

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и неорганической химии

факультэт

декан, Вильмс А.И.

13.05.2024 г.

Рабочая программа дисциплины

Б1.В.ДВ.06.02 Избранные главы координационной химии

Направление подготовки 04.03.01 «Химия»

Направленность Химия

Квалификация (степень) выпускника – БАКАЛАВР

Форма обучения очная

Согласовано с УМК химического факультета

Протокол №4 от 13.05.2024г.

Председатель (Вильмс А.И.)

Рекомендовано кафедрой общей и неорганической химии:

Протокол № 5 от 24.04/2024 г.

Зав. кафедрой

Содержание

		стр
1.	Цели и задачи дисциплины (модуля)	3
2.	Место дисциплины (модуля) в структуре ОПОП.	3
3.	Требования к результатам освоения дисциплины (модуля)	3
4.	Объем дисциплины (модуля) и виды учебной работы	4
5.	Содержание дисциплины (модуля)	5
	5.1. Содержание разделов и тем дисциплины (модуля)	5
	5.2. Разделы дисциплины (модуля) и междисциплинарные связи с	6
	обеспечиваемыми (последующими) дисциплинами (модулями)	
	5.3. Разделы и темы дисциплин (модулей) и виды занятий	7
6.	Перечень лекционных занятий	7
	6.1. План самостоятельной работы студентов	8
	6.2. Методические указания по организации самостоятельной работы студентов	8
7.	Примерная тематика курсовых работ (проектов) (при наличии)	8
8.	Учебно-методическое и информационное обеспечение дисциплины (модуля):	8
	а) основная литература;	8
	б) дополнительная литература;	9
	в) Интернет-источники	9
9.	Материально-техническое обеспечение дисциплины (модуля)	9
10.	Образовательные технологии	9
11.	Оценочные средства (ОС)	9

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ:

Курс «Избранные главы координационной химии» имеет своей целью получение фундаментальных знаний в области координационной химии и представлений о её тесной взаимосвязи с органической химией, катализом и биохимией.

Задача курса — показать современные взгляды на координационные соединения, взаимосвязь строения и типов реакционной способности координационных соединений, механизмов их превращений, путей стабилизации электронных состояний металла и определенного лигандного окружения, путей активации лигандов при координации, а также области возможного применения.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП:

Учебная дисциплина «Избранные главы координационной химии» входит в раздел дисциплин по выбору учебного плана программы подготовки по направлению 04.03.01 Химия.

Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:

- Общая химия. Химия неметаллов;
- Металлическая связь. Химия металлов;
- Аналитическая химия;
- Физико-химические методы анализа.

Необходимыми требованиями к «входным» знаниям, умениям и готовностям студента при освоении данной дисциплины и приобретенными в результате освоения предшествующих дисциплин являются:

Знание:

- основ курсов неорганической и физической химии;
- основные теории строения вещества;
- теоретических основ физико-химических методов анализа;

Умение:

- работать с бумажными и электронными издательствами;
- работать с лабораторной техникой;

Владение:

- навыками расшифровки спектров ЯМР, ЭПР, ИК;
- навыками синтетической работы в инертной атмосфере.

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

Дисциплина «Избранные главы координационной химии», призвана формировать у студентов конечную стадию знаний и умений, необходимых для дальнейшей научной и практической в области координационной химии, химической технологии, лазерной микроэлектроники и нанотехнологий. Теоретический арсенал координационных соединений И координационные соединения, сами используются практически во всех отраслях химической науки: аналитической и органической химии, биохимии, катализе, электрохимии, фотохимии, теории растворов и т.д. В связи с этим развитие теоретического и экспериментального базиса химии координационных соединений как междисциплинарной науки имеет общехимическое и, в целом, общенаучное значение.

III. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по данному направлению подготовки 04.03.01 Химия.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ПК-6 Способен применять основные естественнонаучные законы и закономерности развития химической науки при анализе полученных результатов

ИДК_{ПК-6.1} Знает теоретические основы координационной химии и способы их использования при решении конкретных химических задач

 $ИДК_{IIK-6.2}$ Использует компьютерные технологии для систематизации результатов эксперимента

В результате изучения дисциплины студент должен:

Знать:

- современную теорию строения координационных соединений переходных металлов;
- > основные методы определения состава и строения координационных соединений;
- > термодинамические аспекты комплексообразования;

Уметь:

- находить взаимосвязь строения и типов реакционной способности координационных соединений;
- находить взаимосвязь координационной химии с органической химией, катализом и биохимией.

