

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ

Декан физического факультета

/Н.М. Буднев

«02» апреля 2025 г.

Физический

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.ДВ.03.01 Квантовая электродинамика

Направление подготовки: 03.03.02 Физика

Направленность (профиль) подготовки: Фундаментальная физика и физика Космоса

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №49 от «26» марта 2025 г.

Председатель

Н.М.Буднев

Рекомендовано кафедрой:

Протокол №6

От «24» марта 2025 г.

Зав. кафедрой

С.В. Ловцов

Иркутск 2025 г.

Содержание

I. Цели и задачи дисциплины
II. Место дисциплины в структуре ОПОП
III. Требования к результатам освоения дисциплины
IV. Содержание и структура дисциплины (модуля)
4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных
занятий и отведенного на них количества академических часов4
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине4
4.3. Содержание учебного материала5
4.3.1. Перечень семинарских, практических занятий, лабораторных работ5
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в
рамках самостоятельной работы (СРС)6
4.4 Методические указания по организации самостоятельной работы студентов7
4.5. Примерная тематика курсовых работ7
V. Учебно-методическое и информационное обеспечение дисциплины
а) список литературы
б) периодические издания
в) список авторских методических разработок
г) базы данных, информационно-справочные и поисковые системы
VI. Материально-техническое обеспечение дисциплины
VII. Образовательные технологии
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации9
Приложение: фонд оценочных средств

I. Цели и задачи дисциплины

Квантовая электродинамика является наиболее развитой теорией поля, которая имеет применения для широкого круга физических явлений и предсказания которой проверены с рекордной точностью. Кроме того, она является относительно простым полигоном для изучения методов, применимых для неабелевых калибровочных полей.

В этом курсе впервые встречаются многие понятия, такие, как диаграммы Фейнмана, лагранжиан взаимодействия и т.д.

Цели курса

Целью курса «Квантовая электродинамика» является изучение методов квантовой теории поля и основных квантовоэлектродинамических явлений. Знания, полученные при изучении курса «Квантовая электродинамика» формируют физическую культуру.

Задачи курса

Данный курс призван решать следующие задачи:

- изучение методов квантовой теории поля
- знакомство с основными физическими явлениями, описываемыми квантовой электродинамикой
- формирование у студентов умений и навыков самостоятельного вычисления КЭД эффектов;
- изучение методов высших порядков теории возмущений;

Программа ориентирована на развитие у студентов интереса к самостоятельному изучению фундаментальных основ науки.

II. Место дисциплины в структуре ОПОП

«Квантовая электродинамика» относится к дисциплинам, формируемым участниками образовательного процесса. При изучении курса «Квантовая электродинамика» используются знания, приобретенные при изучении основных физических и математических курсов, а также спецкурсов по релятивистской квантовой теории и теории излучения. Курс «Квантовая электродинамика» является базовым для изучения такого курса как «Слабые взаимодействия», а также курсов по физике частиц и астрофизике.

III. Требования к результатам освоения дисциплины

Перечень планируемых результатов обучения по дисциплине, соотнесенных о индикаторами достижения компетенций

Компетенция	ПК-1: Способен использовать специализированные знания в области физики и астрофизики для освоения профильных физических дисциплин.				
Индикаторы компетенции	ИДК _{пк 1.1} Способен проводить анализ научных данных, результатов экспериментов и наблюдений, используя специализированные знания в области физики и астрофизики. ИДК _{пк1.2} Способен проводить анализ новых направлений исследований и опытно-конструкторских разработок в соответствующей области знаний.				
Результаты обучения	Знает: основные типы взаимодействий и методы вычислений в квантовой теории поля, основные проблемы квантовой теории поля. Умеет: использовать математический аппарат для решения задач КЭД. Владеет: навыками вычисления сечений и вероятностей распадов, методами вычислений петлевых поправок.				

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 4 зачетных единиц, 144 ч., в том числе 95 часов контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 50 часов.

