

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ Декан физического факультета

> ____/Н.М. Буднев «02» апреля 2025 г.

Физический факультет факу

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.ДВ.09.01 Специальный практикум по квантовой механике

Направление подготовки: 03.03.02 Физика

Направленность (профиль) подготовки: Фундаментальная физика и физика Космоса

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №49 от «<u>26</u>» марта 202<u>5</u> г.

Председатель

Н.М.Булнев

Рекомендовано кафедрой:

Протокол №6

От «24» марта 2025 г.

Зав. кафедрой

С.В. Ловнов

Иркутск 2025 г.

Содержание

I. Цели и задачи дисциплины (модуля)
II. Место дисциплины в структуре ОПОП:
III. Требования к результатам освоения дисциплины:
IV. Содержание и структура дисциплины (модуля)
4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных за-
нятий и отведенного на них количества академических часов
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине5
4.3. Содержание учебного материала5
4.3.1. Перечень семинарских, практических занятий и лабораторных работ
4.3.2. План самостоятельной работы студентов
4.4. Методические указания по организации самостоятельной работы студентов
4.5. Примерная тематика курсовых работ9
V. Учебно-методическое и информационное обеспечение дисциплины:9
а) список литературы9
б) периодические издания10
в) список авторских методических разработок10
г) базы данных, информационно-справочные и поисковые системы10
VII. Материально-техническое обеспечение дисциплины
VII. Образовательные технологии:
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации11
Приложение: фонд оценочных средств

І. Цели и задачи дисциплины (модуля)

Цели курса

Квантовая теория является важной частью универсальной базы для изучения общепрофессиональных и специальных дисциплин, вооружает выпускников необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах, знакомит студентов с научными методами познания, учит отличать гипотезу от теории и подчёркивает тесную связь теории и эксперимента. Эта дисциплина позволяет провести границу между научным и антинаучным подходом в изучении окружающего мира, позволяет научить строить физические модели происходящего и устанавливать связь между явлениями, прививает понимание причинно-следственной связи между явлениями.

Цель дисциплины «Спецпрактикум по квантовой механике» в 5 и 6 семестрах состоит в развитии и углублении квантово-механических представлений студентов об окружающем мире.

«Спецпрактикум по квантовой теории» является дополнение к дисциплине «Квантовая механика» и опирается на математический и теоретический материал этой дисциплины.

Задачи курса

- обучение качественному анализу поведения квантово-механических систем в одной и нескольких потенциальных ямах, переход через один и несколько барьеров;
- формирование навыков качественного представления развития квантово-механических систем, с которыми исследователю приходится сталкиваться при создании новой техники и новых технологий.

II. Место дисциплины в структуре ОПОП:

Дисциплина «Спецпрактикум по квантовой механике» относится к дисциплинам формируемым участниками образовательного процесса. Изучение курса проходит параллельно с изучением курса «Квантовая механика» и предполагает наличие полученных на предыдущем уровне образования основных знаний, умений и компетенций по дисциплинам «Дифференциальные уравнения», «Теоретическая механика», «Электродинамика», «Интегральные уравнения», «Теория функций комплексного переменного», «Теоретическая механика», «Линейные и нелинейные уравнения физики». Дисциплина «Спецпрактикум по квантовой механике» предоставляет качественную основу для последующих разделов курса теоретической физики «Физика конденсированного состояния», «Термодинамика и статистическая физика», «Введение в квантовую теорию поля», «Квантовая теория излучения», «Астрофизика высоких энергий», «Нейтринная астрофизика».

III. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций: (ПК-1).

