u|_{x=8} = 0;$
 $u|_{t=0} = 31\sin \pi x; \quad u_t|_{t=0} = 4\pi \sin \pi x.$

$$u_{tt} = 9u_{xx};$$
2.1 $u_x|_{x=0} = u_x|_{x=2} = 0;$ $u|_{t=0} = 8\cos 4\pi x;$ $u_t|_{t=0} = 0.$

$$u_{tt} - 3u_{t} = u_{xx} + u;$$
3.1 $u_{x}|_{x=0} = u|_{x=\pi} = 0;$

$$u|_{t=0} = 10\cos\frac{3x}{2}; \quad u_{t}|_{t=0} = 0.$$

Задача 4. Решить задачу Дирихле для уравнения Лапласа в круге $0 \le r < 6, 0 \le \varphi < 2\pi$: $\Delta u = 0$

$$u(6,\varphi) = 7\cos\varphi + 8\sin 12\varphi$$

Задача 5. Решить задачу Дирихле для уравнения Лапласа вне круга $0 \le r < 14, \, 0 \le \varphi < 2\pi : \frac{\Delta u = 0}{u(14,\varphi) = 23\cos 5\varphi + \sin 8\varphi}$

Критерии оценивания:

Оценка «отлично» выставляется если аспирант полностью и правильно решает поставленную перед ним задачу, математически грамотно обосновывает выбранный для решения способ и правильно интерпретирует полученный результат.

Оценка «хорошо» выставляется если аспирант не полностью и правильно решает поставленную перед ним задачу и математически грамотно обосновывает выбранный для решения способ.

Оценка «удовлетворительно» выставляется если аспирант не полностью и правильно решает поставленную перед ним задачу.

Оценка «неудовлетворительно» выставляется если аспирант не правильно решает поставленную перед ним задачу, не может обосновывает выбранный для решения способ и не может правильно интерпретировать полученный результат.

10.2. Оценочные средства для промежуточной аттестации:

Дисциплина завершается экзаменом, на котором проверяется усвоение студентами основных понятий и свойств, а также их применение в решении поставленных математических задач в письменно – устной форме с решением задач.

Примерные практические задания:

1. Построить решение начально-краевой задачи при $t \ge 0, 0 \le x \le b$:

$$\begin{cases} u_{tt} = a u_{xx}, \\ u|_{t=0} = f(x), u|_{x=0} = g(t), u|_{x=b} = h(t), \\ f(0) = g(0), f(b) = h(0). \end{cases}$$

2. Построить решение начально-краевой задачи при $t \ge 0, x \ge 0$:

$$\begin{cases} u_t + u_x = 0, \\ u|_{t=0} = 1, u|_{x=0} = g(t), \\ g(0) = 1. \end{cases}$$

3. Построить решение начально-краевой задачи при $t \ge 0, x \ge 0$:

$$\begin{cases} u_t + uu_x = 0, \\ u|_{t=0} = 1, u|_{x=0} = g(t), \\ g(0) = 1. \end{cases}$$

Критерии оценивания:

Оценка «отлично» выставляется если экзаменуемый знает основную терминологию по теме дисциплины, основные понятия и определения, основные уравнения математической физики и классические задачи для них, понятие обобщенного решения задачи для уравнения с частными производными, владеет изученными методами решения задач и умеет решать задачи по дисциплине изученными методами и приводить анализ полученного решения; ставить задачи в обобщенной постановке для дифференциальных уравнений, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «отлично» или хорошо» в текущем контроле.

Оценка «хорошо» выставляется если экзаменуемый знает основную терминологию по теме дисциплины, основные понятия и определения, и умеет решать задачи по дисциплине изученными методами и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «хорошо» или «удовлетворительно» в текущем контроле.

Оценка «удовлетворительно» выставляется если экзаменуемый знает основные понятия и определения, умеет понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «удовлетворительно» в текущем контроле.

Оценка «неудовлетворительно» выставляется если экзаменуемый не знает основную терминологию по теме дисциплины, основные понятия и определения, основные уравнения математической физики и классические задачи для них, понятие обобщенного решения задачи для уравнения с частными производными, не владеет изученными методами решения задач и не умеет решать задачи по дисциплине изученными методами и приводить анализ полученного решения; ставить задачи в обобщенной постановке для дифференциальных уравнений, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «неудовлетворительно» в текущем контроле.

Разработчики:

Профессор кафедры математического анализа и дифференциальных уравнений М.В.Фалалеев

Доцент кафедры математического анализа и дифференциальных уравнений Е.Ю. Гражданцева

Доцент кафедры математического анализа и дифференциальных уравнений Е.А. Головко