Форма промежуточной аттестации: экзамен.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Разде л дисц ипли ны/те мы	C e M e c T p	Вс ег о ча со в	Из них практ ическ ая подго товка обуча ющи хся	Виды учебной работы, включая самостоятельную работу обучающихся , практическую подготовку и трудоемкость (в часах) Контактная работа преподавателя с обучающимися Лекции Семинарские /практические /лабораторные занятия				Формы текущего контроля успеваемости; Форма промежуточно й аттестации (по семестрам)
1	1-18	7	144	50	34	50	1	23	Практическое задание; вопросы к экзамену
Итого: 144 3		50	34	50	1	23			

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

Семестр	Название	Самостоятельная работа обучающихся			Оценочное	Учебно-	
	раздела, темы	Вид самостоятельн ой работы	Сроки выполнения	Трудоемксть (час.)	средство	методическое обеспечение самостоятельн ой работы	
7	Тема 1-18	Задание в виде задачи	После пройденных тем	23	Демонстрация готовых решений	Источники из основной и дополнительно й литературы по теме практических занятий; Образовательные ресурсы, до-ступные по логину и паролю, предоставляемым Научной библиотекой ИГУ.	

4.3. Содержание учебного материала

Содержание разделов и тем дисциплины

Раздел 1. ОСНОВНЫЕ ЭЛЕКТРОДИНАМИЧЕСКИЕ ЯВЛЕНИЯ

- 1. Правила Фейнмана КЭД
- 2. Комптон-эффект, вычисление матричного элемента.
- 3. Сечение Комптон-эффекта для неполяризованных частиц.
- 4. Сечение e⁺e⁻
- 5. Тормозное излучение на ядре.
- 6. Тормозное излучение на ядре. Формфакторы.
- 7. Метод эквивалентных фотонов.

Раздел 2. ВЫСШИЕ ПОРЯДКИ ТЕОРИИ ВОЗМУЩЕНИЙ

- 8. Альфа-представление.
- 9. Методы регуляризации.
- 10. Аналитические свойства собственно-энергетической части, правило вычисления скачка.
- 11. Вычисление поляризационного оператора.
- 12. Тождество Уорда, теорема Фарри.

Раздел 3. ПЕРЕНОРМИРОВКИ В КЭД

- 13. Уравнения Дайсона-Швингера.
- 14. Расходимости в КЭД.
- 15. Мультипликативная перенормировка.
- 16. Логарифмическая асимптотика фейнмановских интегралов.
- 17. Главное логарифмическое приближение, уравнение Гелл-Мана Лоу.
- 18. Ренормрупповые уравнения.

4.3.1. Перечень семинарских, практических занятий, лабораторных работ

№	№ раздела и	Наименование семинаров,	Трудоем	Оценочные	Формируемые
п/п	темы	практических и лабораторных	кость	средства	компетенции
	дисциплины	работ	(часы)		
	(модуля)				
1	2	3	4	5	6
1.	Раздел 1, Тема	Правила Фейнмана КЭД	2	Задание на	ПК-1
	1			семинаре в	
				виде задачи	
2.	Раздел 1, Тема	Вычисление квадрата	2	Задание на	ПК-1
	2	амплитуды Комптон-эффекта.		семинаре в	
		Знакомство с REDUCE		виде задачи	
3.	Раздел 1, Тема	Вычисление сечения. Учет	2	Задание на	ПК-1
	3	поляризации фотонов.		семинаре в	
				виде задачи	
4.	Раздел 1, Тема	Сечение рождения мюонов.	2	Задание на	ПК-1
	4	Угловые распределения.		семинаре в	
				виде задачи	
5.	Раздел 2, Тема	Предел мягких фотонов в	3	Задание на	ПК-1
	5	тормозном излучении.		семинаре в	
				виде задачи	
6.	Раздел 2, Тема	Структура мишени и	3	Задание на	ПК-1
	6	формфактор.		семинаре в	
				виде задачи	
7.	Раздел 2, Тема	Метод эквивалентных фотонов:	3	Задание на	ПК-1
	7	рождение тормозного фотона		семинаре в	
		на ядре.		виде задачи	