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	ПК-1: Способен использовать специализированные знания в области физики и астрофизики для освоения профильных физических дисциплин.
Индикаторы компетенции	ИДК $_{\text{пк 1.1}}$ Способен проводить анализ научных данных, результатов экспериментов и наблюдений, используя специализированные знания в области физики и астрофизики. ИДК $_{\text{ПК 1.2}}$ Способен проводить анализ новых направлений исследований и опытно-конструкторских разработок в соответствующей области знаний.
Результаты обучения	Знает: основные методы решения задач, основные законы квантовой механики, отличие квантовой теории от классической, основные законы, уравнения, идеи и методы квантовой теории рассеяния; типы и характеристики фундаментальных взаимодействий. Умеет: решать основные уравнения квантовой механики; формулировать основные принципы квантовой теории и применять их к решению конкретных квантово-механических задач; применять идеи и уравнения для решения задачи рассеяния на различных потенциалах используя адекватные математические методы и приближения для анализа конкретных потенциалов взаимодействий; применять уравнения и методы для решения задач в области физики частиц, астрофизики высоких энергий и нейтринной астрофизики Владеет: математическим аппаратом, применяющемся в квантово-механическом подходе, навыками решения квантово-механических задач; навыками вычислений и оценок основных наблюдаемых характеристик процессов рассеяния: дифференциальных и полных сечений рассеяния, времен жизни, времени задержки, энергий связи, спектров распадов частиц и их пробегов в веществе.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 6 зачетных единиц, 216 часов, в том числе 124 часа контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 104 часа.

Форма промежуточной аттестации: зачет.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Раз- дел дис-	C e M	Всего	Из них прак-		Виды учебной работы, включая самостоятельную работу обучающихся, практическую подготовку и трудоемкость			Формы теку- щего контроля успеваемости;
	ци-	e	ча	тиче-		скую подготовку и трудосикоств (в часах)			
	пли- ны/ темы	c T	co B	ская под- го-	Контактная работа преподавателя с обучающимися			Самостоя- тельная работа	жуточной ат- тестации (по семе-
	TCWIDI	Р		товка обу- чаю-	обу- лаю- /практические /лабораторные		/практические /лабораторные		страм)
				щих- ся		занятия			

1	1-13	5	108	68	68	2	30	Практиче-
								ское зада-
								ние
		6	108	36	36	2	62	Практиче-
								ское зада-
								ние
Итог	o:		216	104	104	4	92	

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

Семестр	Название раздела, те- мы	Самостоятель Вид самостоятельной работы	_	Трудо- емксть (час.)	Оценочное средство	Учебно- методиче- ское обеспе- чение само- стоятельной работы
5	Тема 1-13	Задание в виде задачи	После пройденных тем	30	Демонстра- ция готовых решений	Источники из основной и до- полнительной
6	Тема 14-21	Задание в виде задачи	После пройденных тем	62	Демонстра- ция готовых решений	литературы по теме практических занятий; Образовательные ресурсы, до-ступные по логину и паролю, предоставляемым Научной библиотекой ИГУ.

4.3. Содержание учебного материала

Раздел 1

- **Тема 1**. Компьютерное моделирование квантово-механических процессов и систем. Использование программы «Квант».
 - **Тема 2**. Свободное движение. Стационарное состояние свободно движущейся частицы.
 - **Тема 3**. Свободное движение. Движение волнового пакета.
 - **Тема 4**. Свободное движение. Столкновение частицы с узкой ямой.
 - *Тема 5.* Столкновение с потенциальной ступенью.
 - **Тема 6.** Отражение от потенциальной ступеньки в квантовом и классическом случаях.
 - **Тема** 7. Столкновение волнового пакета с потенциальной ступенью.
 - **Тема 8.** Столкновение в размытой ступенью.
 - **Тема 9.** Уровень в мелкой яме. Имитация $^{\delta}$ -ямы.
 - **Тема 10.** Прямоугольная яма с несколькими уровнями.
 - *Тема 11.* Ход уровней при расширении прямоугольной ямы.
- *Тема 12.* Волновой пакет из уровней широкой прямоугольной ямы. Колебания на начальной стадии.
 - *Тема 13.* Плавный барьер.
 - **Тема 14.** Компьютерное моделирование процессов квантового рассеяния с использованием

программы «Квант» О.А.Ткаченко, В.А.Ткаченко, Г.Л.Коткина.

