

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ

Декан физического факультета

/Н.М. Буднев

«22» апреля 2020 г.

Физический факультет

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.ДВ.02.02 Теория групп

Направление подготовки: 03.03.02 Физика

Тип образовательной программы: Академический бакалавриат

Направленность (профиль) подготовки: Физика конденсированного состояния

Н.М. Буднев

Квалификация (степень) выпускника: Бакалавр

Форма обучения:

Очная

Согласовано с УМК физического факультета

Протокол №25 от «21» апреля 2020 г.

Рекомендовано кафедрой:

Протокол №8

От «14» апреля 2020 г.

И.о. зав. кафедрой

Иркутск 2020 г.

Содержание

1. Цели и задачи дисциплины	3
2. Место дисциплины в структуре ОПОП:	
3. Требования к результатам освоения дисциплины	3
4. Объем дисциплины и виды учебной работы	4
5. Содержание дисциплины	4
6. Перечень семинарских, практических занятий и лабораторных работ	5
7. Примерная тематика курсовых работ (проектов)	6
Учебным планом написание курсовых работ не предусмотрено	6
8. Учебно-методическое и информационное обеспечение дисциплины	7
9. Материально-техническое обеспечение дисциплины	8
10. Образовательные технологии:	8
11. Оценочные средства (ОС)	8
Приложение: фонд оценочных средств	

1. Цели и задачи дисциплины

Программа предназначена для подготовки магистров физики. Курс "Теория групп" читается на 3 курсе (6-й семестр). Фундаментальная подготовка специалистов по теоретической физике физического факультета предполагает продолжение систематического образования в области теоретической физики, включая ее классический раздел – теория групп

Цели курса

Цель курса - овладение аппаратом теории групп и его приложение в физике элементарных частиц, дифференциальных уравнений, а также полей, изучаемых в механике сплошной среды

Задачи курса

Первая часть посвящена задаче изучения теории групп в классическом виде.

Во второй части курса изучаются задачи разделения переменных дифференциальных уравнений в частных производных, классификация элементарных частиц по представлениям групп Ли. Анализ вторично-квантованных систем методами теории групп.

2. Место дисциплины в структуре ОПОП:

Дисциплина «Теория групп» является обязательной в вариативной части общенаучного цикла ОПОП. Изучение разделов курса предполагает использование полученных основных знаний, умений и компетенций на последующем уровне образования.

- 1. Для изучения дисциплины, необходимы знания и умения из читаемой на первом курсе дисциплин «Математический анализ» «Линейная алгебра».
- 2. Знания и умения, приобретаемые студентами после изучения дисциплины, будут использоваться при изучении Теоретических курсов физики.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-2: способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей

ПК-1: способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин

Знать: основные определения и понятия теории групп и их представлений

Уметь: использовать знания для решения задач теоретической физики и в образовательной деятельности

Владеть: навыками использования предметной терминологии при решении различных задач математики и теоретической физики

Знать: основные матричные группы, связи группы Ли и алгебры Ли, свойства генераторов и структурных констант

Уметь: решать задачи по всем разделам курса

Владеть: навыками использования предметной терминологии при решении различных задач математики и теоретической физики

4. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего часов / зачет- ных единиц	Семестр	
	пол сдини	8	
Аудиторные занятия (всего)	44/1,2	44	
Лекции	22 / 0.6	22	
Практические занятия (ПЗ)	22/0,6	22	
КСР			
Самостоятельная работа (всего)	64 / 1,8	64	
Вид промежуточной аттестации (экзамен)	36/1	36	
Контактная работа	50/1,4	50	
Общая трудоемкость часы / зачетные единицы	144/4	144	

5. Содержание дисциплины

5.1. Содержание разделов и тем дисциплины

- 1. **Основные понятия и общие свойства алгебр** Ли. Аксиомы, понятие об структурных константах, идеале. Базис Вейля. Классические комплексные алгебры Ли An, Bn, Cn, Dn). Принцип эквивалентности. Фактор-пространство и Фактор алгебра. Операции над алгебрами, прямая и полупрямая сумма алгебр. Фактор алгебра, дифференцирование. Представление алгебр Ли. Разрешимые, нильпотентные, полупростые и простые алгебры Ли. Теорема Адо. Разрешимые и нильпотентные алгебры Ли. Форма Киллинга. Простые и полупростые алгебры Ли.
- 2. Структура алгебр Ли. Теорема Леви-Мальцева об разложении произвольной алгебры Ли. Классификация простых комплексных алгебр Ли. Система корней. Схемы Дынкина. Вещественные формы комплексных алгебр ли и их классификация. Разложения Картана, Гаусса, Ивасана.
- 3. Элементы теории представлений алгебр Ли. Веса, старшие веса, их свойства. Фундаментальные представления. Конечномерные неприводимые представления алгебр sl(2,C) и sl(3,C). Компактные вещественные формы, фундаментальные представления su(3). Тензорные произведения представлений и разложение их на неприводимые, схемы Юнга. Элементы Казимира и их собственные значения. Универсальная обертывающая алгебра.
- 4. **Группы Ли.** Дифференцируемые многообразия. Касательные пространства и векторные поля, преобразование векторных полей. Мера Хаара, группы Ли. одно параметрические подгруппы. Алгебры и группы Ли. Присоединенная группа. Прямое и полупрямое произведение групп Ли. Разложение Леви-Мальцева. Разложение Гаусса, Картана, Ивасана и Брюа. Классификация простых групп Ли. Инвариантная мера и инвариантная метрика на группах Ли. Экспоненциальное отображение, формула Кемпена-Хаусдорфа.
- 5. **Представление групп Ли.** Общие свойства неприводимых представлений, сплетающий оператор. Леммы Шура. Теорема Бернеайда. Регулярные представления. Унитарные представления. Инфинитезимальный метод. Унитарный трюк. Индуцированные представления. Алгебраическая конструкция индуцированных представлений. Простейшие свойства, метод малой группы.

