

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ИГУ»)

Институт математики и информационных технологий Кафедра информационных технологий

> УТВЕРЖДАЮ» Директор ИМИТ ИГУ М. В. Фалалеев

Рабочая программа дисциплины (модуля)

Б1.В.ДВ.02.02 Дискретные структуры

Направление подготовки 02.03.02 Фундаментальная информатика и

информационные технологии

Направленность (профиль) подготовки Фундаментальная информатика и программная инженерия

Квалификация выпускника бакалавр

Форма обучения очная

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Пель

Дать представление об основных дискретных структурах: булевых функциях и графах **Залачи**:

Сформировать целостную картину о булевых функциях, включая специальные представления, вопросы полноты и замкнутости;

Дать представление о теории графов, включая основные алгоритмы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина (модуль) относится к части программы, формируемой участниками образовательных отношений, и изучается на втором курсе.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, сформированные дискретная математика.
- 2.3. Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: математическая логика, алгебраические системы, алгоритмы теории графов, системы искусственного интеллекта, теория алгоритмической сложности.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций (элементов следующих компетенций) в соответствии с ФГОС ВО по соответствующему направлению подготовки.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компетенций	Результаты обучения
ПК-3 Способность понимать	ИДК _{ПКЗ.1}	Знает основные понятия теории
и применять в научно-	Способен понимать	булевых функций и теории
исследовательской и	современный	графов.
прикладной деятельности	математический аппарат и	Умеет решать типовые задачи
современный	теоретические основы	теории булевых функций и
математический аппарат,	информатики	теории графов.
теоретические основы		Владеет техникой решения
информатики		типовых задач теории булевых
	ИДК _{ПК3.2}	функций и теории графов.
	Способен применять в	
	научно-исследовательской и	
	прикладной деятельности	
	современный	
	математический аппарат	
	ИДК пкз.з	
	Способен применять в	
	научно-исследовательской и	
	прикладной деятельности	
	теоретические основы	
	информатики	
ПК-4 Способность понимать	ИДК _{ПК4.1}	Знает основные алгоритмы
и применять в научно-	Способен понимать	теории булевых функций, теории
исследовательской и	современные языки	графов

прикладной	деятельности	программирова	ния	И	Умеет	решать	зад	ачи	на
современные	языки	программное	обеспечен	ие;	применен	ние	(осно	вных
программиро	вания и	операционные	системы	И	алгоритм	ов теор	ИИ	бул	евых
программное	обеспечение;	сетевые технол	огии		функций	и теории і	графс	B.	
операционны	е системы и				Владеет	метода	ιМИ	те	ории
сетевые	технологии;				булевых	функциі	й и	те	ории
применять	алгоритмы и				графов	при		реш	ении
структуры	данных при				професси	юнальных	зада	Ч	
разработке	программных								
решений									
		ИДК _{ПК4.2}							
		Способен пр	рименять	В					
		научно-исследо	вательской	и					
		прикладной	деятельнос	ти					
		современные	ИЕК	ки					
		программирова	кин	И					
		программное	обеспечен	ие;					
		операционные	системы	И					
		сетевые технол	огии						
		ИДК пк4.3							
		Способен	применя	ΙТЬ					
		алгоритмы и	структу	ры					
		данных при	разработ	гке					
		программных р	ешений						

4. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 5 зачетных единиц, 180 часов, в том числе 44 часа на контроль, практическая подготовка _____. Форма промежуточной аттестации: 4 семестр - экзамен.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Разлел лисшиплины/темы	тр	самосто Ко препода	ды учебной р оятельную ра трудоемкоо онтактная ра зателя с обуч Семинарск ие (практичес кие занятия)	боту обуча сть (в часах бота	ющихся и) Самостоя тельная	Формы текущего контроля успеваемости
	Булевы функции		16	16	5	54	
	Графы		16	16	5	54	
Ит	ого часов		32	32	10	106	

