

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

физический факультет

образования университе в менения в

Рабочая программа дисциплины (модуля)

Код дисциплины Б1.В.ДВ.2.2

Наименование дисциплины (модуля):

Функциональные методы квантовой теории калибровочных полей

Направление подготовки научно-педагогических кадров в аспирантуре

<u>03.06.01 – Физика и астрономия</u>

Направленность (научная специальность) **Теоретическая физика** Форма обучения <u>очная</u>

Согласовано с УМК физического факультета Программа Протокол №20 от «17» апреля 2019 г. кафедры тес

Председатель УМК /Буднев Н.М./

Программа рассмотрена на заседании кафедры теоретической физики

«20» марта 2019 г. Протокол № 8

И.о. зав. кафедрой /С.В. Ловцов/

Иркутск 2019 г.

Содержание

1. Цели и задачи дисциплины (модуля)	3
2. Место дисциплины (модуля) в структуре ОПОП	3
3. Требования к результатам освоения дисциплины (модуля)	3
4. Объем дисциплины (модуля) и виды учебной работы	4
5. Содержание дисциплины (модуля)	4
6. Перечень тем практических (семинарских) занятий и лабораторных работ	7
7. Примерная тематика курсовых работ (проектов) (при наличии)	8
8. Учебно-методическое и информационное обеспечение дисциплины (модуля)	9
9. Материально-техническое обеспечение дисциплины (модуля)	10
10. Образовательные технологии	10
11. Оценочные средства (ОС)	10

1. Цели и задачи дисциплины (модуля)

Целью дисциплины «Функциональные методы квантовой теории калибровочных полей» является: изучение и овладение современными функциональными методами квантовой теории поля и квантовой теории калибровочных полей; усвоение основных физических представлений и математических идей, лежащих в основе этих методов; приобретение навыков их применения к описанию конкретных физических процессов и к вычислению экспериментально наблюдаемых характеристик адронных систем. Знания, полученные аспирантом при изучении данной дисциплины, знакомят с современным состоянием в этой области и формируют у него физико-математическую культуру, необходимую для самостоятельной научно-исследовательской работы.

Данный курс призван решать следующие задачи:

- изучение современных методов построения вантовых теорий калибровочных полей;
- знакомство с основными физическими явлениями, описываемыми ею в рамках КХД и СМ;
- формирование умений и навыков самостоятельного расчета адрон-адронных и лептонадронных процессов.

2. Место дисциплины (модуля) в структуре ОПОП

При изучении курса «Функциональные методы квантовой теории калибровочных полей» используются знания, приобретенные при изучении всех без исключения математических и физических курсов, а также спецкурсов по квантовой теории рассеяния и излучения, квантовой теории поля, релятивистской квантовой теории и квантовой электродинамике. Спецкурс «Функциональные методы квантовой теории калибровочных полей» является базовым для изучения спецкурсов по Стандартной Модели, по физике элементарных частиц и астрофизике.

3. Требования к результатам освоения дисциплины (модуля)

Дисциплине «Функциональные методы квантовой теории калибровочных полей» соответствуют следующие профессиональные компетенции (ПК):

ПК-1	Способность самостоятельно ставить научные задачи в области физики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта
ПК-2	Владеть разделами физики, необходимыми для решения научно- инновационных задач, и применять результаты научных исследований в инновационной деятельности
ПК-3	Владение новыми методами и методологическими подходами необходимыми для участия в научно-инновационных исследованиях и инженерно-технологической деятельности

В результате изучения данной дисциплины «Функциональные методы квантовой теории калибровочных полей» аспирант должен:

знать: современные методы построения вантовой теории калибровочных полей;

уметь: использовать их для объяснения основных физических явлений в рамках КХД и СМ

владеть: навыками и приемами самостоятельного вычисления адронных процессов.

