

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ

Lекан (директор)

20" cargain 201 7 1

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.ОД.14 Теория рассеяния

Направление подготовки: 03.03.02 Физика

Тип образовательной программы: Академический бакалавриат

Направленность (профиль) подготовки: Фундаментальная физика

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №8 от «<u>19</u>» <u>июня 2017</u> г.

Зам. председателя

Рекомендовано кафедрой:

Протокол №8

От «31» мая 2017 г.

Зав. кафедрой

C.B. JOBHOB

Иркутск 2017 г.

Содержание

3
3
3
4
4
5
7
7
8
8
8
/ · / · / · · · · · · · · · · · · · · ·

1. Цели и задачи дисциплины

Целью курса «Теория рассеяния» является углубление и развитие представлений о процессах квантового рассеяния; освоение методов качественных и количественных оценок сечения и фазы рассеяния; приобретение навыков по точному и приближенному вычислению этих величин для различных потенциалов взаимодействия; уяснение роли аналитических свойств физических величин и их связей со свойствами потенциала и условием причинности; прояснение понятия оператора в Гильбертовом пространстве и смысла условий его самосопряженности; введение в круг идей и методов теории перенормировок и теории S-матрицы релятивистской квантовой теории поля.

Данный курс призван решать следующие задачи:

- изучение стационарных и нестационарной методов описания процессов рассеяния в квантовой механике;
- знакомство с их основными экспериментально наблюдаемыми характеристиками;
- формирование умений и навыков самостоятельного вычисления и оценки фаз и сечений рассеяния на заданных потенциалах.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория рассеяния» является обязательной в вариативной части общенаучного цикла ОПОП. При изучении курса «Квантовая теория рассеяния» используются знания, приобретенные при изучении основных физических математических И курсов: уравнения», «Математический анализ», «Линейная алгебра», «Дифференциальные «Интегральных уравнений», «Теории функций комплексного переменного», «Теоретическая «Линейные нелинейные уравнения «Квантовая механика», физики», «Электродинамика», а также спецкурсов по релятивистской квантовой теории. Курс «Теория рассеяния» является базовым для изучения курсов «Квантовая теория излучения», «Введение в квантовую теорию поля», «Квантовая электродинамика», «Слабые взаимодействия».

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2);
- способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3);
- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1);

В результате изучения дисциплины студент должен:

Знать: основные законы, уравнения, идеи и методы квантовой теории рассеяния.

Уметь: применять эти идеи и уравнения для решения задачи рассеяния на различных потенциалах используя адекватные математические методы и приближения для анализа конкретных потенциалов взаимодействий.

Владеть: навыками вычисления и оценки основных наблюдаемых характеристик процессов рассеяния: сечений и фаз рассеяния, времени задержки, энергий связи.

4. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего часов /	Семес	тры
	зачетных	6	
	единиц		
Аудиторные занятия (всего)	90 / 2,5	90	
В том числе:	-	-	-
Лекции	18 / 0,5	18	
Практические занятия (ПЗ)	56 / 1,6	56	
КСР	16/0,4	16	
Самостоятельная работа (всего)	27 / 0,75	27	
Вид промежуточной аттестации (экзамен)	27/0,75	27	
Контактная работа (всего)	93/2,6	93	
Общая трудоемкость часы / зачетные единицы	144 / 4	144 / 4	

5. Содержание программы

5.1 Общее содержание

Тема 1. Стационарная теория рассеяния

- 1. Классическая теория рассеяния и квазиклассические оценки для полных сечений.
- 2. Квазиклассический анализ дифференциального УШ. Асимптотика ВФ, амплитуда и дифференциальное сечение рассеяния. Плотность потока и оптическая теорема.
- 3. Интегральные уравнения Липпмана-Швингера на ВФ Борновское приближение и приближение эйконала. Half-off shell Т-матрица, ВФ и амплитуда рассеяния.
- 4. Стационарная теория потенциального рассеяния:

Формальная алгебраическая схема: уравнения ЛШ на ФГ и off shell Т-матрицу.

Полнота системы собственных функций. Полная Функция Грина (ФГ).

Уравнения Лоу. Унитарность и оптическая теорема.

Дисперсионные соотношения для полной амплитуды рассеяния вперед.

- 5. Сепарабельные потенциалы конечного ранга. Дельта-потенциал. Перенормировка.
- 6. Детерминант оператора детерминант Фредгольма.
- 7. Представления для детерминанта через наблюдаемые фазу рассеяния и энергии связанных состояний и теорема Левинсона. Представление детерминанта в методе эволюции по константе связи и правила сумм для энергий связанных состояний и фазы.
- 8. Разложение по парциальным волнам. Радиальное уравнение Шредингера. Решение Йоста, регулярное и физическое решения. Фазы рассеяния. Сечение неупругого рассеяния. Вольтерровы интегральные уравнения и аналитические свойства решений. Функция Йоста как детерминант Фредгольма парциального оператора УШ.
- 9. Аналитические свойства функции Йоста и S-матрицы. Связанные, резонансные и виртуальные состояния. Приближение эффективного радиуса.
- 10. Квазиклассические приближения для фазы и амплитуды рассеяния.