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

	_	Самостоятельн	ая работа об		Учебно-	
Семест р	Название раздела, темы	Вид самостоятельно й работы	Сроки выполнен ия	Затраты времени (час.)	Оценочное средство	методическое обеспечение самостоятельно й работы
	Булевы функции	УПрИДПрзЛЛе кТ	1-я половина курса	53	ЛекТКонференц ия	УМО расположено на странице курса в ИОС Educa
	Графы	УПрИДПрзЛЛе кТ	2-я половина курса	53	ЛекТКонференц ия	УМО расположено на странице курса в ИОС Educa
Общая трудоемкость самостоятельной работы по дисциплине (час)						
Из них объем самостоятельной работы с использованием электронного обучения и дистанционных образовательных технологий (час)						

Виды самостоятельной работы:

 $\mathcal{J}-$ подготовка доклада, $\mathcal{V}-$ выполнение упражнений, $\Pi p-$ выполнение заданий на программирование, $\mathcal{U}-$ информационный поиск, $\Pi p 3-$ подготовка презентации, $\mathcal{U}-$ изучение литературы, \mathcal{U} лек – прохождение интерактивной лекции, \mathcal{U} — выполнение теста.

4.3. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Булевы функции

- 1. Двоичные наборы. Расстояние Хэмминга. Булев куб. Примеры булева куба. Сфера заданного радиуса.
- 2. Булевы функции. Число всех булевых функций от п переменных. Все булевы функции от 2-х аргументов.
- 3. Способы задания булевых функций.
- 4. Аргументы булевых функций. Остаточные функции. Существенные и фиктивные аргументы.
- 5. Существенные функции. Число существенных функций от п аргументов.
- 6. Представление булевых функций термами. Внешняя функция терма. Суперпозиция функций. Эквивалентные термы.
- 7. Специальные представления булевых функций. Дизъюнктивные преставления булевых функций. Сднф.
- 8. Построение СДНФ по таблице.
- 9. Построение СДНФ эквивалентными преобразованиями.
- 10. Конъюнктивные представления булевых функций. Скиф.
- 11. Построение СКНФ эквивалентными преобразованиями.
- 12. Полиномиальные представления булевых функций. Полином Жегалкина.

- 13. Построение полинома Жегалкина.
- 14. Замкнутость и полнота множества булевых функций. Понятия замкнутости и полноты. Примеры замкнутых множеств.
- 15. Классы функций, сохраняющих 0 и сохраняющих 1. Число функций от п переменных, сохраняющих 0 (1).
- 16. Класс монотонных функций.
- 17. Класс самодвойственных функуций. Число самодвойственных функций от п переменных.
- 18. Класс линейных функций. Число линейных функций от п переменных.
- 19. Лемма о нелинейной функции.
- 20. Лемма о несамодвойственной функции.
- 21. Лемма о немонотонной функции.
- 22. Критерий полноты.
- 23. Теорема о попарной различности классов T0, T1, S, L, M.
- 24. Теорема о максимальной мощности базиса.

2. Графы.

- 1. Графы. Способы задания графов. Ориентированные и неориентированные графы. Степень вершины. Маршруты, цепи, циклы.
- 2. Связные графы. Эйлеровы и полуэйлеровы цепи и циклы. Теорема Эйлера.
- 3. Гамильтоновы и полугамильтоновы графы.
- 4. Планарные графы. Теорема о вершинах, ребрах и гранях плоского графа.
- 5. Непланарность графов К5 и К33.
- 6. Вершинная и реберная раскраска графов. Теорема о 5-ти красках.
- 7. Деревья. Листья и ветви. Помеченные и непомеченные деревья. Код Прюфера. Деревья двоичного кода.
- 8. Алгоритмы на графах. Алгоритмы обхода графа в глубину и ширину.
- 9. Кратчайшие пути. Алгоритм построения матрицы кратчайших путей для графа.
- 10. Алгоритм построения матрицы кратчайших путей для заданной вершины.
- 11. Построение кратчайшего остова.
- 12. Связные графы. Компоненты связности. Оценка числа ребер через вершины и компоненты связности.
- 13. Теорема Менгера. Задачи о свадьбах, системе различных представителей, совершенном паросочетании.
- 14. Ориентированные графы. Сети. Критический путь.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров, практических и лабораторных	Трудоемкость		Трудоемкость		Оценочные	Формируемые
п/н	темы	работ	(час.)		(час.)		средства	компетенции
			Всего	Из них		(индикаторы)*		
			часов					