- **Тема 15.** Виртуальные уровни. Зависимости коэффициента пропускания T(E,a,z).
- *Тема 16.* Волновой пакет, настроенный на виртуальный уровень. Плотность его вероятности как функция х и t.
 - *Тема 17.* Рассеяние волнового пакета на потенциальной ступеньке.
 - *Тема 18.* Надбарьерные резонансы.
 - *Тема 19.* Волновой пакет и надбарьерный резонанс. Ширина пакета.
 - *Тема 20.* Расплывание и возрождение волнового пакета в «ящике» -- широкой яме.
 - **Тема 21.** Теорема Левинсона и рассеяние на потенциале $U(x) = U_0/ch^2(x/a)$.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№ π/π	№ раздела и темы дисци- плины (мо- дуля)	Наименование семинаров, практических и лабораторных работ	Трудоем- кость (часы)	Оценочные средства	Формируемые компетенции
1	2	3	4	5	6
1.	Раздел 1, Те- ма 1	Компьютерное моделирование квантовомеханических процессов и систем. Использование программы «Квант».	5	Задание для работы с компьютерной моделью, собеседование с	ПК-1
2.	Раздел 1, Те- ма 2	Свободное движение. Стационарное состояние свободно движущейся частицы.	5	преподава- телем	ПК-1
3.	Раздел 1, Те- ма 3	Свободное движение. Движение волнового пакета.	5		ПК-1
4.	Раздел 1, Те- ма 4	Свободное движение. Столкновение частицы с узкой ямой.	5		ПК-1
5.	Раздел 1, Те- ма 5	Столкновение с потенциальной ступенью.	5		ПК-1
6.	Раздел 1, Те- ма 6	Отражение от потен- циальной ступеньки в квантовом и классиче- ском случаях.	5		ПК-1
7.	Раздел 1, Те- ма 7	Столкновение волнового пакета с потенциальной ступенью.	5		ПК-1
8.	Раздел 1, Те- ма 8	Столкновение в размытой ступенью.	5		ПК-1
9.	Раздел 1, Те- ма 9	Уровень в мелкой яме. Имитация $^{\delta}$ -ямы.	5		ПК-1
10.	Раздел 1, Те- ма 10	Прямоугольная яма с несколькими уровнями.	5		ПК-1
11.	Раздел 1, Те- ма 11	Ход уровней при расширении прямо- угольной ямы.	6		ПК-1

12.	Раздел 1, Те- ма 12 Раздел 1, Те-	Волновой пакет из уровней широкой прямоугольной ямы. Колебания на начальной стадии. Плавный барьер.	6		ПК-1
13.	ма 13	Timashishi supsep.	Ü		
14.	Раздел 2, Те- ма 14	Компьютерное моделирование процессов квантового рассеяния с использованием программы «Квант»	4	Собеседование с преподавателем	ПК-1
15.	Раздел 2, Те- ма 15	Виртуальные уровни. Зависимости коэффициента пропускания $T(E,a,z)$.	4		ПК-1
16.	Раздел 2, Те- ма 16	Волновой пакет, настроенный на виртуальный уровень. Плотность его вероятности как функция <i>x</i> и <i>t</i> .	4		ПК-1
17.	Раздел 2, Те- ма 17	Рассеяние волнового па- кета на потенциальной ступеньке.	4		ПК-1
18.	Раздел 2, Те- ма 18	Надбарьерные резонансы	4		ПК-1
19.	Раздел 2, Те- ма 19	Волновой пакет и надбарьерный резонанс. Ширина пакета	4		ПК-1
20.	Раздел 2, Те- ма 20	Расплывание и возрождение волнового пакета в «ящике» - широкой яме	6		ПК-1
21.	Раздел 2, Те- ма 21	Теорема Левинсона и рассеяние на потенциале $U(x) = U_0/ch^2(x/a)$.	6		ПК-1