				1	
8.	Раздел 3, Тема 8	Петлевые вклады, виды регуляризаций.	3	Задание на семинаре в виде задачи	ПК-1
9.	Раздел 3, Тема 9	Методы вычислений: фейнмановская параметризация.	3	Задание на семинаре в виде задачи	ПК-1
10.	Раздел 3, Тема 10	Вычисление скачка амплитуды и унитарность.	3	Задание на семинаре в виде задачи	ПК-1
11.	Раздел 3, Тема 11	Поляризационный оператор и размерная регуляризация.	3	Задание на семинаре в виде задачи	ПК-1
12.	Раздел 4, Тема 12	Теорема Фарри для 3-фотонной амплитуды, проверка.	3	Задание на семинаре в виде задачи	ПК-1
13.	Раздел 4, Тема 13	Поправка к закону Кулона	3	Задание на семинаре в виде задачи	ПК-1
14.	Раздел 4, Тема 14	Контрольная работа	3	Задание на семинаре в виде задачи	ПК-1
15.	Раздел 4, Тема 15	Константы перенормировки и калибровочная инвариантность.	3	Задание на семинаре в виде задачи	ПК-1
16.	Раздел 4, Тема 16	Асимптотика петлевых вкладов в вершину и пропагаторы.	3	Задание на семинаре в виде задачи	ПК-1
17.	Раздел 5, Тема 17	Решение ренормгрупповых уравнений в 1-петлевом приближении.	3	Задание на семинаре в виде задачи	ПК-1
18.	Раздел 5, Тема 18	Контрольная работа.	3	Задание на семинаре в виде задачи	ПК-1

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

No	Тема	Вид	Задание	Рекомендуема	Количес
нед.		самостоятель ной работы		я литература	тво часов
1	Правила Фейнмана		Правила Фейнмана для различных теорий	Источники из основной и	2
2	Правила Фейнмана		Учет поляризации	дополнительно	2
3	Квадрат амплитуды	Внеаудиторн ая, решение	Знакомство с REDUCE, использование для вычислений.	й литературы по теме практических	2
4	Амплитуда в КЭД	задач	Мнимые части графиков	занятий; Образовательн	2
5	Кинематика		Инвариантные переменные и физические области	ые ресурсы, доступные по	2
6	Процессы КЭД		Позитроний, квантовые числа, моды распада.	логину и паролю,	1

7	Процессы КЭД	Образование пар фотоном в		1
		поле ядра.		1
8	Процессы КЭД	Метод эквивалентных	1	1
		фотонов, спектр фотонов.		1
9	Процессы КЭД	Аннигиляция позитрония		1
10	Процессы КЭД	Разложение по		1
		парциальным волнам.		
11	Процессы КЭД	Электрон в поле плоской		1
		электромагнитной волны.		
12	Процессы КЭД	Вычисление 4-мерных		1
		интегралов		
13	Высшие порядки	Аналитические свойства		
	TB	поляризационного	предоставляем	1
		оператора.	ым Научной	
14	Высшие порядки	Вычисление индекса	библиотекой	1
	TB	расходимости диаграммы	ИГУ и	
15	Высшие порядки	Перенормировка на	Сторонние	1
	TB	массовой поверхности.	сайты	
16	Высшие порядки	Контрчлены в лагранжиане.		1
	TB			
17	Высшие порядки	Свойства размерной		1
	TB	регуляризации		
18	Высшие порядки	Ренормгрупповые		1
	TB	уравнения		

4.4 Методические указания по организации самостоятельной работы студентов

Студентам для самостоятельного углубленного изучения дисциплины (параллельно с лекциями) предлагаются задачи по изучаемым разделам и график их изучения. Предполагается, что студент самостоятельно изучит дополнительные параграфы по пройденной теме, а затем решит предложенные задачи, методы решения которых частично обсуждаются на семинарах. Оценка самостоятельной работы студентов проводится в виде контрольных опросов на практических занятиях.

4.5. Примерная тематика курсовых работ

Учебным планом не предусмотрено написание курсовых работ.

V. Учебно-методическое и информационное обеспечение дисциплины

а) список литературы

основная литература

- 1. Топтыгин И.Н. Современная электродинамика / И. Н. Топтыгин. Ижевск: Регулярная и хаотич. динамика. Ч.2: Теория электромагнитных явлений в веществе: учеб. пособие. 2005. 848 с. (3)
- 2. <u>Ландау, Лев Давидович</u>. Теоретическая физика: учеб. пособие: в 10 т. / Л. Д. Ландау, Е. М. Лифшиц. 4-е изд., испр. М.: Наука. Физматлит, 2006.
- Т.4: Квантовая электродинамика [Электронный ресурс] / Б. В. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. 2006. 720 с. : ил. (Теоретическая физика ; том IV). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ.

дополнительная литература:

1. <u>Ландау, Л.Д.</u> Теоретическая физика: В 10 т. / Л.Д. Ландау, Е.М. Лифшиц. - М. : Наука. - Т. 4 : Квантовая электродинамика / В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский и др. - 3-е изд., испр. . - 1989. - 723 с. - ISBN 5-02-014422-3 (20 экз.)