- 6. Элементарные частицы и неприводимые представления изотопические мультиплеты, Формула Гелмана-Нишиджима. Гипотеза кваркового строения адронов. Массовые формулы и теорема Вигнера-Экарта. Приложения теории к проблеме объединения пространственных и внутренних симметрии. Контракция алгебр Ли. Алгебры симметрии дифференциальных уравнений и разделение переменных.
- 7. **Симметрии дифференциальных уравнений**. Их связь с системами позволяющими разделять переменные.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми дисциплинами

No	Наименование обеспечиваемых	№ разделов и тем данной дисциплины, необ-	
	дисциплин	ходимых для изучения обеспечиваемых дис-	
		циплин	
1.	Предметы теоретической физики	1,2,3,4,5,6,7	

5.3. Разделы и темы дисциплин и виды занятий

	Наименование темы	Виды занятий в часах		
No		Лекц.	Практ. зан.	CPC
1.	Тема 1	2	2	9
2.	Тема 2	4	4	9
3.	Тема 3	4	4	9
4.	Тема 4	4	4	9
5	Тема 5	4	4	9
6	Тема 6	2	2	9
7	Тема 7	2	2	10

6. Перечень семинарских, практических занятий и лабораторных работ

№ п/п	№ раздела и темы дис- циплины	Наименование семинаров, практических и лабораторных работ	Трудо- емкость (часы)	Оценочные сред- ства	Формиру- емые компе- тенции
1	2	3	4	5	6
1.	Тема 1	Основные понятия и общие свойства алгебр Ли	2	Решение задач на практических заня-	ОПК-2 ПК-1
2.	Тема 2	Структура алгебр Ли	4	тиях, проверка до- машней работы	ОПК-2 ПК-1
3.	Тема 3	Элементы теории представлений алгебр Ли	4		ОПК-2 ПК-1
4.	Тема 4	Группы Ли	4		ОПК-2 ПК-1
5.	Тема 5	Представление групп Ли	4		ОПК-2 ПК-1
6.	Тема 6	Элементарные частицы и неприводимые представления	2		ОПК-2 ПК-1
7.	Тема 7	Симметрии дифференциаль- ных уравнений	2		ОПК-2 ПК-1

6.1. План самостоятельной работы студентов

No	Тема	Вид самостоя-	Задание	Рекомендуемая ли-	Количество ча-
нед.		тельной работы		тература	СОВ
	Темы 1-7	Решение задач	30 задач по	Источники из основ-	64
		домашней работы	темам 1-7	ной и дополнитель-	
				ной литературы по	
				теме практических	
				занятий; Образо-	
				вательные ресурсы,	
				доступные по логину	
				и паролю, предостав-	
				ляемым Научной	
				библиотекой ИГУ.	

6.2. Методические указания по организации самостоятельной работы студентов

Для закрепления материала, рассмотренного на лекциях и практических занятиях, студентам предлагаются задачи по изучаемым разделам и график их выполнения. Оценка самостоятельной работы студентов проводится в виде проверки домашней работы и устного зачета.

7. Примерная тематика курсовых работ (проектов)

Учебным планом написание курсовых работ не предусмотрено.

8. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература
- 1. <u>Курош, А. Г</u>. Теория групп / А. Г. Курош. Москва: Лань, 2005. 648 с. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 5-8114-0616-9.
- 2. <u>Шилин, И. А.</u> Введение в алгебру. Группы / И. А. Шилин. Москва: Лань, 2012. 208 с. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1419-2
- 3. Каргаполов, М.И. Основы теории групп [Электронный ресурс] / М. И. Каргаполов, Ю. И. Мерзляков. Москва: Лань, 2009. 287 с. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0894-8.

