

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Кафедра Физики

ТВЕРЖДАЮ А.В. Семиров апреля 2024 г.

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): Б1.В.ДВ.02.02 Компьютерное моделирование электронных цепей

Направление подготовки: 44.03.04 Профессиональное обучение (по отраслям)

Направленность (профиль) подготовки: Автоматика и компьютерная инженерия

Квалификация (степень) выпускника: Бакалавр

Форма обучения: очная

Согласована с УМС ПИ ИГУ

Рекомендовано кафедрой:

Протокол № <u>6</u> от «28» марта 2024 г.

Протокол № 6

От « 06 » марта 2024 г. ___М.С. Павлова

Зав. кафедрой

А.В.Семиров

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ (МОДУЛЯ):

Целью освоения дисциплины *Компьютерное моделирование электронных цепей* является практическое изучение моделирования радиотехнических цепей с помощью современных программных средств для использования в профессиональной деятельности.

Задачи:

- познакомить с программами компьютерного моделирования электрических цепей;
- познакомить с типовыми функциями программ моделирования;
- сформировать практические навыки по моделированию устройств электронной техники.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО:

- 2.1 Дисциплина *Б1.В.ДВ.2.02* «Компьютерное моделирование электронных цепей» относится к дисциплинам части, формируемой участниками образовательных отношений.
- 2.2 Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: Электроника и схемотехника.
- 2.3 Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: *Автоматика и микропроцессорная техника*.

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ):

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения			
ПК-1. Способен	ИДК ПК-1.1	Базовый уровень. В результате освоения			
осуществлять	Разрабатывает	дисциплины студент должен			
преподавание по	программно-	знать: Основы компьютерного			
программам	методическое	моделирования электрических цепей для			
учебных	обеспечение учебных	разработки программно-методического			
предметов, курсов,	предметов, курсов,	обеспечения учебных предметов, курсов,			
дисциплин	дисциплин (модулей)	дисциплин СПО и ДО.			
(модулей),	программ	уметь: Использовать знания в области			
соответствующих	профессионального	моделирования электрических цепей для			
направленности	обучения, СПО и(или)	разработки программно-методического			
(профилю)	ДО	обеспечения учебных предметов, курсов,			
		дисциплин СПО и ДО.			
		владеть: Навыками использования			
		знаний в области моделирования			
		электрических цепей для разработки			
		программно-методического обеспечения			
		учебных предметов, курсов, дисциплин			
		СПО и ДО.			

THE O	HITTE THE O. I	D			
ПК-2	ИДК ПК-2.1	знать: Распространенные программы			
Способен	Демонстрирует	компьютерного моделирования			
осуществлять	владение	электрических цепей; Типовые функции			
учебно-	содержанием,	программ компьютерного			
производственный	методами и	моделирования; Дополнительные			
процесс,	инструментарием	возможности программ компьютерного			
соответствующий	преподаваемой	моделирования.			
области	предметной области	уметь: Создавать модели электронных			
профессиональной		цепей на основе принципиальных схем			
деятельности,		в среде программ компьютерного			
осваиваемой		моделирования;			
обучающимися.		Проводить анализ пассивных и активных			
		цепей в программах компьютерного			
		моделирования;			
		владеть: Навыками создания моделей			
		электронных цепей на основе			
		принципиальных схем в среде программ			
		компьютерного моделирования;			
		Навыками проведения анализа			
		пассивных и активных цепей в			
		программах компьютерного			
		моделирования.			

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

4.1. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего часов /	Семестры
	зачетных единиц Очн	5
Аудиторные занятия (всего)	30	30
Лекции	-	-
Лабораторные работы (ЛР)	30	30
Самостоятельная работа (всего) [*]	34	34
Консультации	-	-
Вид промежуточной аттестации (зачёт)	зачёт	зачёт
Контроль КО	8	8
Контактная работа (всего)**	38	38
Общая трудоемкость часы	72	72
зачетные единицы	2	2

4.2. Содержание учебного материала дисциплины (модуля)

Наименование разделов	Содержание	Формы
и тем		проведения
Тема 1. Введение в компьютерное моделирование электронных цепей.	Лаб. Раб. Исследование On-line программ компьютерного моделирования (2 ч).	Лабораторная работа.
Тема 2. Основы работы в программах компьютерного моделирования	Лаб. Раб. Знакомство с интерфейсом программы компьютерного моделирования (4 ч).	Лабораторная работа.
Тема 3. Анализ электронных цепей на постоянном и переменном токе	Лаб. Раб. Анализ цепей на постоянном токе (4 часа) Лаб. Раб. Анализ цепей на переменном токе (4 часа).	Лабораторная работа.
Тема 4. Временной анализ электрических цепей	Лаб. Раб. Временной анализ цепей (4 часа).	Лабораторная работа.
Тема 5. Статистический анализ цепей	Лаб. Раб. Статистический анализ цепей (4 ч).	Лабораторная работа.
Тема 6 . Моделирование цифровых цепей	Лаб. Раб. Моделирование цифровых устройств (4 ч)	Лабораторная работа.
Тема 7 . Дополнительные возможности анализа	Лаб. Раб. Исследование дополнительных возможностей программ компьютерного моделирования (4 ч)	Лабораторная работа.