4.3.2. План самостоятельной работы студентов

№	Тема	Вид самостоя-	Задание	Рекомендуемая	Количе-
нед.		тельной работы		литература	ство часов
1	Свободное движение. Стационарное состояние свободно движущейся частицы.	Внеаудиторная, компьютерное моделирование	Определить тип кривой $3D$: $\Psi(x)$. Определить зависимость периода на указанном графике от E .	Источники из основной и дополнительной литературы по теме практиче-	-
2-3	Свободное движение. Движение волнового пакета.	Внеаудиторная, компьютерное моделирование	Показать волновая функция $\Psi(x,t)$ для рассмотренных волновых пакетов является периодической. Определить зависимость «ширины» пакета от величины	ских занятий; Образовательные ресурсы, доступные по логину и паро- лю, предостав- ляемым Науч- ной библиоте-	4

			$E_{max} - E_{min}$		
3-4	Сила действую- щая на частицу при пересечении границы потенци- алов	Внеаудиторная, компьютерное моделирование	Определить и выразить через $ \Psi ^2$ силы действующие на частицу, пересекающую границу двух потенциальных ям с постоянными потенциалами.		4
4-6	Свободное движение. Столкновение частицы с узкой ямой.	Внеаудиторная, компьютерное моделирование	Исследовать коэффициент прохождения $T(E)$ и координатное представление. Сравнить с классической механикой. Определить давление на стенку для $E < U_{max}$ и $E > U_{max}$		4
6-8	Столкновение волнового пакета с потенциальной ступенью.	Внеаудиторная, компьютерное моделирование	Составить волновой пакет из состояний с энергиями близкими к U_{max} и исследовать его столкновение с потенциальной ступенькой. Сравнить со стационарным решением.	кой ИГУ и Сторонние сайты	4
8-9	Столкновение в размытой ступенью.	Внеаудиторная, компьютерное моделирование	Определить как изменяется $T(E)$ по сравнению с резкой ступенькой. Исследуйте случай потенциала, когда $T(E)$ близко к случаю классической частицы.		4
9-11	Коэффициент про- хождения в случае мелкой ямы	Внеаудиторная, компьютерное моделирование	Определить насколько мелкая яма хорошо имитирует $^{\delta}$ -образный потенциал сравнивая дискретный и непрерывный спектры и $T(E)$. Сравнить коэффициенты прохождения и координатное распределение для $^{\delta}$ -ямы и $^{\delta}$ -барьера.		-
11- 13	Прямоугольная яма с несколькими уровнями.	Внеаудиторная, компьютерное моделирование	Исследовать вид $\Psi_n(x)$, $ \varphi_n(k) ^2$ в широкой яме с углублением около одной из стенок.	Источники из основной и дополнительной литературы по	-
13- 14	Волновой пакет из уровней широкой прямоугольной ямы. Колебания на начальной стадии.	Внеаудиторная, компьютерное моделирование	Исследовать вид $ \varphi(k,t) ^2$ когда пакет в координатном представлении прижат или оторван от стенки.	теме практиче- ских занятий; Образователь- ные ресурсы, доступные по логину и паро-	-

1.5	D	D	C		
15	Расплывание и	Внеаудиторная,	Составить волновой	лю, предостав-	-
	возрождение вол-	компьютерное	пакет из уровней со-	ляемым Науч-	
	нового пакета.	моделирование	стояний в широкой	ной библиоте-	
			прямоугольной яме и	кой ИГУ и	
			проследить за расплы-	Сторонние	
			ванием и возрождени-	сайты	
			ем волнового пакета.		
			Проанализировать вид		
			$ \varphi_n(k) ^2$		
15-	Модель осцилля-	Внеаудиторная,	Имитировать осцилля-		-
16	торной ямы.	компьютерное	торную яму ступенча-		
	1	моделирование	тыми потенциалами.		
			leer () 12		
			1100310ДОВАТВ		
			$ \varphi_n(k) ^2$. Опреде-		
			лить зависимость сред-		
			ней кинетической и по-		
			тенциальной энергий		
			or^n .		
17	Модель треуголь-	Внеаудиторная,	Имитировать треуголь-		10
	ной ямы.	компьютерное	ную ямы ступенчаты-		-
		моделирование	ми потенциалами.		
			Определить как меня-		
			ется расстояние между		
			уровнями с ростом n .		
18	Тема 14	Внеаудиторная,	Что за пики на кривой	Источники из	12
10	Toma 11	компьютерное	Т(Е), как и почему ме-	основной и до-	12
		моделирование	няется их положение и	полнительной	
		моделирование	ширина с изменением	литературы по	
			шириныямы а? Как в	теме практиче-	
			резонансах полного	ских занятий;	
			1 *	Образователь-	
			прохождения связаны средняя и максималь-	ные ресурсы,	
			^	доступные по	
			ная плотность вероят-	логину и паро-	
			ности внутри и вне ямы?		
19	Тема 15	Високититовиков		лю, предостав-	4
19	1cma 13	Внеаудиторная,	Что происходит с Т(Е)	ляемым Науч- ной библиоте-	4
		компьютерное	возле точки Е = 0 при		
		моделирование	расширении прямо-	кой ИГУ и	
			угольной ямы перед	Сторонние	
			появлением нового	сайты	
			уровня? Как это выгля-		
			дит на зависимости		
			T(z) при малом $E > 0$,		
			когда увеличивается z-		
			ширина (глубина)		
			ямы? Как и почему ме-		
			няется положение и		
			ширина этих резонан-		
20	T 16	D	сов с изменением Е?		4
20	Тема 16	Внеаудиторная,	Исходя из зависимости		4
		компьютерное	Т(Е) сформируйте па-		
		моделирование	кет в окне энергий, от-		
			вечающих ширине ре-		
			зонанса с виртуальным		
			уровнем и оцените по		