				практичес кая подготовк а		
1	2	3	4	5	6	7
1	1	Двоичные наборы. Расстояние Хэмминга. Булев куб. Примеры булева куба. Сфера заданного радиуса. Булевы функции. Число всех булевых функций от п переменных. Все булевы функции от 2-х аргументов. Способы задания булевых функций.	2		ЛекТКонференция	См. пункт 3.
2	1	Аргументы булевых функций. Остаточные функции. Существенные и фиктивные аргументы. Существенные функции. Число существенных функций от п аргументов.	2	2	ЛекТКонференция	См. пункт 3.
3	1	Представление булевых функций термами. Внешняя функция терма. Суперпозиция функций. Эквивалентные термы. Специальные представления булевых функций. Дизъюнктивные преставления булевых функций. Сднф. Построение СДНФ по таблице. Построение СДНФ эквивалентными преобразованиями.	2	2	ЛекТКонференция	См. пункт 3.
4	1	Конъюнктивные представления булевых функций. Скнф. Построение СКНФ эквивалентными преобразованиями.	2	2	ЛекТКонференция	См. пункт 3.
5	1	Полиномиальные представления булевых функций. Полином Жегалкина. Построение полинома Жегалкина.	2	2	ЛекТКонференция	См. пункт 3.
6	1	Замкнутость и полнота множества булевых функций. Понятия замкнутости и полноты.	2	2	ЛекТКонференция	См. пункт 3.
7	1	Примеры замкнутых множеств. Классы функций, сохраняющих 0 и сохраняющих 1. Число функций от п переменных, сохраняющих 0 (1). Класс монотонных функций.	2	2	ЛекТКонференция	См. пункт 3.
8	1	Класс самодвойственных функуций. Число самодвойственных функций от п переменных. Класс линейных функций. Число линейных функций от п переменных. Лемма о нелинейной функции. Лемма о несамодвойственной функции.	2	2	ЛекТКонференция	См. пункт 3.

9	1	Лемма о немонотонной функции. Критерий полноты. Теорема о попарной различности классов Т0, Т1, S, L, M. Теорема о максимальной мощности базиса.	2	2	ЛекТКонференция	См. пункт 3.
10	2	Графы. Способы задания графов. Ориентированные и неориентированные графы. Степень вершины. Маршруты, цепи, циклы. Связные графы.	2	2	ЛекТКонференция	См. пункт 3.
		Эйлеровы и полуэйлеровы цепи и циклы. Теорема Эйлера. Гамильтоновы и полугамильтоновы графы.	2	2	ЛекТКонференция	См. пункт 3.
11	2	Планарные графы. Теорема о вершинах, ребрах и гранях плоского графа. Непланарность графов К5 и К33.	2	2	ЛекТКонференция	См. пункт 3.
12	2	Вершинная и реберная раскраска графов. Теорема о 5-ти красках. Деревья. Листья и ветви. Помеченные и непомеченные деревья. Код Прюфера. Деревья двоичного кода.	2	2	ЛекТКонференция	См. пункт 3.
13	2	Алгоритмы на графах. Алгоритмы обхода графа в глубину и ширину. Кратчайшие пути. Алгоритм построения матрицы кратчайших путей для графа.	2	2	ЛекТКонференция	См. пункт 3.
14	2	Алгоритм построения матрицы кратчайших путей для заданной вершины. Построение кратчайшего остова.	2	2	ЛекТКонференция	См. пункт 3.
15	2	Связные графы. Компоненты связности. Оценка числа ребер через вершины и компоненты связности.	2	2	ЛекТКонференция	См. пункт 3.
16	2	Теорема Менгера. Задачи о свадьбах, системе различных представителей, совершенном паросочетании. Ориентированные графы. Сети. Критический путь.	2	2	ЛекТКонференция	См. пункт 3.
			32			

Ин — Интерактивные лекции с контрольными вопросами,

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СР) Алгоритмы нахождения минимальной ДНФ, алгоритмы раскраски графа

4.4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Методические указания расположены на странице курса в ИОС Educa.