4.3. Перечень разделов/тем дисциплины (модуля)

№	Наименование	Виды учебной работы,			Оценочные	Формируемые	Всего в часах	
п/п	раздела/темы	включая самостоятельную р обучающихся, практическ подготовку (при наличии) трудоемкость (в часах) Контактная работа преподавателя с обучающимися		кую 1) и	средства	компетенции (индикаторы)		
				преподавателя с (в том обучающимися числе,				
		Лекции	Практ. занятия	Лаб. занятия	внеауди торная СР, КСР)			
моде	пьютерное глирование тронных цепей	-	-	30	34	Практические задания, зачетные практические задания.	ИДК ПК-1.1, ПК-2.1	64
1	Тема 1. Введение в компьютерное моделирование электронных цепей.			2	5	Практические задания	ИДК ПК-1.1, ПК-2.1	7
2	Тема 2. Основы работы в программах компьютерного моделирования.			4	4	Практические задания	ИДК ПК-1.1, ПК-2.1	8
3	Тема 3. Анализ электронных цепей постоянном и			8	8	Практические задания	ИДК ПК-1.1, ПК-2.1	16

	переменном токе.					
4	Тема 4. Временной анализ электрических цепей.	4	4	Практические задания	ИДК ПК-1.1, ПК-2.1	8
5	Тема 5. Статистический анализ цепей	4	4	Практические задания	ИДК ПК-1.1, ПК-2.1	8
6	Тема 6. Моделирование цифровых цепей	4	4	Практические задания	ИДК ПК-1.1, ПК-2.1	8
7	Тема 7. Дополнительные возможности анализа.	4	5	Практические задания Зачетные практические задания	ИДК ПК-1.1, ПК-2.1	9
	Итого (в часах)	30	34			64

4.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов заключается в изучении теоретического материала дисциплины, в том числе предлагаемого для самостоятельного изучения, предварительной подготовке к выполнению лабораторных работ и написанию отчётов по лабораторным работам. В процессе самостоятельной работы студенты могут пользоваться материалами лекций и лабораторных работ, размещенными в электронной образовательной среде ИГУ (educa.isu.ru — Педагогический институт — Отделение физико-математического, естественно-научного и технологического образования — Компьютерное моделирование электронных цепей), а также основной и дополнительной литературой, указанной в разделе V настоящей программы.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ):

а) перечень литературы

- 1. Гаврилов Л.П. Расчет и моделирование линейных электрических цепей с применением ПК [Электронный ресурс]: Учебное пособие/ Л.П. Гаврилов, Д.А. Соснин. М.: СОЛОН-Пресс, 2010. Режим доступа: ЭБС «ЛАНЬ».
- 2. Хайнеман Р. Визуальное моделирование электронных схем в PSPICE [Электронный ресурс]/ Учебное пособие для ВПО. М. ДМК Пресс, 2009. Режим доступа: ЭБС «ЛАНЬ».
- 3. Поршнев С.В. Компьютерное моделирование физических процессов в пакете MATLAB [Электронный ресурс]. 2011 г. Режим доступа: ЭБС «Лань»

г) базы данных, информационно-справочные и поисковые системы

- 1. Окно доступа к образовательным ресурсам. Edu.Ru Раздел «Электроника».
- 2. ЭБС «Лань» www.e.lanbook.ru

VI.MATEPИAЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Помещения и оборудование

Помещения — учебные аудитории для проведения учебных занятий, предусмотренных учебным планом ОПОП ВО бакалавриата, оснащены оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ФГБОУ ВО «ИГУ».

Оборудование

- 1. Компьютерный класс (20 посадочных мест) с персональными компьютерами.
- 2. Неограниченный доступ к сети Интернет.

Технические средства обучения

- 1. Мультимедиа-проектор
- 2. Ноутбук

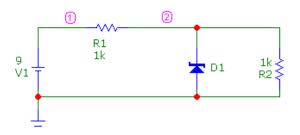
6.2. Лицензионное и программное обеспечение

Программное обеспечение: OC: windows xp, Aнтивирус KasperskyE ndpointSecurity10.1 Электронно-библиотечная система; MicroCap 12 (свободно распространяемое ΠO).; Online cepsuc Multisim Live.

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В образовательном процессе используются активные и интерактивные формы, в том числе дистанционные образовательные технологии, используемые при реализации различных видов учебной работы, развивающие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств и формирующие компетенции.

