

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра общей и космической физики

Декан физического факультера (Н.М. В. днев

Паперный В.Л.

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): Б1.В.ДВ.05.01 Дополнительные главы физики плазмы

	_
Направление подготовки: 03.03.02 Физика	
Гип образовательной программы : академически	ий бакалавриат
Направленность (профиль): <u>Солнечно-земная ф</u>	изика
Квалификация выпускника: бакалавр	
Форма обучения: очная	
Согласовано с УМК:	Рекомендовано кафедрой:
физического факультета	общей и космической физики
Протокол № <u>25</u> от « <u>21</u> » <u>апреля</u> 2020 г.	Протокол № 7 от « 27 » марта 2020 г.
Председатель: д.фм.н., профессор	Зав.кафедрой д.фм.н., профессор

Н.М. Буднев

Содержание

1. Цели и задачи дисциплины (модуля)	3
2. Место дисциплины (модуля) в структуре ОПОП	3
3. Требования к результатам освоения дисциплины (модуля):	3
4. Объем дисциплины (модуля) и виды учебной работы	4
5. Содержание дисциплины (модуля)	5
5.1. Содержание разделов и тем дисциплины (модуля)	5
5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующ	цими)
дисциплинами (модулями)	5
5.3. Разделы и темы дисциплин (модулей) и виды занятий	6
6. Перечень семинарских, практических занятий и лабораторных работ	6
6.1. План самостоятельной работы студентов	6
6.2. Методические указания по организации самостоятельной работы студентов	7
7. Примерная тематика курсовых работ (проектов) (при наличии)	7
8. Учебно-методическое и информационное обеспечение дисциплины (модуля):	8
a) основная литература	8
б) дополнительная литература	8
в) программное обеспечение:	9
г) базы данных, информационно-справочные и поисковые системы	9
9. Материально-техническое обеспечение дисциплины (модуля):	9
10. Образовательные технологии:	9
11. Оценочные средства (ОС):	10
Лист согласования, дополнений и изменений	13
при пожение, фос	15

1. Цели и задачи дисциплины (модуля)

Одним из направлений модернизации российского образования является интеграция дисциплин естественнонаучного цикла. Данный курс соответствует этой концепции.

Цель программы - подготовка специалистов в области физики плазмы, газового разряда; разработки приборов и установок для создания, удержания и диагностики плазмы; плазменных технологий и математического моделирования закономерностей и явлений в плазме.

Задача курса: формирование физических представлений о закономерностях поведения плазмы в магнитном поле для применения этих знаний при работе в различных областях науки и техники.

2. Место дисциплины (модуля) в структуре ОПОП

Дисциплина «Дополнительные главы физики плазмы» относится к <u>вариативной части</u> <u>базового цикла (Б1.В.) дисциплин</u> и является дисциплиной по выбору (ДВ).

Курс излагается в седьмом семестре и дополняет дисциплину «Физика плазмы», изучаемую студентами в шестом семестре.

В курсе излагаются основные методы теоретического описания плазмы и на этой основе рассмотрены важнейшие процессы, определяющие свойства и динамику плазмы. Неотъемлемой частью курса являются практические семинарские занятия. Решение большого числа задач различной трудности позволяет студентам не только закрепить и расширить сведения, полученные в курсе «Физика плазмы», но и приобрести опыт самостоятельной работы над научными проблемами.

Программа курса ориентирована на тематику научных исследований базового института кафедры – Института солнечно-земной физики (ИСЗФ) СО РАН.

3. Требования к результатам освоения дисциплины (модуля):

Курс программирования, согласно положениям федерального государственного образовательного стандарта высшего профессионального образования при подготовке бакалавра по направлению 03.03.02 Физика, позволяет студенту приобрести следующие компетенции:

- способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2);
- способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3);

- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1).