ПК-1	знать, уметь, владеть
ПК-2	знать, уметь, владеть
ПК-3	знать, уметь, владеть

4. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего часов /	Курсы			
	зачетных единиц	2			
Аудиторные занятия (всего)	36/1	36			
В том числе:			-	-	-
Лекции	18/0,5	18			
Практические занятия (ПЗ)	18/0,5	18			
Семинары (С)					
Лабораторные работы (ЛР)					
КСР					
Самостоятельная работа (всего)	72/2	72			
В том числе:			-	-	-
Курсовой проект (работа)					
Расчетно-графические работы					
Реферат (при наличии)					
Другие виды самостоятельной работы					
Вид промежуточной аттестации	зачет	зачет			
Общая трудоемкость: часы / зачетные единицы	108 / 3	108 / 3			

5. Содержание дисциплины (модуля)

5.1. Содержание разделов и тем дисциплины (модуля)

Тема 1. Классическая теория систем со связями.

Лагранжева и гамильтонова теория физических систем со связями. Первичные связи. Обобщенный гамильтониан. Вторичные связи. Системы со связями первого и второго рода. Калибровочные условия. Канонические и неканонические калибровки. Электромагнитное поле как простейший пример системы со связями. Амплитуда перехода для квантовых систем со связями в рамках метода континуального интеграла.

Тема 2. Классическая теория полей Янга-Миллса с SU(N) симметрией.

Ковариантная производная. Тензор напряженности поля Янга-Миллса. Поля материи. Лагранжиан хромодинамики. Уравнения движения классических полей Янга-Миллса. Калибровочное условие. Условие однозначной разрешимости калибровочных условий. Понятие функционального определителя. Копии Грибова. Горизонты Грибова.

Тема 3. Голоморфное представление (бозоны).

Одномерный гармонический осциллятор. Представление операторной алгебры бозонного гармонического осциллятора в пространстве аналитических функций. Скалярное произведение в этом пространстве. Понятие ядра и нормального символа произвольного оператора. Ядро произведения двух операторов. Нормальный символ эволюционного оператора в голоморфном представлении. Голоморфное представление для скалярной модели теории поля. Пространство Фока в голоморфном представлении. Нормальный символ эволюционного оператора скалярного поля. Построение S-матрицы и теории возмущения в рамках континуального интеграла. Производящий функционал для точных функций Грина скалярного поля.

Разложение нормального символа S-матрицы в окрестности классического решения ("разложение по петлям").

Тема 4. Голоморфное представление (фермионы).

Представление операторной алгебры (одномерного) фермионного осциллятора в пространстве грассмановозначных функций. Интегрирование и дифференцирование по грассмановым переменным. Скалярное произведение в пространстве голоморфных грассмановозначных функций. Обобщение на систему с п степенями свободы. Понятие ядра и нормального символа оператора в пространстве голоморфных функций. Представление ядра оператора эволюции ферми-системы в форме континуального интеграла. Комплексное спинорное поле как пример системы фермионов с бесконечным числом степеней свободы. Гамильтониан фермионного поля, взаимодействующего с внешними грассмановыми источниками. Построение S-матрицы и производящего функционала для системы фермионы + скалярное поле (взаимодействие Юкавы).

Тема 5. Гамильтонова формулировка для полей Янга-Миллса и их квантование.

Канонически сопряженные переменные и гамильтониан классических полей Янга-Миллса. Первичная и вторичная связи. Каноническое калибровочное условие – кулоновская калибровка. Условие совместимости кулоновской калибровки с динамической системой. Общая структура амплитуды перехода между двумя конфигурациями калибровочного поля в терминах континуального интеграла в фазовом пространстве. Переход в функциональное пространство полевых конфигураций. Грибовские неоднородности. Построение S-матрицы с помощью голоморфного представления полей Янга-Миллса. Взаимодействие с полями материи.

Тема 6. Ковариантные правила квантования и фейнмановская диаграммная техника.

Переход к релятивистски-инвариантной параметризации калибровочно-эквивалентных полей. Калибровка Лоренца. Преобразование функциональной меры в нормальном символе S-матрицы полей Янга-Миллса при переходе от кулоновской к лоренцовской калибровке. Обобщенная калибровка Лоренца. Представление функционального определителя оператора Фадеева-Попова в виде функционального интеграла по скалярным антикоммутирующим полям. Духи Фадеева-Попова. Производящий функционал для функций Грина полей Янга-Миллса. Диаграммная техника в импульсном представлении. Преобразование Бекки-Рюэ-Стора-Тютина (BRST-преобразования).

Тема 7. Перенормировка в теориях Янга-Миллса.