4.5. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ (ПРОЕКТОВ)

Не предусмотрено.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) перечень литературы

- 1. Гаврилов, Гарий Петрович. Задачи и упражнения по дискретной математике [Текст]: учеб. пособие / Г. П. Гаврилов, А. А. Сапоженко. 3-е изд., перераб. М.: Физматлит, 2005. 416 с.: ил.; 22 см. Библиогр.: с. 412-413. Предм. указ.: с. 414-416. **ISBN** 5-9221-0477-2: 198.00 р 17 экз.+
- 2. Мальцев, И. А. Дискретная математика [Текст] / И. А. Мальцев. Москва : Лань, 2011. 304 с. -Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1010-1 +
- 3. Шевелев, Ю. П. Дискретная математика: учебное пособие для спо / Ю. П. Шевелев. _ Санкт-Петербург: Лань, 2021. _ 592 с. _ ISBN 978-5-8114-7504-9. _ Текст: электронный // Лань: электронно-библиотечная система. _ URL: https://e.lanbook.com/book/161638 (дата обращения: 13.01.2022). _ Режим доступа: для авториз. пользователей. +
- 4. Алексеев, В. Е. Теория графов: учебное пособие / В. Е. Алексеев, Д. В. Захарова. Нижний Новгород: ННГУ им. Н. И. Лобачевского, 2017. 119 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/153421 (дата обращения: 06.04.2022). Режим доступа: для авториз. пользователей. +
- 5. Гашков, С. Б. Дискретная математика. Учебник для вузов : учебник для вузов / С. Б. Гашков. _ Санкт-Петербург : Лань, 2022. _ 456 с. _ ISBN 978-5-8114-8691-5. _ Текст : электронный // Лань : электронно-библиотечная система. _ URL: https://e.lanbook.com/book/193306 (дата обращения: 13.01.2022). _ Режим доступа: для авториз. пользователей. +
- 6. Вороненко, А. А. Дискретная математика. Задачи и упражнения с решениями [Текст]: учеб.-метод. пособие: учеб. пособие для студ. вузов, обуч. по напр. ВПО 01.03.02 (010400) "Прикл. математика и информатика" и 02.03.02 (010300) "Фундамент. информатика и информ. технологии" / А. А. Вороненко, В. С. Федорова. М.: Инфра-М, 2015. 104 с.: ил.; 21 см. (Высшее образование. Бакалавриат). Библиогр.: с. 102. ISBN 978-5-16-006601-1. ISBN 978-5-16-101745-6: 150.00 р. 25 экз. +
- 7. Новиков, Федор Александрович. Дискретная математика для программистов [Текст] : учеб. пособие для студ. вузов, обуч. по напр. подготовки дипломир. спец. "Информатика и вычислительная техника" / Ф. А. Новиков. 2-е изд. СПб. : Питер, 2005. 363 с. : ил. ; 24 см. (Учебник для вузов). Библиогр.: с. 349-350. Указ.: с.246-348, 351-363. ISBN 5-94723-741-5 : 112.50 р., 157.50 р. УДК 519.1(075.8) 20 экз. +

б) периодические издания

в) список авторских методических разработок:

Электронные варианты лекций и презентации расположены на странице курса в ИОС Educa

г) базы данных, информационно-справочные и поисковые системы

- 1. http://www.window.edu.ru Единое окно доступа к образовательным ресурсам. Полнотекстовая электронная библиотека учебных и учебно-методических материалов (федеральный ресурс).
 - 2. http://www.exponenta.ru Образовательный математический сайт
- 3. http://www.mccme.ru/free-books Московский центр непрерывного математического образования. Материалы (полные тексты) свободно распространяемых книг по математике.