Тема 2. Нестационарная теория рассеяния

- 1. Представления Гейзенберга, Шредингера и взаимодействия.
- 2. Волновые операторы Меллера и S-Матрица.
- 3. Эволюция волновых пакетов.
- 4. Детальное равновесие и обращение времени.

Тема 3. Частные виды потенциялов. Теория расширений.

- 1. Потенциалы Юкавского типа. Аналитические свойства амплитуды по передаче импульса. Граница Фруассара для сечения рассеяния.
- 2. Полюса Редже в плоскости углового момента и представление Зоммерфельда-Ватсона

- 3. Потенциальное рассеяние частиц в пространствах произвольной размерности. Интегральное представление для функции Йоста. Связь между решениями для одного и того же потенциала в пространствах разной размерности.
- 4. Точно решаемые потенциалы: кулоновский, дейтроный, хюльтеновский.
- 5. Сингулярные потенциалы. Самосопряженные расширения оператора Гамильтониана. Дополнительные граничные условия. Дельта-потенциал в теории фон Неймана и формула Крейна.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

No	Наименование обеспечиваемых	No	№ pa3	делов 1	и тем ,	данной	дисциі	ілины,
п/п	(последующих) дисциплин	необходимых для изучения обеспечиваемых					аемых	
		(последующих) дисциплин						
1.	Квантовая теория излучения	1	2					
2.	Введение в квантовую теорию поля	1	2	3				
3.	Квантовая электродинамика	1	2	3				
4	Электрослабая теория	1	2	3				

5.3. Разделы и темы дисциплин и виды занятий

No	Темы,	Виды подготовки		Самост. работа	
	Разделы	Лекции	Прак. занятия	CPC	КСР
1.	Стационарная теория рассеяния	8	30	10	4
2.	Нестационарная теория рассеяния	4	10	7	4
3.	Частные виды потенциалов. Теория расширений.	6	16	10	4

6. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров,	Трудоемк	Оценочные	Формируе
п/п	темы	практических и лабораторных работ	ость	средства	мые
	дисциплины		(часы)		компетенц
	(модуля)				ии
1	2	3	4	5	6
1.	<u>Тема 1</u>	Классическая теория рассеяния и ква-	30	Домашнее	ОПК-2,3,
		зиклассические оценки для полных се-		контрольное	ПК-1
		чений. Квазиклассический анализ		задание	
		дифференциального УШ. Асимптотика			
		ВФ, амплитуда и дифференциальное			
		сечение рассеяния. Плотность потока и			
		оптическая теорема. Интегральные			
		уравнения Липпмана-Швингера на ВФ.			
		Борновское приближение и приближе-			
		ние эйконала. Half-off shell Т-матрица,			
		ВФ и амплитуда рассеяния Стацио-			
		нарная теория потенциального рассея-			
		ния:. Формальная алгебраическая			
		схема: уравнения ЛШ на ФГ и off shell			
		Т-матрицу. Полнота системы собствен-			
		ных функций. Полная ФГ. Уравнения			

	ı	T			-
		Лоу. Унитарность и оптическая тео-			
		рема.			
		Дисперсионные соотношения для пол-			
		ной амплитуды рассеяния			
		впередСепарабельные потенциалы			
		конечного ранга. Дельта-потенциал.			
		Перенормировка. Детерминант опера-			
		тора - детерминант Фредгольма. Пред-			
		ставления для детерминанта через			
		наблюдаемые - фазу рассеяния и			
		энергии связанных состояний и тео-			
		рема Левинсона. Представление			
		детерминанта в методе эволюции по			
		константе связи и правила сумм для			
		энергий связанных состояний и фазы.			
		Разложение по парциальным волнам.			
		Радиальное уравнение Шредингера.			
		Решение Йоста, регулярное и физиче-			
		ское решения. Фазы рассеяния. Сече-			
		ние неупругого рассеяния. Вольтерро-			
		вы интегральные уравнения и аналити-			
		ческие свойства решений. Функция			
		Йоста как детерминант Фредгольма			
		парциального оператора УШ.			
		Аналитические свойства функции Йо-			
		ста и S-матрицы. Связанные, резонанс-			
		ные и виртуальные состояния. При-			
		ближение эффективного радиуса. Ква-			
		зиклассические приближения для фазы			
		и амплитуды рассеяния.			
2.	<u>Тема 2</u>	Представления Гейзенберга,	10	Домашнее	ОПК-2,3,
		Шредингера и взаимодействия. Волно-		Контрольно	ПК-1
		вые операторы Меллера и S-Матрица.		е задание	
		Эволюция волновых пакетов. Деталь-			
		ное равновесие и обращение времени.			
3.	<u>Тема 3</u>	Потенциалы Юкавского типа. Ана-	16	Домашнее	ОПК-2,3,
		литические свойства амплитуды по пе-		Контрольно	ПК-1
		редаче импульса. Граница Фруассара		е задание	
		для сечения рассеяния. Полюса Редже			
		в плоскости углового момента и пред-			
		ставление Зоммерфельда-Ватсона			
		Потенциальное рассеяние частиц в			
		пространствах произвольной размер-			
		ности. Интегральное представление			
		для функции Йоста. Связь между			
		решениями для одного и того же			
		потенциала в пространствах разной			
		размерности. Точно решаемые			
		потенциалы: кулоновский, дейтроный,			
		хюльтеновский.			
		Сингулярные потенциалы.			
		Самосопряженные расширения оператор			
		Гамильтониана. Дополнительные гранич	ные		
		условия. Дельта- потенциал в теории			
I		фон Неймана и формула Крейна.			