Владеть:

- **с**овременными компьютерными технологиями, применяемыми при обработке результатов исследований в области координационной химии;
- **>** навыками в интерпретации спектров ЯМР, ЭПР, ИК координационных соединений.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 2 зачетных единиц, 72 часа. Из них 34 часов практическая подготовка. Форма промежуточной аттестации: Зачет.

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

реную работу Формы текущего контроля успеваемости; Форма промежуточной апии С я оо в аттестации				∞	~	∞	25 Зачет
оемкость ателя с Консультации + КО			4	4	ю	11	
Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)	учебной работы, включая самостояте обучающихся и трудоемкость (в часах) Контактная работа преподавателя с обучающимися практические занятия Всего часов Консуль			9	9	9	18
Виды уч	Kc	Лекции	2	9	9	4	18
дготовка	Nз них практическая подготовка			12	12	10	34
Семестр						∞	
Раздел дисциплины/темы		Введение в координационную химию	Комплексообразо-ватели и лиганды; изомерия координационных соединений	Термодинамика комплексообраз-ования.	Прикладные аспекты химии координационных соединений	Всего	
№ п/п		1.	2.	3.	4.		

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

	Самостоятельная работа обу	Самостоятельная работа обучающихся	ота обучающи	кся		Учебно-методическое	63
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки Трудоемк выполнения ость (час.)	Трудоемк ость (час.)	Оценочное средство	обеспечение самостоятельной работы	
∞	История развития химии координационных соединений.	Проработка конспекта лекций, работа на полях		3	Устный опрос	Устный опрос См. список лит-ры	
∞	Обзорный анализ комплексообразующих свойств элементов Периодической системы: значения координационных чисел, характерные лиганды, устойчивости и геометрия комплексов	конспекта с терминами, дополнение конспекта материалами из рекомендованной литературы.		∞			
∞	Термодинамические характеристики реакций комплексообразования, их взаимосвязь. Константы устойчивости координационных соединений. Методы стандартизации термодинамических параметров комплексообразования. Расчеты равновесий комплексообразования. Основные факторы, влияющие на устойчивость комплексов.	Выполнение домашней контрольной работы.		14			
Бюдж данной	Бюджет времени самостоятельной работы, предусмотренный учебным планом для данной дисциплины (час)	предусмотренный учебным	планом для	25			

4.3. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Введение в координационную химию. История развития химии координационных соединений. Общие сведения и понятия о координационных соединениях. Центральный атом — комплексообразователь, лиганды, внутренняя и внешняя координационные сферы. Степень окисления и координационное число центральных ионов. Дентатность лигандов. Диссоциация в растворах комплексных частиц. Классификация и правила номенклатуры координационных соединений. Детальные, полные и сокращенные формулы координационных соединений. Особенности комплексообразования в различных агрегатных состояниях (твердая, жидкая и газовая фазы).

Модельные подходы к объяснению параметров химического связывания в координационных соединениях. Электростатический подход: модель мультипольных взаимодействий и концепция электронейтральности. Теория кристаллического поля. Объяснение спектральных и магнитных свойств комплексов. Проблема стабилизации состояний окисления комплексообразователей. Эффект Яна-Теллера. Метод валентных связей. Низко- и высокоспиновые комплексы. Внутри- и внешнеорбитальные комплексы. Теория поля лигандов как развитие теории кристаллического поля. Анализ возможностей и ограничений применения подходов к описанию химической связи в комплексных частицах.

Комплексообразователи и лиганды; изомерия координационных соединений.

Обзорный анализ комплексообразующих свойств элементов 1 – 18 групп Периодической системы: значения координационных чисел, характерные лиганды, устойчивости и геометрия комплексов, наиболее адекватные модели строения комплексов. Щелочные и щелочно-земельные металлы как комплексообразователи. Типы образуемых комплексов и их устойчивость. Координационные соединения р-элементов. Особенности комплексообразования редкоземельных элементов (РЗЭ). Закономерности изменения устойчивости и строения координационных соединений в ряду РЗЭ, роль "лантаноидного" сжатия.