КЭД и КХД на однопетлевом уровне. Калибровки. Размерная регуляризация. Общие сведения о процедуре перенормировок. Перенормировка в КХД в однопетлевом приближении. Асимптотическая свобода.

Тема 8. Процессы глубоконеупругого рассеяния лептонов на нуклонах (DIS) и е+е- аннигиляция.

Определения и кинематика. Партонная модель. Операторное разложение. Применение операторного разложения произведения электромагнитных токов к DIS и е+е- аннигиляции, и моменты структурных функций. Размерность и твист оператора. Аномальные размерности. Эволюция кварковых и глюонных распределений в адроне. Уравнение Альтарелли-Паризи. Применение теории к наблюдаемым процессам. Процесс Дрейла-Яна.

Тема 9. Инстантоны.

Квантовая механика, мнимое время, интегралы по траекториям. Двугорбый потенциал. Туннелирование. Эвклидова формулировка КХД. BPST-инстантоны. Общие свойства. Величина действия для инстантонных решений. Явный вид BPST-инстантона. Инстантонный газ. Инстантоны в КХД вакууме.

Тема 10. Аномалии.

Квантовая аномалия дивергенции аксиального тока в двумерной модели Швингера и перестройка ферми-вакуума внешним полем. Аномалия в высших размерностях как проявление неинвариантности функциональной меры. Вычисление фермионного якобиана по Вергелесу-Фуджикаве. Сохраняющиеся калибровочно неинвариантные токи. Распад пи-ноль-мезона на два фотона.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами (модулями)

Все темы дисциплины «Функциональные методы квантовой теории калибровочных полей» является основой таких научных дисциплин как «Стандартная Модель», «Физика элементарных частиц», «Астрофизика высоких энергий», «Нейтринная астрофизика».

№ п/	Наименование обеспечиваемых	№ № разделов и тем данной дисциплины,
П	(последующих) дисциплин	необходимых для изучения обеспечиваемых
		(последующих) дисциплин
1.	Стандартная Модель	Темы 1,2,3,4,5,6,7,8,9,10
2.	Физика элементарных частиц	Темы 1,2,3,4,5,6,7,8,9,10
3.	Астрофизика высоких энергий	Темы 1,2,3,4,5,6,7,8,9,10
4.	Нейтринная астрофизика	Темы 1,2,3,4,5,6,7,8,9,10

5.3. Разделы и темы дисциплин (модулей) и виды занятий

Nº		Виды подготовки			
	Разделы —		Практические занятия	СРС	
1.	Классические системы со связями и классические поля Янга-Миллса	6	6	20	
2.	Квантование и S-матрица в голоморфном представлении и в гамильтоновой формулировке для полей Янга-Миллса	4	4	20	
3.	Ковариантные правила квантования и перенормировка в теориях Янга-Миллса	4	4	16	
4.	Процессы DIS и e+,e- аннигиляции Квантовые аномалии. Инстантоны	4	4	16	

6. Перечень тем практических (семинарских) занятий и лабораторных работ

	i				
№ п/п	№ раздела и темы дисципли ны (модуля)	Наименование семинаров, практических и лабораторных работ	Трудо емкост ь (часы)	Оценоч ные средств а	Формируем ые компетенци и
1	2	3	4	5	6
1.	Раздел 1, Темы 1,2	1. Квантование массивного векторного поля и условие Лоренца. Первичные и вторичные связи. S-матрица ЭМП классического тока. Представле- ние Гейзенберга, <i>in</i> и <i>out</i> поля и состояния.	6	Контро ль на зачете	ПК-1 ПК-2 ПК-3
2.	Раздел 2 Темы 3,4,5	2. Излучение произвольного числа фотонов при столкновениях. Теорема Киношиты –Ли. Когерентные состояния. Голоморфное представление. Ядро и нормальный символ оператора. 3. Функциональные формулировки теоремы Вика, бозоны. S-матрица и оператор эволюции. Представление взаимодействия. Функциональные формулировки теоремы Вика, фермионы. 4. Гейзенберговы поля и вакуумные средние. Амплитуда вак-вак перехода и Производящий Функционал ФГ. Нормальный символ S-матрицы. Представление Челлена-Лемана. Пропагатор и функции Вайтмана. Теорема Хаага. Слабый смысл асимптотических условий.	4	Контро ль на зачете	
3.	Раздел 3 Темы 6,7,8	6. Вычисление ЭП через ФИ. Метод «теплового ядра». Потенциал Колмена-Вайнберга и динамическое нарушение симметрии. Ренорминвариантность, «бегущая» константа связи, аномальная размерность и размерная трансмутация Функциональные Детерминанты и разложение ЭД по петлям. 7. S-матрица и теорема Вика для фермионов во внешнем поле. Фермионный ФД. Рождение пар внешним классическим ЭМП. Теорема Фарри. Сохранение векторного тока и тождества Уорда-Такахаши. Уранения Швингера-Дайсона. ФИ по грассмановым полям. 8. Квантование неабелевых калибровочных полей с помощью ФИ. Детерминант Фаддеева-Попова. Духи. Преобразование BRST. Унитарность S-	4	Контро ль на зачете	