	T			
			его ширине характер-	
			ное время жизни и за-	
			держки.	
			Что и почему происхо-	
			дит с кривой плотно-	
			сти от (x,t)?	
21	Тема 17	Внеаудиторная,	Составить волновой	5
		компьютерное	пакет из состояний с	
		моделирование	энергиями близкими к	
			и исследовать его	
			столкновение с потен-	
			циальной ступенькой.	
			Сравнить со стацио-	
			нарным решением.	
22	Тема 18	Внеаудиторная,	Для достаточно широ-	5
22	1 CMa 10		кого потенциального	3
		компьютерное	1	
		моделирование	барьера посмотреть и	
			объяснить Т(Е), Т(z) с	
			одновременной визуа-	
			лизацией плотности (х)	
			(особенно в точках	
			максимума и миниму-	
			ма коэффициента про-	
			хождения). Как для	
			надбарьерных резонан-	
			сов (состояний полно-	
			го	
			прохождения) связаны	
			средняя и минималь-	
			ная плотности внутри	
			и вне барьера? Как ве-	
			ли бы себя аналогич-	
			ные величины для ста-	
			ционарного потока	
			классических частиц с	
			надбарьерной энерги-	
			ей?	
23	Тема 19	Внеаудиторная,	Сформируйте пакет в	10
		компьютерное	окне энергий, отвечаю-	
		моделирование	щих надбарьерному	
		1	резонансу и оцените по	
			его ширине характер-	
			ное время жизни и за-	
			держки тау?. Что и по-	
			чему происходит с	
			кривой плотности па-	
			кета от (х,t)? Почему	
			максимольная плот-	
			ность в барьере	
1			больше, чем в пакете,	
			который находится вне	
			ямы? Сравните тау с	
			1	
			разностью времен про-	
			хождения пакета через	
			экран с барьером и без	
			него.	
			Почему в отличие от	

	T	ı	I	1	
			рассеяния на виртуаль-		
			ном уровне измеренное		
			время задержки пакета		
			в данном случае оказы-		
			вается положитель-		
			ным? Какой знак имел		
			бы аналогичный эф-		
			фект в классической		
			механике?		
24	Тема 20	Внеаудиторная,	Продолжая наблюде-		10
		компьютерное	ние на большом интер-		
		моделирование	вале времени (увели-		
		_	чив шаг ht для волно-		
			вого пакета из уровней		
			прямоугольной ямы)		
			проследить за расплы-		
			ванием пакета, наступ-		
			лением стадии «кван-		
			тового хаоса», а затем		
			за появлением дроб-		
			ных и целых возрожде-		
			ний (правильной и да-		
			же исходной формы)		
			волнового пакета.		
25	Тема 21	Внеаудиторная,	Посмотрите $T(E)$, $T(a)$		12
		компьютерное	для этой ямы и барьера		
		моделирование	(замена знака U_0), а		
			также плотность от (х)		
			при небольших Е>0 и,		
			соответственно при Е		
			> U и разных а. Куда		
			делись виртуальные		
			уровни, которые были		
			в случае прямоуголь-		
			ной и даже параболи-		
			ческой ямы?		