6.1. План самостоятельной работы студентов

No	Тема	Вид	Задание: Текущие	Рекомендуемая	Количество
нед.		самостоятельной	задачи на семинарах	литература	часов
		работы	и 21 задача из		
			семестрового задания		
	<u>Тема 1</u>	Внеаудиторная,	http://www.pd.isu.ru/so	Основная и	10
		решение задач	<pre>st/teor_phi/korenb/TD</pre>	дополнительная	
	<u>Тема 2</u>	Внеаудиторная,	SPh/zadan.pdf	Основная и	7
		решение задач		дополнительная	
	<u>Тема 3</u>	Внеаудиторная,		Основная и	10
		решение задач		дополнительная	

6.2. Методические указания по организации самостоятельной работы студентов

Своевременное решение 21 задачи из семестрового задания.

7. Примерная тематика курсовых работ

Учебным планом не предусмотрено написание курсовых работ.

8. Учебно-методическое обеспечение дисциплины

а) Основная литература

- 1. <u>Киселев, В. В.</u> Квантовая механика [Текст] : курс лекций / В. В. Киселев. М. : Изд-во МЦНМО, 2009. 560 с.- ISBN 978-5-94057-497-2 (4 экз.)
- 2. <u>Ландау, Лев Давидович</u>. Теоретическая физика [Текст] : учеб.пособие для студ.физ. спец. унтов: В 10т. / Л.Д.Ландау,Е.М.Лифшиц;Под ред.Л.П.Питаевского. 5-е изд.,стер. М. : Физматлит. Т.ІІІ : Квантовая механика. Нерелятивистская теория /Л.Д.Ландау,Е.М.Лифшищ. 5-е изд.,стер. -1974, 2001, 808 с. (56 экз)

б) Дополнительная литература:

- 1. Елютин П.В., Кривченков В.Д. Квантовая механика. М: Наука, 1976. (5 экз)
- 2. Зелевинский, В. Г. Лекции по квантовой механике [Текст]: учебное пособие / В.
- Г. Зелевинский. 2-е изд., испр. и доп. Новосибирск : Сиб. унив. изд-во, 2002. (1 экз)
- 3. Сербо, В. Квантовая механика [Text] : учеб.пособие / В. Сербо, И.Б. Хриплович ; Новосибирский гос.ун-т. Новосибирск : [s. n.], 2000. 136 с. (1 экз)
- 4. <u>Мессиа, А.</u> Квантовая механика / А. Мессиа. Т. 1., Т. 2. М: Наука, 1978. (2 экз)
- 5. Галицкий А.М., Карнаков Б.М., Коган В.И. Сборник задач по квантовой механике. М: Наука, 1981, 2001, (54 экз)
- 6. Липкин, Γ . Квантовая механика: новый подход к некоторым проблемам / Γ . Липкин ; пер. с англ. под ред. В. В. Толмачева. М. : Мир, 1977. (14 экз)
- 7. <u>Ньютон, Р.</u> Теория рассеяния волн и частиц [Текст]: научное издание / Р. Ньютон; пер. с англ.: А. М. Кузнецов, А. А. Черненко; ред.: А. М. Бродский, В. В. Толмачев. М.: Мир, 1969. 607 с. Пер. изд.: Stattering theory of waves and particles / Roger G. Newton. New York. (1 экз)
- 8. <u>Фаддеев, Л. Д.</u> Лекции по квантовой механике для студентов-математиков [Текст] : учебное пособие / Л.Д. Фаддеев, О.А. Якубовский. 2-е изд. Ижевск : Регулярная и хаотическая динамика, 2001. 255 с. (1 экз)
- 9 Ситенко А.Г. Лекции по теории рассеяния. Киев, «Вища школа», 1971. (1 экз)
- 10. Сунакава С. Квантовая теория рассеяния. М: Мир, 1979. (8 экз)
- 11. Тейлор Дж. Теория рассеяния. М: Мир, 1975. (2 экз)
- 12. В. де Альфаро, Т. Редже. Потенциальное рассеяние. М: Мир, 1966. (1 экз)