№ п/п	№ раздела и темы дисципли ны (модуля)	Наименование семинаров, практических и лабораторных работ	Трудо емкост ь (часы)	Оценоч ные средств а	Формируем ые компетенци и
		матрицы в физическом секторе. 9. Лагранжиан и правила Фейнмана КХД. Перенормировка КХД и тождества Уорда-Такахаши-Славнова-Тейлора. Вычисление бета-функции для SU(N). Асимптотическая свобода. Параметр лямбда – КХД			
4.	Раздел 4 Темы 9,10	10. DIS: скейлинг в партонной модели. Моменты структурных функций и операторное разложение. Размерность и твист оператора. Ренормгруппа, вычисление аномальных размерностей. Кварконий, Аннигиляция е+е- в адроны. R- отношение и правила сумм. 11. Евклидово действие полей Янга-Миллса. Сохраняющиеся топологические заряды и их сохраняющиеся калибровочно неинвариантные токи. Самодуальные классические решения. ВРЅТ-инстантон и тэта-вакуум КХД. 12. Квантовая аномалия в двумерной модели Швингера и перестройка фермивакуума внешним полем. Аномалия в высших размерностях как проявление неинвариантности функциональной меры. Вычисление фермионного якобиана по Вергелесу-Фуджикаве. Аномалии абелевых аксиальных токов и распад пиноль-мезона на два фотона. Аномалии неабелевых токов. Иерархия аномалий.	4	Контро ль на зачете	

7. Примерная тематика курсовых работ (проектов) (при наличии)

Курсовые работы не предусмотрены.

8. Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) основная литература

1. <u>Петрина, Д. Я</u>. Квантовая теория поля / Д. Я. Петрина. - 2-е изд. - М. : Либроком, 2015. - 247 с. - ISBN 978-5-397-04311-3 (3)

б) дополнительная литература

- 1. <u>Пескин, М. Е.</u> Введение в квантовую теорию поля / М.Е. Пескин, Д.В. Шредер. Ижевск : Регулярная и хаотическая динамика, 2001. 783 с. ISBN 5-93972-083-8 (1)
- 2. <u>Ициксон, Клод</u> Квантовая теория поля [Текст]: в 2 т. : пер. с англ. / К. **Ициксон**, Ж. -Б. Зюбер. М. : Мир, 1984. **Т. 1**. 1984. 448 с. **Т. 2**. 1984. 400 с. (4)
- 3. **Вергелес, Сергей Никитович**. Лекции по квантовой электродинамике [Текст] : учеб. пособие для студ. вузов / С. Н. **Вергелес**. М. : Физматлит, 2005. 244 с. (2)
- 4. <u>Волошин, М. Б.</u> Теория калибровочных взаимодействий элементарных частиц / М. Б. Волошин, К. А. Тер-Мартиросян. М.: Энергоатомиздат, 1984. 296 с. (2)
- 5. <u>Борчердс, Ричард Е.</u> Квантовая теория поля / Р. Е. <u>Борчердс</u>; пер. с англ. А. Я. Мальцев. М.; Ижевск: Регуляр. и хаотич. динамика: Ин-т компьютер. исслед., 2007. 92 с. (1)
- 6. **Рубаков, Валерий Анатольевич**. Классические калибровочные поля: теории с фермионами. Некоммутативные теории: учеб. пособие / В. А. **Рубаков**. 3-е изд. М.: Либроком, 2009. 236 с. (1)
- 7. **Вайнберг, Стивен Квантовая теория поля** [Текст] / С. Вайнберг. М.: Физматлит. 21 см. **Т.2**: Современные приложения / Пер. с англ. под ред. В. Ч. Жуковского. 2004. 527 с. (2)