4.4. Методические указания по организации самостоятельной работы студентов

Предполагается, что студент самостоятельно изучит дополнительный материал из рекомендованной литературы и решит предложенные задачи. Оценка самостоятельной работы студентов проводится на основе устного и письменного отчета по каждой лабораторной работе.

4.5. Примерная тематика курсовых работ

Учебным планом не предусмотрено написание курсовых работ.

V. Учебно-методическое и информационное обеспечение дисциплины:

а) список литературы

основная литература

- 1. Валл А. Н. Квантовая механика в задачах: учеб.- метод. пособие / А. Н. Валл, О. Н. Солдатенко. Ир-кутск: Изд-во ИГУ, 2010.-87 с. нф A623906; физмат 30856 (100 экз.)
- 2. Паршаков А. Н. Введение в квантовую физику: учеб. пособие [Электронный ресурс] / А. Н. Паршаков.
- Электрон. версия кн. СПб. : Изд-во Лань, [2010]. 352 с. (ЭБС «Лань»). Режим доступа: неограниченный доступ http://e.lanbook.com/view/book/297/

- 3. <u>Киселев В.В.</u> Квантовая механика [Текст] : курс лекций / В. В. Киселев. М.: Изд-во МЦНМО, 2009. 560 с. ISBN 978-5-94057-497-2 (4)
- 4. <u>Синеговский, С. И.</u> Космические нейтрино высоких энергий [Электронный ресурс]: учеб. пособие / С. И. Синеговский. ЭВК. Иркутск: Изд-во ИГУ, 2009. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.

дополнительная литература

- 1. Ландау Л. Д. Квантовая механика: Теоретическая физика, том III / Л. Д. Ландау, Е. М. Лифшиц. 5-е изд. М. : Наука, 1989. 767 с. (56)
- 2. Галицкий В.М. Задачи по квантовой механике: учеб. пособие для физ. спец. вузов / В. М. Галицкий, Б. М. Карнаков, В. И. Коган. 2-е изд., перераб. и доп. М. : Наука, 1992. 878 с. (2)
- 3. Липкин Γ . Квантовая механика. Новый подход к некоторым проблемам / Γ . Липкин. М. : Мир, 1977. 592 с. (5)
- 4. Боум А. Квантовая механика: основы и приложения / А. Боум. М.: Мир, 1990. 720 с. (2)
- 5. Галицкий А.М., Карнаков Б.М., Коган В.И. Сборник задач по квантовой механике. М: Наука, 1981, 2001. (54 экз)
- 6. Сунакава С. Квантовая теория рассеяния. М: Мир, 1979. (8 экз)
- 7. Тейлор Дж. Теория рассеяния. М: Мир, 1975. (2 экз)
- 8. <u>Бисноватый-Коган, Г. С.</u> Релятивистская астрофизика и физическая космология / Г. С. Бисноватый-Коган. М. : Красанд, 2011. 363 с. ISBN 978-5-396-00276-0 (2)
- 9. <u>Райдер, Л.</u> Элементарные частицы и симметрии/ Л. Райдер. М.: Наука, 1983. 317 с. (2)
- 10. Вайнберг, С. Квантовая теория поля / С. Вайнберг. М.: Физматлит, 2003. Т.1 : Общая теория. 648 с. ISBN 5-9221-0403-9 (2)

б) периодические издания

- нет

в) список авторских методических разработок

- нет

г) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

https://isu.bibliotech.ru/ - ЭЧЗ «БиблиоТех»;

http://e.lanbook.com - ЭБС «Издательство «Лань»;

http://rucont.ru - ЭБС «Руконт» - межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;

http://ibooks.ru/ - ЭБС «Айбукс»- интернет ресурсы в свободном доступе;