Chepeno c 915 usy of

в) базы данных, информационно-справочные и поисковые системы

Основные материалы по курсу доступны на персональной странице

http://www.pd.isu.ru/sost/teor_phi/korenb/korenb.html

http://www.pd.isu.ru/sost/teor_phi/korenb//TDSPh/radscet.htm

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/zadan.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/qm_ngu.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/am_j_phys_2002.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/S0217732315500741.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/par_kor_93.djvu

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/tmf5265.pdf

Литература доступна также на http://library.isu.ru/ - Научная библиотека ИГУ

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

- https://isu.bibliotech.ru/ ЭЧЗ «БиблиоТех»;
- http://e.lanbook.com ЭБС «Издательство «Лань»;
- http://rucont.ru ЭБС «Руконт» межотраслевая научная библиотека,

9. Материально-техническое обеспечение дисциплины

Аудитория минимум с двумя досками и мел. Доступ к ресурсам ИГУ из сети Интернет. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук.

10. Образовательные технологии:

Лекция, практические занятия, индивидуальная работа при сдаче семестровых заданий.

11. Оценочные средства (ОС):

Фонд оценочных средств представлен в приложении.

Формы текущего контроля: контрольные вопросы на занятиях.

Форма промежуточного контроля – экзамен. Прием семестрового задания.

11.1. Варианты контрольных вопросов:

- 1. Оценки сечения для конкретных потенциалов.
- 2. Вычисление функций Йоста и фаз рассеяния для конкретных потенциалов.
- 3. Теорема Левинсона как следствие аналитических свойств функции Йоста.
- 4. Уравнения Липпмана-Швингера для парциальных амплитуд. .
- 5. Радужное рассеяние и глория.
- 6. Распад квазистационарного состояния и резонанс. Время задержки.

11.2 Пример задачи из семестрового задания:

Доказать теорему Левинсона исходя из аналитических свойств функции Йоста Fl(-ik) в верхней полуплоскости переменной k. Пояснить различие случаев l=0 и l>0.

11.3. Примерный список вопросов к экзамену:

- 1. Классическая теория рассеяния и квазиклассические оценки для полных сечений.
- 2. Грубый квазиклассический анализ дифференциального УШ. Амплитуда и дифференциальное сечение рассеяния.
- 3. Интегральные уравнения Липпмана-Швингера на в.ф. Борновское приближение и приближение эйконала. Half-off shell Т-матрица, в.ф. и амплитуда рассеяния.
- 4. Уравнения ЛШ на ФГ и Т-матрицу. Уравнения Лоу. Унитарность и оптическая теорема. Дисперсионные Соотношения для полной амплитуды рассеяния вперед.
- 5. Сепарабельные потенциалы конечного ранга. Дельта-потенциал. Перенормировка.
- 6. Детерминант оператора детерминант Фредгольма.

- 7. Представления для детерминанта через наблюдаемые фазу рассеяния и энергии связанных состояний и в методе эволюции по константе связи. Теорема Левинсона и правила сумм для энергий и фазы.
- 8. Разложение по парциальным волнам. Радиальное уравнение Шредингера. Решение Йоста, регулярное и физическое решения. Фазы рассеяния. Вольтерровы интегральные уравнения и аналитические свойства решений. Функция Йоста детерминант парциального оператора УШ.
- 9. Аналитические свойства функции Йоста и S-матрицы. Связанные, резонансные, виртуальные состояния. Приближение эффективного радиуса.
- 10. Квазиклассическое приближение для фазы. Метод Калоджеро.
- 11. Представления Гейзенберга, Шредингера и взаимодействия.
- 12. Волновые операторы Меллера и S-Матрица. Детальное равновесие и обращение времени.
- 13. Сингулярные потенциалы. Самосопряженные расширения оператора Гамильтониана. Дополнительные граничные условия.
- 14. Потенциалы Юкавского типа. Аналитические свойства амплитуды по передаче импульса. Граница Фруассара для сечения рассеяния.

Разработчики:

профессор кафедры теоретической физики С. Э. Коренблит

(подпись)

Программа рассмотрена на заседании кафедры теоретической физики

«31» мая 2017 г.

Протокол № 8 Зав. кафедрой

С.В. Ловнов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.