В результате изучения курса "Доп.главы физики плазмы" (с учетом курса «Физика плазмы») студенты должны

знать:

- основные характеристики и параметры плазмы;
- виды дрейфа и оценка скорости движения частиц плазмы
- диффузия и оценка коэффициента диффузии плазмы;
- методы нагрева плазмы;
- критерий Лоусона;
- виды волн, распространяющихся в плазме;

уметь:

- рассчитывать характеристики плазмы по заданным параметрам;
- делать оценки скорости дрейфового движения частиц в плазме;
- объяснить влияние магнитных полей простой конфигурации на поведение плазмы;

иметь представление:

- о физике плазмы как разделе физики, ее задачах и методах их решения;
- об основных процессах переноса в плазме в магнитном поле и без него;
- о видах дрейфового движения частиц в плазме;
- о цепной реакции деления ядер;
- о способах нагрева и удержания плазмы;
- об устройствах, с помощью которых получают и удерживают плазму;
- о волновых процессах в плазме.

быть готовым к самостоятельному проведению исследований, использованию информационных технологий для решения научных и профессиональных задач

4. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего	Семестры			
	часов / зачетных единиц	7			
Аудиторные занятия (всего)	36/1.0	36			
В том числе:			-	-	-
Лекции					
Практические занятия (ПЗ)	32	32			
Семинары (С)					

Лабораторные работы (ЛР)					
КСР	4/0.11	4			
Самостоятельная работа (всего)	36/1.0	36			
В том числе:			-	-	-
Решение задач	34	34			
Подготовка к зачету	2	2			
Контактная работа (всего)	39.6	39.6			
Вид промежуточной аттестации (зачет, экзамен)					
Общая трудоемкость часы	72	72			
зачетные единицы	2	2			

5. Содержание дисциплины (модуля)

5.1. Содержание разделов и тем дисциплины (модуля)

<u>Тема 1</u>. Двухжидкостная гидродинамика.

- 5.1. Уравнения двухжидкостной гидродинамики.
- 5.2. Обобщенный закон Ома.
- 5.3. Проводимость плазмы.
- 5.4. Диффузия плазмы.
- 5.5. Волны в двухжидкостной плазме.

Тема 2. Кинетическое описание плазмы.

- 6.1. Кинетическое уравнение
- 6.2. Затухание Ландау.
- 6.3. Пучковая неустойчивость.
- 6.4. Квазилинейная релаксация.
- 6.5. Циклотронный резонанс.

<u>Тема 3</u>. Нелинейные процессы в плазме.

(последующих) дисциплин не имеется.

- 7.1. Трехволновые процессы.
- 7.2. Бесстолкновительные ударные волны.
- 7.3. Турбулентность плазмы.
- 7.4. Аномальное сопротивление.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами (модулями)

Курс «Доп.главы физики плазмы» является неотъемлемой частью образовательного цикла по кафедре общей и космической физики по профилю «Солнечно-земная физика». Дисциплина преподаётся на четвертом курсе обучения бакалавров, обеспечиваемых

5.3. Разделы и темы дисциплин (модулей) и виды занятий

No	Наименование	Наименование		Виды занятий в часах											
Π/Π	раздела	темы	Лекц. Практ. зан.	Практ.	Практ. Семин	Лаб.	CPC	Всего							
11/11				лскц.	лскц.	зан.	зан.	зан.	зан.	зан.	зан.	ССМИН	ССМИН	зан.	CFC
1.	Двужидкостная	Двужидкостная		12			12	24							
	гидродинамика	гидродинамика		12			12	24							
	Кинетическое	Кинетическое													
2.	описание	описание		12			12	24							
	плазмы	плазмы													
	Нелинейные	Нелинейные													
3.	процессы в	процессы в		12			12	24							
	плазме	плазме													

6. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров,	Труд	Оценочные	Форм
Π/Π	темы	практических и лабораторных	оемк	средства	ируем
	дисциплины	работ	ость		ые
	(модуля)		(часы		компе
)		тенци
					И
1	2	3	4	5	6
4.	Тема 5	Решение задач на тему двужидкостная гидродинамика	12	Контрольная работа	ПК1
5.	Тема 6	Решение задач на тему кинетическое описание плазмы	12	Контрольная работа	ОПК2
6.	Тема 7	Решение задач на тему нелинейные процессы в плазме	12	Контрольная работа	ОПК3

6.1. План самостоятельной работы студентов

<u>No</u>	Тема	Вид	Задание	Рекомендуемая	Количество
нед.		самостоятельной		литература	часов
		работы			
1.	Двужидкостная	Самостоятельное	Решить	[1-3]	12
	гидродинамика	решение задач по данной теме	задачу		
2.	Кинетическое	Самостоятельное	Решить	[1-3]	8
	описание	решение задач по	задачу		
	плазмы	данной теме			
	**			50.43	
3.	Нелинейные	Самостоятельное	Решить	[3,4]	8
	процессы в плазме	решение задач по данной теме	задачу		
4.	Избранные	Подготовка	Сделать	Вся литература	6
	вопросы	научного доклада	презентацию	из программы	
	физики			курса	
	плазмы				
5.	ВСЕ ТЕМЫ	Подготовка к	Повторить	Основная	2
		зачету	все разделы	литература: 1 - 4	
			курса		

6.2. Методические указания по организации самостоятельной работы студентов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий, написание курсовых и выпускных квалификационных работ. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

При выполнении практических заданий обращается особое внимание на выработку у студентов умения грамотно выполнять и оформлять документацию, умения пользоваться научно-технической справочной литературой. Каждый студент должен быть готов к показательному решению задачи у доски.

Текущая работа над учебными материалами включает в себя систематизацию теоретического материала, полученного на каждом практическом занятии, заполнения пропущенных мест, уточнения схем и выделения главных мыслей основного содержания работы. Для этого используются имеющиеся учебно-методические материалы и другая рекомендованная литература.

Оценка всего изученного материала осуществляется на зачете, проводимом в форме контрольной работе. Также может быть проведен опрос по всем темам курса. Преподаватель помогает разобраться с проблемными вопросами и задачами (по мере их поступления) в ходе текущих консультаций.

7. Примерная тематика курсовых работ (проектов) (при наличии)

Курсовые работы не планируются.

8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

- а) основная литература
 - 1) Голант, В. Е. Основы физики плазмы [Электронный ресурс] : учеб. пособие / В. Е. Голант, А. П. Жилинский, И. Е. Сахаров. Москва : Лань, 2011. 448 с. : ил., граф. (Учебники для вузов. Специальная литература). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1198-6
 - 2) Рожанский, В. А. Теория плазмы [Электронный ресурс] / В. А. Рожанский. Москва : Лань, 2012. 320 с. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1233-4

б) дополнительная литература

1) Морозов, А.И. Введение в плазмодинамику [Текст] : научное издание / А. И. Морозов. - М. : Физматлит, 2006. - 572 с. : ил. ; 24 см. - Библиогр.: с. 562-571. - ISBN 5-9221-0681-3.

.-(6 экз) Сверено с У15 ИГУ Д

в) программное обеспечение:

стандартные сервисы глобальной сети Интернет, стандартные средства просмотра презентаций и научных публикаций в электронном виде.