VII. Материально-техническое обеспечение дисциплины

Для проведения занятий используются учебные аудитории с меловой доской, также занятия могут проходить в компьютерном классе с современной вычислительной техникой и соответствующим программным обеспечением. В классе имеются стационарные компьютеры. Компьютеры имеют доступ к локальной сети университета и выход в Интернет. На занятиях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

Пакеты программ для выполнения расчетов и обработки численных результатов: Compaq Visual FOTRAN, Visual C++, Python (3.4.3), ROOT. Стандартная библиотека пакета Python

http://pythonworld.ru/osnovy/skachat-python.html предоставляет широкий набор средств. Содержит встроенные модули, написанные на языке С, обеспечивающие доступ к стандартизо-

ванным решениям многих задач программирования. Часть этих модулей организована так, чтобы обеспечить (усилить) мобильность программ, написанных на языке Python - т. е. возможность их переноса с одного компьютера на другой. Установщик Python на платформе Windows обычно включает целиком стандартную библиотеку и много других дполнительных компонент. Для операционных систем Unix (Linux) Python обеспечивает доступ к набору пакетов, которые обеспечивают возможность использовать инструментарий операционной системы.

VII. Образовательные технологии:

- лабораторные занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения задач;
- консультации еженедельно для желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине; чтение литературы, завершение лабораторных работ, графическую обработку данных и составление отчетов;
- текущий контроль работы студентов осуществляется через письменные и устные отчеты по выполненным лабораторным работам.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

Фонд оценочных средств представлен в приложении.

- 8.1. Оценочные средства для входного контроля: не требуются.
- 8.2. Оценочные средства текущего контроля.

Контрольные задачи для проведения текущего контроля.

- 1. Дайте определение волновой функции.
- 2. Сформулируйте условия, которым удовлетворяет волновая функция.
- 3. Запишите уравнение Шредингера.
- 4. Запишите стационарное уравнение Шредингера.
- 5. Запишите формулу тока вероятности.
- 6. Запишите уравнение непрерывности для тока вероятности.
- 7. Запишите волновую функцию свободно движущейся частицы.
- 8. Определите нормировку волновой функции свободно движущейся частицы.
- 9. Запишите уравнение Шредингера для бесконечно глубокой потенциальной ямы.
- 10. Запишите уравнение Шредингера для ямы конечной глубины.
- 11. Дайте определение коэффициента прохождения и отражения.
- 12. Запишите спектр для параболического потенциала.
- 13. Запишите основные свойства линейного эрмитового оператора.

Пример вопросов для собеседования

- 1. Описать операторный формализм квантовой механики.
- 2. Дать определение самосопряженных операторов в гильбертовом пространстве.
- 3. Указать основные свойства собственных функций.
- 4. Вычисление вероятностей результатов измерения динамической величины в произвольном состоянии.
 - 5. Условие одновременной измеримости динамических величин.
- 6. Ввести операторы координаты и импульса и их собственные функции. Указать отличия координатного и импульсного представления.

Форма проведения промежуточной аттестации — зачет.

Примерный перечень вопросов и заданий к зачёту

- 1. Уравнение Шредингера.
- 2. Стационарное уравнение Шредингера.
- 3. Волновая функция. Нормировка волновой функции.
- 4. Волновая функция. Нормировка на поток частиц.
- 5. Плотность тока вероятности. Уравнение неразрывности для тока.
- 6. Координатное и импульсное представление волновой функции.
- 7. Частица в бесконечно глубокой потенциальной яме. Импульсное представление волновой функции.
 - 8. Частица в параболическом потенциале.
 - 9. Импульсное представление основного состояния в параболическом потенциале.

D	000		50				
r	a 3	μa	UU	ľ	lИ	киз	

доцент кафедры теоретической физики В.П. Ломов

профессор кафедры теоретической физики С.Э. Коренблит

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 Физика.

Программа рассмотрена на заседании кафедры теоретической физики «24» марта 2025 г. Протокол №6 Зав. кафедрой _____ С.В. Ловцов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.