Общая классификация лигандов. Лиганды молекулярных комплексов: атомы, ионы, дигомо-, полигомо- и гетероядерные неорганические молекулы, органические соединения. Амбидентатность лигандов. Хелатные лиганды, понятие о хелатном и полихелатном эффектах. Макроциклические лиганды, их классификация по Яцимирскому. Макроциклический эффект. Лиганды комплексов с многоцентровыми координационными связями. Лиганды ди- и полиядерных комплексов. Молекулы растворителей как лиганды сольватокомплексов. Донорная сила растворителей.

Типы изомерии координационных соединений: гидратная, ионизационная, координационная (в т.ч. координационная полимерия), структурная, изомерия связи, геометрическая, оптическая и конформационная. Влияние типа изомерии координационного соединения на его физико-химические свойства.

Термодинамика комплексообразования.

Стабильность комплексов переходных металлов в низких степенях окисления. Физико-химические методы в координационной химии

Термодинамические характеристики реакций комплексообразования, их взаимосвязь. Константы устойчивости координационных соединений. Методы стандартизации комплексообразования. Расчеты термодинамических параметров равновесий комплексообразования. Основные факторы, влияющие на устойчивость комплексов. Ряд Ирвинга-Уильямса для изохорно-изозарядных ионов. Температурные зависимости констант устойчивости как отражение ковалентного и электростатического вкладов в координационную связь. Закономерности изменения последовательных устойчивости (статистическая и "химическая" компоненты, влияние природы лиганда, спинового состояния, гибридизации). Термодинамика хелатного, полихелатного и макроциклического эффектов. Влияние растворителя как среды и химического реагента на комплексообразование. «Стабильность» комплексов переходных металлов в низких степенях окисления.

Общая стратегия применения физико-химических методов в координационной химии. Дифракционные (рентгенография, электронография, нейтронография). методы Спектроскопические методы (ЯМР, ЭПР, ЯКР, КР, у-резонансная, абсорбционная в широком диапазоне длин волн (от УФ до радиочастотной и др.). Электрохимические методы (потенциометрия, полярография). Экстракционные методы. Калориметрические Т.Ч. методы термического анализа. Исследования растворимости. методы, Ионообменные методы. Компьютерное моделирование.

Прикладные аспекты химии координационных соединений.

Координационные соединения В живых организмах. Биометаллы, характеристика. Понятие о биокоординационной химии. Бикомплексы и биокластеры. Биокомплексы с анионами неорганических кислот. Биокомплексы с аминокислотами и белками. Биокомплексы порфиринами. Токсичность c металлов: роль комплексообразования.

Основные аспекты применения координационных соединений. Комплексные соединения платины как противоопухолевые препараты. Проблемы разработки лекарственных форм на их основе. Применение летучих координационных соединений в технологии получения материалов из газовой фазы (MOCVD). Основные разновидности материалов, получаемых по технологии CVD. Перспективы применения гетероядерных соединений при синтезе многокомпонентных материалов. Особенности различных способов перевода комплексных соединений в пар, выбор оптимального способа в соответствии с природой комплекса. Комплексы в гальванотехнике, аналитической химии и др. областях.

занятий
рактических
ечень пр
3.1. Пер
4

Ŋ	Наименование практических занятий	Трудое	Трудоемкость (час)	Оценочные	Формируемые
п/п	•			средства	компетенции / индикаторы*
		Всего	Из них		
			практическая подготовка		
	История развития химии координационных	3	3	Устный	ИДКпк-6.1
	соединений.			опрос	$H/\!$
	Обзорный анализ комплексообразующих	8	8		
	свойств элементов Периодической системы:				
	значения координационных чисел,				
	характерные лиганды, устойчивости и				
	геометрия комплексов				
	Термодинамические характеристики	14	14		
	реакций комплексообразования, их				
	взаимосвязь. Константы устойчивости				
	координационных соединений. Методы				
	стандартизации термодинамических				
	параметров комплексообразования. Расчеты				
	равновесий комплексообразования.				
	Основные факторы, влияющие на				
	устойчивость комплексов.				
	Всего	25	25		

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение самостоятельной работы студентов

Тема	Вид самостоятельной работы	Задание	Рекомендуе	Кол-во
			мая	часов
			литература	
1	Репродуктивная самостоятельная	Проработка конспекта	смотри п. 8	3
2	работа. Познавательно-поисковая	лекций, работа на полях	смотри п. 8	6
3	самостоятельная работа.	конспекта с терминами,	смотри п. 8	8
4	Самостоятельное прочтение,	дополнение конспекта	смотри п. 8	
	просмотр и конспектирование	материалами из		
	учебной литературы.	рекомендованной литературы.		8
	Прослушивание лекций,	Выполнение домашней		
	повторение учебного материала.	контрольной работы.		