- г) базы данных, информационно-справочные и поисковые системы
 - Научная электронная библиотека eLIBRARY.RU, более 10 полнотекстовых версий научных журналов по тематике курса
 - В системе образовательного портала ИГУ (http://educa.isu.ru/) размещены методические материалы и задания по дисциплине Б1.В.ДВ.5.1 «Доп.главы физики плазмы».
 - Архив научных журналов JSTOR (http://www.jstor.org.)
 - Архив научных журналов JSTOR (<u>http://www.jstor.org</u>.)
 - ЭЧЗ «Библиотех» https://isu.bibliotech.ru/
 - ЭБС «Лань» http://e.lanbook.com/
 - ЭБС «Руконт» <u>http://rucont.ru</u>
 - ЭБС «Айбукс» http://ibooks.ru

9. Материально-техническое обеспечение дисциплины (модуля):

На практических занятиях в качестве демонстрационного оборудования используется меловая доска. Наглядность обеспечивается путем изображения схем, диаграмм и формул с помощью мела. Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов, в ходе которой они могут вычитывать научные статьи по темам курса. Также могут использоваться мультимедийные средства: проектор (CASIO XJ-A241), переносной настенный экран (Classic Solution, 244х244), ноутбук Lenovo B590. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы.

<u>Материалы</u>: научные статьи и монографии из рецензируемых журналов, рассматривающие современные походы и исследования в физике плазмы (в печатном и в электронном виде).

10. Образовательные технологии:

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине, а также на умение работать с материалом научных статей;
- текущий контроль за деятельностью студентов осуществляется на практических

занятиях в ходе самостоятельного решения задач, в том числе у доски.

11. Оценочные средства (ОС):

Фонд оценочных средств (ФОС) представлен в приложении 1.

11.1. Оценочные средства для входного контроля

Для изучения данного курса студент должен знать основы физики и информатики, уметь пользоваться стандартными поисковыми сервисами сети Интернет. Входной контроль знаний не проводится.

11.2. Оценочные средства текущего контроля

Пример практического задания

ЗАДАНИЕ 1 Характеристики плазмы

УСТНО:

- 1. Понятие квазинейтральности плазмы, пространственный масштаб разделения зарядов, радиус Дебая, временной масштаб разделения зарядов.
- 2. Дебаевское экранирование заряда в плазме.
- 3. Плазменная частота, плазменные колебания.

письменно:

- 1. Полностью ионизованная плазма получена из водорода, находящегося первоначально при комнатной температуре и давлении 1 торр. Найти напряженность электрического поля E [B/cм] и потенциал φ [B], возникающих при масштабе разделения зарядов $x\sim0,1$ см
- 2. Получить расчетную формулу для вычисления радиуса Дебая r_{D} . Найти r_{D} для типичных значений плотности и температуры плазмы газового разряда, термоядерной и космической плазмы.
- 3. Получить расчетную формулу для вычисления плазменной частоты ω_p . Найти ω_p для типичных значений плотности и температуры плазмы газового разряда, термоядерной и космической плазмы.

Примерный список устных вопросов:

- 1. Распределение потенциала пробного заряда в плазме.
- 2. Радиус Дебая. Зависимость от концентрации заряженных частиц и их температуры.
- 3. Плазменная частота. Ленгмюровские колебания.
- 4. Плазма и идеальный газ. Что общего?
- 5. Тепловая и кулоновская энергия плазмы.
- 6. Формула Саха.

- 7. Гирочастота и гирорадиус.
- 8. Что такое «конус потерь»?
- 9. Общее выражение для скорости дрейфового движения.
- 10. Приближения магнитной гидродинамики для плазмы.
- 11. Закон вмороженности магнитного поля.
- 12. Магнитное давление и натяжение силовых линий.
- 13. Диффузия магнитного поля.
- 14. Выражение для проводимости плазмы.
- 15. Классическая и неоклассическая диффузия в плазме.
- 16. Амбиполярная диффузия.
- 17. Условие равновесия плазмы в магнитном поле.
- 18. Соотношение Беннетта для пинча.
- 19. Альфвеновские м магнитозвуковые волны.
- 20. Неустойчивость Релея-Тейлора.
- 21. Неустойчивость Кельвина-Гельмгольца.
- 22. Электромагнитная волна в плазме. Метод отсечки.
- 23. Взаимодействие волна частица.
- 24. Квазилинейная релаксация пучка в плазме.
- 25. Параметрическая неустойчивость.
- 26. Турбулентная диффузия.