б) дополнительная литература

- 1. Барут, А. Теория представлений групп и ее приложения: в 2 т. / А. Барут, Р. Рончка. М.: Мир, 1980. Т. 1. 1980. 455 с. (нф А118453)
- 2. Барут, А. Теория представлений групп и ее приложения: в 2 т. / А. Барут, Р. Рончка. М.: Мир, 1980. Т. 2. 1980. 393 с. (нф A101572(2); нф A102120(2); нф A118763)
- 3. <u>Ляховский, В. Д</u>. Группы симметрии и элементарные частицы: учеб. пособие / В. Д. Ляховский, А. А. Блохов; ЛГУ им. А. А. Жданова. Л.: Изд-во ЛГУ, 1983. 336 с. (нф A207641; нф A214669; нф A237390)
- 4. Эллиот, Д. Симметрия в физике: в 2 т. / Д. Эллиот, П. Добер. М.: Мир, 1983. Т. 1: Основные принципы и простые приложения. 1983. 364 с. (нф A215414; нф A216103; нф A216104)
- 5. Эллиот, Д. Симметрия в физике: в 2 т. / Д. Эллиот, П. Добер. М.: Мир, 1983. Т. 2: Дальнейшие приложения. 1983. 410 с. (нф A213287; нф A213288; нф A228244)
- 6. <u>Наймарк, М. А</u>. Теория представлений групп / М. А. Наймарк. 2-е изд. М.: Физматлит, 2010. 572 с. ISBN 978-5-9221-1260-4 (нф А629359)

в) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

https://isu.bibliotech.ru/ - ЭЧЗ «БиблиоТех»;

http://e.lanbook.com - ЭБС «Издательство «Лань»;

http://rucont.ru - ЭБС «Руконт» - межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;

http://ibooks.ru/ - ЭБС «Айбукс» - интернет ресурсы в свободном доступе;

9. Материально-техническое обеспечение дисциплины

Учебная аудитория для проведения лекционных и практических занятий. Использование глобальной компьютерной сети позволяет обеспечить доступность интернет-ресурсов и реализовать самостоятельную работу студентов. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

10. Образовательные технологии:

При изучении данной дисциплины используются следующие образовательные технологии:

- 1. Лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач
- 2. Практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- 3. Консультации еженедельно для всех желающих студентов.
- 4. Текущий контроль за деятельностью студентов осуществляется в основном на практических занятиях при дискуссии о результатах выполненных практических работ.

11. Оценочные средства (ОС)

Фонд оценочных средств представлен в приложении. Форма промежуточной аттестации — экзамен.

Текущий контроль

Тематика заданий для самостоятельной работы

- 1) Элементы Казимира и их собственные значения. Универсальная обертывающая алгебра.
- 2) Общие свойства неприводимых представлений, сплетающий оператор. Леммы Шура. Теорема Бернеайда. Регулярные представления.
- 3) Унитарные представления. Инфинитезимальный метод. Унитарный трюк. Индуцированные представления. Алгебраическая конструкция

Примерный перечень вопросов и заданий к экзамену

- 1. Аксиомы, понятие об структурных константах, идеале. Базис Вейля. Классические комплексные алгебры Ли An, Bn , Cn , Dn
- 2. Операции над алгебрами, прямая и полупрямая сумма алгебр. Фактор алгебра, дифференцирование.
- 3. Представление алгебр Ли. Разрешимые, нильпотентные, полупростые и простые алгебры Ли
- 4. Форма Киллинга. Простые и полупростые алгебры Ли.
- 5. Теорема Леви-Мальцева об разложении произвольной алгебры Ли. Классификация простых комплексных алгебр Ли.
- 6. Система корней. Схемы Дынкина.
- 7. Вещественные формы комплексных алгебр ли и их классификация. Разложения Картана, Гаусса, Ивасана.
- 8. Веса, старшие веса, их свойства. Фундаментальные представления. Конечномерные неприводимые представления алгебр si(2,C).
- 9. Веса, старшие веса, их свойства. Фундаментальные представления. Конечномерные неприводимые представления алгебр sl(3,C).
- 10. Компактные вещественные формы, фундаментальные представления su(3)
- 11. Тензорные произведения представлений и разложение их на неприводимые, схемы Юнга.
- 12. Дифференцируемые многообразия. Касательные пространства и векторные поля, преобразование векторных полей.
- 13. Мера Хаара, группы Ли. одно параметрические подгруппы. Алгебры и группы Ли. Присоединенная группа.
- 14. Прямое и полупрямое произведение групп Ли.
- 15. Разложение Леви-Мальцева. Разложение Гаусса, Картана, Ивасана.
- 16. изотопические мультиплеты, Формула Гелмана-Нишиджима.
- 17. Гипотеза кваркового строения адронов
- 18. Приложения теории к проблеме объединения пространственных и внутренних симметрии.
- 19. Контракция алгебр Ли.
- 20. Алгебры симметрии дифференциальных уравнений и разделение переменных.
- 21. Симметрии дифференциальных уравнений, их связь с системами, позволяющими разделять переменные.

Разработчики:

доцент кафедры теоретической физики

С.В. Ловцов

Программа рассмотрена на заседании кафедры теоретической физики

«14» апреля 2020 г. Протокол №8 И.о. зав. кафедрой

С.В. Ловцов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.