4.4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

В связи с тем, что к современным специалистам потенциальный работодатель предъявляет достаточно широкий перечень требований, среди которых одним из важнейших является наличие у выпускника способностей и умений самостоятельно получать знаний из различных источников путем поиска информации, ее систематизации и обобщения, развитие данных навыков является важным фактором в процессе обучения. Сформировать подобные умения помогают в период его обучения такие виды работ, как практические занятия, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ, однако немаловажным также является самостоятельная работа студентов, которая может реализовываться в виде:

- при оформлении конспектов в ходе аудиторных занятий;
- при контакте с преподавателем вне рамок занятий во время: консультаций по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей и т.д.;
- в библиотеке, дома, на кафедре в ходе выполнения квалификационной работы, решении задач, подготовке к зачету.

4.5. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ

Курсовые работы не предусмотрены

V.. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

Электронная информационно-образовательная среда университета обеспечивает доступ к электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочей программе дисциплины.

При использовании в образовательном процессе печатных изданий библиотечный фонд укомплектован печатными зданиями из расчета не менее 0,25 экземпляра каждого из изданий, указанных в рабочей программе дисциплины, на одного обучающегося из числа лиц, одновременно осваивающих соответствующую дисциплину.

Обучающимся обеспечен доступ к современным профессиональным базам данных и информационным справочным системам.

а) основная литература:

- 1. Вильмс, Алексей Иванович. Введение в координационную химию [Текст]: учеб. пособие / А. И. Вильмс; рец.: А. В. Иванов, Д. А. Матвеев; Иркутский гос. ун-т, Хитм. фак. Иркутск: Изд-во ИГУ, 2014. 116 с.; 20 см. ISBN 978-5-9624-1266-5;
- 2. Избранные главы координационной химии [Текст] : учеб. пособие / Иркут. гос. ун-т, Хим. фак. ; сост.: А. И. Вильмс, И. А. Бабенко. Иркутск : Изд-во ИГУ, 2017. 139 с. ; 20 см. ISBN 978-5-9624-1542-0;
- 3. Тоуб, Мартин. Механизмы неорганических реакций [Электронный ресурс] / М. Тоуб, авт. Дж. Берджесс = Inorganic reaction mechanisms. Москва : Лаборатория знаний (ранее "БИНОМ. Лаборатория знаний"), 2014. 678 с. : ил. ; 24. (Химия). Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=66360. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. Библиогр. в конце разделов и в подстроч. примеч. Пер. изд.: Inorganic reaction mechanisms / Tobe, Burgess. ISBN 978-5-9963-2520-7 4.Киселёв, Юрий Михайлович. Химия координационных соединений [Текст] : учеб. и задачник для бакалавриата и магистратуры : учеб. для студ. вузов, обуч. по естест.-науч. напр. и спец. / Ю. М. Киселёв ; МГУ им. М. В. Ломоносова, Моск. гос. ун-т тонких хим. технологий им. М. В. Ломоносова. М. : Юрайт, 2014. 657 с. : ил. ; 22 см. (Бакалавр и магистр. Академический курс). Библиогр.: с. 547-548. ISBN 978-5-9916-4164-7 :2экз

б) дополнительная литература:

- 5. Михайлов, Олег Васильевич. Систематика и номенклатура химических веществ [Электронный ресурс] : учеб. пособие / О. В. Михайлов. ЭВК. М. : Университет, 2008. 309 с. Режим доступа: Электронный читальный зал "Библиотех". ISBN 978-5-98227-161-7.
- 6. Федотов, М. А. Ядерный магнитный резонанс в неорганической и координационной химии [Электронный ресурс] / М. А. Федотов. Электрон. текстовые дан. Москва : ФИЗМАТЛИТ, 2010. 384 с. : ил. ЭБС "Айбукс". неогранич. доступ. ISBN 978-5-9221-1202-4
- 7. Шаулина, Людмила Павловна. Органические реагенты и комплексные соединения в аналитической химии [Электронный ресурс] : учеб. пособие / Л. П. Шаулина. ЭВК. Иркутск : ИГУ, 2012. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
 - 8. Михайлов, Олег Васильевич. Систематика и номенклатура химических веществ [Электронный ресурс] : учеб. пособие / О. В. Михайлов. ЭВК. М. : Университет, 2008. 309 с. Режим доступа: Электронный читальный зал "Библиотех". ISBN 978-5-98227-161-7.
 - 9. Черняк, Абрам Самуилович. Избранные главы неорганической химии [Электронный ресурс] : учеб. пособие / А. С. Черняк, Т. Н. Ясько ; Иркутский гос. ун-т, Науч. б-ка. Электрон. текстовые дан. Иркутск : Изд-во НБ ИГУ, 2005. 1 эл. опт. диск (CD-ROM) ; 12 см. (Труды ученых ИГУ). Систем. требования: процессор Pentium I и выше ; ОЗУ 64 Мб ; операц. система Windows 95/98/2000/ХР ; CD-ROM привод ; программа Adobe Acrobat Reader 3.0 и выше ; мышь. Режим доступа: . Загл. с этикетки диска. (в кор.)

- 10. Координационная химия [Текст] : Учеб. пособие / В. В. Скопенко [и др.]. М. : Академкнига, 2007. 487 с. : ил. ; 25 см. Библиогр. в конце глав. ISBN 978-5-94628-287-1 (2экз.);
- **11.** Киселёв, Юрий Михайлович. Химия координационных соединений [Текст]: учеб. и задачник для бакалавриата и магистратуры: учеб. для студ. вузов, обуч. по естест.-науч. напр. и спец. / Ю. М. Киселёв; МГУ им. М. В. Ломоносова,

в) Интернет-источники:

- 1. http://www.xumuk.ru/encyklopedia/2123.html
- 2. http://www.chem-astu.ru/chair/study/genchem/r5 1.htm
- 3. http://dic.academic.ru/dic.nsf/bse/97534/Комплексные

VI. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

Оборудование

<u>№</u> п/п	Наименование	Количество
1	Персональный компьютер	1
2	Мультимедийный проектор	1
3	Доска меловая	1

VII. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ:

- В процессе изучения дисциплины используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения. При прохождении дисциплины «Основы неорганического синтеза» предусмотрены
- 1) лекции с применением объяснительно-иллюстративных технологий и разбором конкретных ситуаций.
- 2) самостоятельная работа студентов, включающая подготовку к практическим занятиям в форме изучения теоретического материала лекций, выполнения домашних контрольных работ; подготовку к текущему контролю успеваемости;
- 3) консультирование студентов по изучаемым теоретическим и практическим вопросам.

VIII. ОЦЕНОЧНЫЕ СРЕДСТВА:

<u>Формы текущего контроля:</u> наличие конспектов, устный опрос. <u>Вид промежуточной аттестации:</u> зачет.

ТЕМАТИКА ЗАДАНИЙ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

➤ Центральный атом — комплексообразователь, лиганды, внутренняя и внешняя координационные сферы. Степень окисления и координационное число центральных ионов. Дентатность лигандов. Диссоциация в растворах комплексных частиц. Классификация и правила номенклатуры координационных соединений. Детальные, полные и сокращенные формулы координационных соединений.

- > Теория кристаллического поля. Объяснение спектральных и магнитных свойств комплексов. Проблема стабилизации состояний окисления комплексообразователей. Эффект Яна-Теллера.
- ▶ Метод валентных связей. Низко- и высокоспиновые комплексы. Внутри- и внешнеорбитальные комплексы.
- ➤ Теория поля лигандов как развитие теории кристаллического поля. Анализ возможностей и ограничений применения подходов к описанию химической связи в комплексных частипах.
- У Комплексообразователи и лиганды; изомерия координационных соединений
- ▶ Общая классификация лигандов. Лиганды молекулярных комплексов: атомы, ионы, дигомо-, полигомо- и гетероядерные неорганические молекулы, органические соединения. Амбидентатность лигандов.
- Металлоорганические соединения элементов главных подгрупп.
- **С**Основные аспекты применения координационных соединений. Комплексные соединения платины как противоопухолевые препараты. Проблемы разработки лекарственных форм на их основе.
- У Комплексы в гальванотехнике, аналитической химии и др. областях.
- ➤ Окислительно-восстановительные реакции. Внутрисферный и внешнесферный процессы переноса электрона. Влияние электронной конфигурации металла и координационной сферы на скорость процесса. Уравнение Маркуса.