11.3. Оценочные средства для промежуточной аттестации

Итоговая оценка знаний проводится с учётом классической балльно-рейтинговой системы, рекомендуемой Минобразования РФ (Приказ МО РФ от 11.07.2002) и формируется в соответствии положением о балльно-рейтинговой системе оценки успеваемости обучающихся в ИГУ.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

No	Вид контроля	Контролируемые темы (разделы)	Компетенции,
п\п			компоненты которых
			контролируются
	Решение задач по	Тема 1	
1.	теме «Двужидкостная	1 CMa 1	ОПК2, ОПК3, ПК1
	гидродинамика»		
	Решение задач по	Тема 2	
2.	теме «Кинетическое	1 CMa 2	ОПК2, ОПК3, ПК1
	описание плазмы»		
	Решение задач по	Тема 3	
3.	теме «Нелинейные	1 сма 3	ОПК2, ОПК3, ПК1
	процессы в плазме»		

4.	Опрос	Все темы	ОПКЗ, ПК1
5.	Зачет	Все темы	ОПКЗ, ПК1

Примерный список вопросов к экзамену:

- 1) Плазма четвертое состояние вещества. Ионизованный газ. Квазинейтральность, экранировка заряда, дебаевский радиус. Основные характеристики плазмы. Роль магнитного поля.
- 2) Элементарные процессы в плазме. Упругие и неупругие соударения. Ионизация, возбуждение, рекомбинация и перезарядка. Формула Саха. Излучение плазмы. Фотохимия. Процессы переноса.
- 3) Движение частиц плазмы в электрических и магнитных полях Движение в однородных полях. Адиабатический инвариант. Магнитная ловушка. Электрический дрейф в неоднородном магнитном поле
- 4) Магнитная гидродинамика. Уравнения магнитной гидродинамики. Вмороженность плазмы. Диффузия магнитного поля. Равновесие плазмы в магнитном поле. Гидромагнитные неустойчивости. Гидромагнитные волны.
- 5) Двухжидкостная гидродинамика. Уравнения двухжидкостной гидродинамики. Обобщенный закон Ома. Проводимость плазмы. Диффузия плазмы. Электромагнитные, плазменные и ионно-звуковые волны.
- 6) Кинетическое описание плазмы. Кинетическое уравнение. Затухание Ландау. Пучковая неустойчивость. Квазилинейная релаксация. Циклотронный резонанс.
- 7) Нелинейные процессы в плазме. Трехволновые процессы. Бесстолкновительные ударные волны. Турбулентность плазмы. Аномальное сопротивление.

Пример тестовых заданий для проверки сформированности компетенций, указанных выше п.3:

- 1. Может ли ток в плазме течь только поперек магнитного поля?
 - 1) Не может,
 - 2) Может, когда циклотронная частота электронов много больше частоты столкновений;
 - 3) Может, в обратном случае;
 - 4) Может, когда циклотронная частота электронов много больше ленгмюровской частоты
- 2. Затухание Ландау происходит в случае
 - 1) Большой частоты столкновений электронов с ионами;
 - 2) Положительного наклона функции распределения частиц в области резонанса с волной;
 - 3) Отрицательного наклона функции распределения частиц в области резонанса с волной;
 - 4) Плато на функции распределения частиц в области резонанса с волной
- 3. В солитоне
 - 1) эффект нелинейности волны доминирует над дисперсией;
 - 2) дисперсия доминирует над нелинейностью;
 - 3) нелинейность в точности компенсируется дисперсией;
 - 4) диссипативными эффектами пренебрегается

Разработчики:	профессор, д.фм.н.	В.Л., Паперный
Программа рассмотрена на заседани « <u>27</u> » <u>марта</u> 2020_г.	и <u>кафедры общей и космической</u>	физики ИГУ
Протокол №, зав. кафедрой	В.Л. Папери	ный

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.