б) периодические издания

- нет

в) список авторских методических разработок

- нет

г) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

- https://isu.bibliotech.ru/ ЭЧЗ «БиблиоТех»;
- http://e.lanbook.com ЭБС «Издательство «Лань»;
- http://rucont.ru ЭБС «Руконт» межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;
- http://ibooks.ru/ ЭБС «Айбукс» интернет ресурсы в свободном доступе.

VI. Материально-техническое обеспечение дисциплины

Учебная аудитория для проведения занятий. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук. Использование глобальной компьютерной сети позволяет обеспечить доступность интернет-ресурсов и реализовать самостоятельную работу студентов. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

VII. Образовательные технологии

При изучении данной дисциплины используются следующие образовательные технологии:

- 1. Лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач
- 2. Практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- 3. Консультации еженедельно для всех желающих студентов; Компьютерные симуляции для демонстрации различных механических процессов.
- 4. Текущий контроль за деятельностью студентов осуществляется в основном на практических занятиях при дискуссии о результатах выполненных практических работ.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

Фонд оценочных средств представлен в приложении.

Оценочные средства текущего контроля — контрольные работы.

Форма проведения промежуточной аттестации — экзамен.

Варианты задач для контрольной работы

- 1. Нарисовать все диаграммы низшего порядка
 - а) для процесса $e^+e^ e^+e^-$,
 - б) для процесса $e^+e^ \mu^+\mu^-$.

Написать матричный элемент для одной из них.

2. Написать матричный элемент диаграммы, содержащей петлевую поправку к фотонному пропагатору.

Примерный перечень вопросов к экзамену

- 1. Правила Фейнмана вычисления матричных элементов в импульсном представлении.
- 2. Калибровочная инвариантность матричных элементов.
- 3. Вычисление сечения.
- 4. Атомный формфактор, формфакторы нуклона.
- 5. Тормозное излучение при рассеянии на ядре.
- 6. Переход к альфа-представлению в петлевых интегралах.
- 7. Регуляризации петлевых вкладов.
- 8. Виковский поворот, переход к евклидову пространству.
- 9. Аналитические свойства, правила Ландау-Куткоски.
- 10. Размерная регуляризация.
- 11. С-четность и теорема Фарри.
- 12. Тождество Уорда в КЭД.
- 13. Вычисление поляризационного оператора.
- 14. Метод эквивалентных фотонов.
- 15. Альфа-представление для петлевых вкладов.
- 16. Феймановская параметризация.
- 17. Размерная регуляризация.
- 18. Индекс расходимости диаграммы.
- 19. Перенормировка и контрчлены в лагранжиане.
- 20. Перенормировка вычитанием на массовой поверхности.
- 21. Мультипликативная перенормировка.
- 22. Логарифмическая асимптотика диаграмм в КЭД.
- 23. Уравнения Дайсона-Швингера.
- 24. Полные пропагаторы и вершины.
- 25. Уравнение Гелл-Мана Лоу.
- 26. Нуль заряда в КЭД.

Пример тестовых заданий для проверки сформированности компетенций, указанных выше n.3:

1. Уравнение Шредингера, описывающее эволюцию квантовой волновой функции состояния системы...

$$i\hbarrac{\partial}{\partial t}\Psi=\hat{H}(p,q)\Psi,$$

- а) Постулируется, в нерелятивистском пределе воспроизводит классические результаты
- б) Напрямую следует из уравнений классической теории, полностью повторяет классические результаты
- в) Напрямую следует из уравнений классической теории, его результаты противоречат результатам классических уравнений
- 2. При распаде отрицательно заряженного мюона образуются мюонное нейтрино, ...
- а) ... электрон и электронное антинейтрино

- б) ... протон и фотон
- в) ... нейтрон и фотон
- 3. Позитрон можно охарактеризовать как
- а) фермион со спином ½, электрическим зарядом +е
- б) бозон со спином 1, электрическим зарядом -е
- в) фермион со спином ½, электрическим зарядом -е

Разработчики:

доцент кафедры теоретической физики А.А. Шишмарев

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 Физика.

Программа рассмотрена на заседании кафедры теоретической физики «24» марта 2025 г.

Протокол №6 Зав. кафедрой _____ С.В. Ловцов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.