в) базы данных, информационно-справочные и поисковые системы

Основные материалы по курсу доступны на персональной странице

http://www.pd.isu.ru/sost/teor_phi/korenb/korenb.html, в частности:

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/fmktkp_3.htm

http://arxiv.org/pdf/hep-ph/0508242v1.pdf

http://www.researchgate.net/publication/2016907 Lectures on OED and OCD

Образовательные ресурсы, доступны также по логину и паролю, предоставляемым Научной библиотекой ИГУ:

- https://isu.bibliotech.ru/ ЭЧЗ «БиблиоТех»;
- http://e.lanbook.com ЭБС «Издательство «Лань»;
- http://rucont.ru ЭБС «Руконт» межотраслевая научная библиотека,
- Информационная система доступа к российским физическим журналам ВИНИТИ (http://www.viniti.ru)
- Архив научных журналов JSTOR (http://www.jstor.org.)
- E-print архивы: arxiv.org и ru/arxiv.org

9. Материально-техническое обеспечение дисциплины (модуля)

Аудитория минимум с двумя досками и мел. Доступ к ресурсам ИГУ из сети Интернет.

Методическим оформлением курса является использование обычных современных образовательных технологий: лекций и практических занятий. Внедрение глобальной компьютерной сети в образовательный процесс позволяет обеспечить доступность Интернетресурсов.

<u>Материалы</u>: монографии и научные статьи из рецензируемых журналов, рассматривающие современные походы и исследования в теории калибровочных полей.

10. Образовательные технологии

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;
- практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине.

11. Оценочные средства (ОС)

11.1. Оценочные средства для входного контроля.

Для изучения данного курса студент должен знать основы квантовой механики и квантовой теории поля, уметь пользоваться стандартными поисковыми сервисами сети Интернет.

(Входной контроль знаний не проводится.)

11.2. Оценочные средства текущего контроля.

(текущий контроль не планируется)

11.3. Оценочные средства промежуточного контроля.

Примерный список вопросов к зачету (все вопросы связаны с формированием ПК 1,2,3):

1	Функциональные формулировки теоремы Вика для бозонов и фермионов	
2	Представление Гейзенберга, представления взаимодействия, in, и out.	
3	Локальная калибровочная симметрия в неабелевой теории поля с группой SU(N).	
4	Перенормированный лагранжиан КХД и тождества У-Т-С-Т.	
5	Представление Челлена-Лемана. Функции Вайтмана. Теорема Хаага	
6	Представление ПФ через Функциональный Интеграл в скалярной теории.	
7	Эффективное Действие и Эффективный Потенциал.	
8	Детерминант и Духи Фаддеева-Попова.	ПК-1
9	Лагранжиан и правила Фейнмана КХД.	ПК-2
10	Уранения Швингера-Дайсона и ФИ.	ПК-3
11	Ренорминвариантность, «бегущая» константа связи, и размерная трансмутация.	
12	Сохранение векторного тока и тождества УТ.	
13	Фермионный ФД во внешнем ЭМП и теорема Фарри.	
14	Кинематика и скейлинг в DIS.	
15	Размерность, твист и аномальная размерность оператора.	
16	Калибровочное преобразование полей калибровочных бозонов и их напряженностей.	
17	Евклидово действие полей Янга-Миллса.	
18	Бета-функция и инвариантный заряд в КХД.	
19	Асимптотическая свобода и партонная модель.	
20	Аксиальная аномалия как неинвариантность фермионной меры.	
21	Топологический заряд и его ток.	
22	Амплитуда распада пи-ноль-мезона на два фотона.	

Разработчики:

профессор, д.ф.-м.н.

As-

С.Э. Коренблит

Программа рассмотрена на заседании <u>кафедры теоретической физики ИГУ</u> «20» марта 2019 г. протокол №8

И.о. зав. кафедрой

С.В. Ловцов