ПРИМЕРНЫЙ СПИСОК ВОПРОСОВ К ЗАЧЕТУ

- 1. Комплексообразователь, лиганды, внутренняя и внешняя координационные сферы.
- 2. Степень окисления и координационное число центральных ионов. Дентатность лигандов. Диссоциация в растворах комплексных частиц.
- 3. Классификация и правила номенклатуры координационных соединений. Детальные, полные и сокращенные формулы координационных соединений.
- 4. Особенности комплексообразования в различных агрегатных состояниях (твердая, жидкая и газовая фазы).
- 5. Теория кристаллического поля. Объяснение спектральных и магнитных свойств комплексов. Проблема стабилизации состояний окисления комплексообразователей. Теория поля лигандов как развитие теории кристаллического поля.
- 6. Значения координационных чисел, характерные лиганды, устойчивости и геометрия комплексов, наиболее адекватные модели строения комплексов.
- 7. Щелочные и щелочно-земельные металлы как комплексообразователи. Типы образуемых комплексов и их устойчивость.
- 8. Координационные соединения р-элементов.

- 9. Особенности комплексообразования редкоземельных элементов (РЗЭ). Закономерности изменения устойчивости и строения координационных соединений в ряду РЗЭ, роль "лантаноидного" сжатия.
- 10. Общая классификация лигандов. Лиганды молекулярных комплексов: атомы, ионы, дигомо-, полигомо- и гетероядерные неорганические молекулы, органические соединения.
- 11. Амбидентатность лигандов. Хелатные лиганды, понятие о хелатном и полихелатном эффектах. Макроциклические лиганды, их классификация по Яцимирскому.
- 12. Макроциклический эффект. Лиганды комплексов с многоцентровыми координационными связями. Лиганды ди- и полиядерных комплексов.
- 13. Молекулы растворителей как лиганды сольватокомплексов. Донорная сила растворителей.
- 14. Типы изомерии координационных соединений: гидратная, ионизационная, координационная (в т.ч. координационная полимерия), структурная, изомерия связи, геометрическая, оптическая и конформационная.
- 15. Влияние типа изомерии координационного соединения на его физико-химические свойства.
- 16. Термодинамические характеристики реакций комплексообразования, их взаимосвязь. Константы устойчивости координационных соединений.
- 17. Основные факторы, влияющие на устойчивость комплексов. Ряд Ирвинга-Уильямса для изохорно-изозарядных ионов.
- 18. Температурные зависимости констант устойчивости как отражение ковалентного и электростатического вкладов в координационную связь.
- 19. Закономерности изменения последовательных констант устойчивости (статистическая и "химическая" компоненты, влияние природы лиганда, спинового состояния, гибридизации).
- 20. Общая стратегия применения физико-химических методов в координационной химии.
- 21. Координационные соединения в живых организмах.
- 22. Биометаллы, их краткая характеристика. Понятие о биокоординационной химии. Бикомплексы и биокластеры. Биокомплексы с анионами неорганических кислот.
- 23. Биокомплексы с аминокислотами и белками. Биокомплексы с порфиринами. Токсичность металлов: роль комплексообразования.
- 24. Основные аспекты применения координационных соединений. Комплексные соединения платины как противоопухолевые препараты. Проблемы разработки лекарственных форм на их основе.
- 25. Применение летучих координационных соединений в технологии получения материалов из газовой фазы (MOCVD).
- 26. Комплексные соединения в гальванотехнике, аналитической химии и др. областях.

Разработчик: к.х.н., доцент

Вильме А.И.

Программа рассмотрена на заседании кафедры общей и неорганической химии

24.04.2024 г. Протокол № 5

Зав. кафедрой, д.х.н., профессор

Сафронов А.Ю.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.