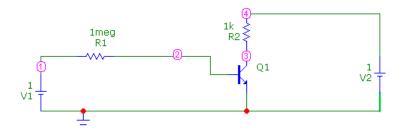
Тема занятия	Вид занятия	Формы/ методы	Кол-
		интерактивного обучения	ВО
			часов
Тема 1. Введение в	лабораторная	лабораторные занятия	2
компьютерное	работа	с элементами обратной связи	
моделирование электронных			
цепей.			
Тема 2. Основы работы в	лабораторная	лабораторные занятия	4
программах компьютерного	работа	с элементами обратной связи	
моделирования.			
Тема 3. Анализ	лабораторная	лабораторные занятия	8
электронных цепей	работа	с элементами обратной связи	
постоянном и переменном			
токе.			
Тема 4. Временной анализ	лабораторная	лабораторные занятия	4
электрических цепей.	работа	с элементами обратной связи	
Тема 5. Статистический	лабораторная	лабораторные занятия	4
анализ цепей	работа	с элементами обратной связи	
Тема 6. Моделирование	лабораторная	лабораторные занятия	4
цифровых цепей	работа	с элементами обратной связи	
Тема 7. Дополнительные	лабораторная	лабораторные занятия	4
возможности анализа.	работа	с элементами обратной связи	


VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные средства для проведения текущего контроля успеваемости

Текущий контроль осуществляется по успешности выполнения обучающимися практических заданий из лабораторных и домашних работ.

Примеры практических заданий:


1. Рассчитать с помощью программы MicroCap сопротивление балластного резистора R1 в схеме параметрического стабилизатора (см. рис). В качестве стабилитрона (диода Зенера) выбрать прибор 1N752 с параметрами: напряжение стабилизации VB=5.6 В; минимальный ток стабилизации IBV = 20 mA.

Указание: использовать функцию подбора параметров Optimize в динамическом режиме измерения на постоянном токе (Dynamic DC). При оптимизации ток через стабилитрон I(D1) необходимо брать с обратным знаком!

После оптимизации измените сопротивление нагрузки R2=100, проверьте работоспособность схемы. При необходимости пересчитайте величину R1.

2. Построить семейство входных и выходных характеристик биполярного транзистора **2N2218**. Измерительная схема показана на рисунке.

Vказание: использовать режим статического анализа **DC с** двумя источниками. Входная характеристика — зависимость тока базы от напряжения на базе при определенном напряжении коллектора; выходная характеристика — зависимость тока коллектора от напряжения на коллекторе при фиксированном токе базы.

3. Получить АЧХ и ФЧХ электрической цепи, представленной на рисунке.

Указание: использовать режим статического анализа AC. AЧX и ФЧX должны быть измерены на конденсаторе C2 (узел 3).

Критерии оценивания Отчет по лабораторным работам и Домашнее задание

Показатели (компетенции)	Критерии
Создание модели электрической цепи по схеме (ПК-1, ПК-2)	Правильность создания модели электрической цепи по принципиальной схеме.
Функционирование цепи (ПК-1, ПК-2)	Правильное функционирование электрической цепи, умение правильно выбирать режимы работы цепи и отдельных элементов.
Исследование цепи (ПК-1, ПК-2)	Правильность полученных характеристик и параметров исследуемой цепи.

Шкала оценивания: Оценка каждого критерия производится по системе «зачтено»/ «незачтено».

Лабораторная работа и домашняя работа считается зачтенной, если по всем показателям стоит оценка «зачтено».

8.2. Оценочные средства для промежуточной аттестации

Зачет проходит в форме представления индивидуального задания каждым учащимся. Учащимся предлагается продемонстрировать возможности программ компьютерного моделирования на примере одной электронной схемы. Схема выбирается учащимися самостоятельно и утверждается преподавателем.

Примеры тем индивидуальных заданий для зачета

- 1. Усилитель на биполярных транзисторах.
- 2. Усилитель на полевых транзисторах.
- 3. Усилитель на операционном усилителе.
- 4. Гиратор.
- 5. Активный RC-фильтр

Критерии оценивания Зачет

Показатели (компетенции)				Критерии			
Выполнение	лабораторных	работ	И	Выполнение	лабораторны	ых работ	И
домашних зада	аний (ПК-1, ПК-2)			домашних зада	ний в объеме	е 90% и более	е от
				общего количес	ства.		
Выполнение	индивидуальных	зачетн	ΗЫΧ	Работоспособн	ость схем	ны, владе	ние
заданий (ПК-1, ПК-2)				навыками иссл	едования эле	ктронных це	пей
				средствами	изученной	програм	ІМЫ
				компьютерного)	моделирова	ния
				электронных це	епей.		

Шкала оценивания:

Оценка «зачтено» выставляется студенту, выполнившему 90% лабораторного практикума по дисциплине и домашних заданий, а также успешно справившемуся с индивидуальным практическим заданием на зачете. Индивидуальное зачетное задание считается выполненным успешно, если студент способен собрать, отладить и исследовать электронное устройство по его принципиальной схеме средствами изученной программы компьютерного моделирования.

Документ составлен в соответствии с требованиями $\Phi \Gamma OC$ по направлению 44.03.04 «Профессиональное обучение (по отраслям)» утвержденного приказом Минобрнауки РФ N = 124 от 22.02.2018 г.

Разработчик: Кудрявцев В.О., доцент кафедры физики ПИ ИГУ, к. ф.-м.н.,

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.