- 4. https://www.biblio-online.ru/ Электронно-библиотечная система издательства «ЮРАЙТ»
 - 6. https://e.lanbook.com/ Электронно-библиотечная система издательства «Лань»
 - 7. ИОС ИГУ EDuca
 - 8. https://welcome.stepik.org/ru Онлайн-курсы от ведущих вузов и компаний страны
 - 9. https://openedu.ru/ Открытое образование.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Учебно-лабораторное оборудование:

Для проведения лекционных занятий необходима аудитория с презентационным оборудованием, для проведения практических занятий необходима аудитория на 25—30 рабочих мест (в зависимости от численности учебной группы), оборудованная доской, презентационной техникой.

6.2. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

LaTeX - c использованием сборки TeXLive (или возможность выхода на онлайн-ресурс Overleafe), pdf-view'ep.

6.3. Технические и электронные средства:

ИОС EDUCA, DOMIC, презентационное оборудование, персональный компьютер с возможностью демонстрации презентаций в формате pdf.

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации данного курса используются следующие образовательные технологии: технологии традиционного обучения, игровые технологии, технологии проблемного обучения, технологии обучения в сотрудничестве, технологии контекстного обучения, интерактивные технологии, технологии дистанционного обучения, активные педагогические технологии.

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные материалы для входного контроля

Не предусмотрено.

8.2. Оценочные материалы текущего контроля

В ИОС Educa расположены интерактивные лекции, тесты и задания на программирование.

Примеры заданий на программирование

- Игра, КНФ. Система предлагает вектор функции. Пользователь вводит КНФ. Система определяет правильно или нет введена КНФ.
 - 8. Пользователь вводит вектор функции. Система строит СДНФ.
 - 9. Пользователь вводит вектор функции. Система строит СКНФ.
- Игра. Предполные классы б.ф. Система предлагает вектор функции. Пользователь должен выбрать предполные классы, которым эта функции принадлежит. Система определяет правильно выбраны классы или нет.
- Игра. Полные системы б.ф. Система предлагает набор векторов функций. Пользователь определяет полным или нет является набор функций. Если система б.ф. неполна, то пользователь должен указать замкнутый класс, которому набор функций принадлежит.
 - 12. Реализация одного из алгоритмов построения ДНФ.

- 7. Выбрать и реализовать алгоритм построения минимального остовного дерева.
- Реализация алгоритма нахождения кратчайших путей от заданной вершины до остальных вершин графа.
 - 9. Реализовать алгоритм построения матрицы кратчайших путей.
 - 10. Реализовать алгоритм кодирования Прюфера.
 - 11. Реализовать алгоритм декодирования Прюфера.
 - 12. Выбрать и реализовать алгоритм раскраски графа.

8.3. Оценочные материалы промежуточного контроля

Если во время работы в семестре пройдены все интерактивные лекции, выполнены все тесты, выполнены все задания на программирование, есть выступления на 2-х конференциях, то оценка ставится в зависимости от количества набранных баллов.

Если во время работы в семестре не более чем по 3-м обязательным к выполнению пунктам получены баллы менее 60, то студент приходит на экзамен.

Порядок проведения экзамена

1 ТУР — 40 минут, тест дистанционно 2 ТУР — 60 минут Будет предложен билет с 3 вопросами: 1 вопрос. Теорема (формулировка и доказательство). 2 вопрос. Алгоритм (описание работы и пример). 3. Задача.

Типовые задачи

1. Графы

- Построить матрицу кратчайших путей.
- Найти минимальные расстояния от заданной вершины до остальных вершин.
- Обойти вершины графа алгоритмами обхода в глубину и ширину.
- Построить кратчайший остов.
- Найти центр, диаметр графа
- Найти критический путь
- Найти хроматическое число графа

	БИЛЕТ 24
1 Теорема Менгера.	
2 Построение СДНФ	эквивалентными преобразованиями
3 Сколько отношени	й эквивалентности можно задать на множестве из 4 элементов?
Экзаменатор	Пантелеео В.И.

Примерные вопросы на экзамен

- 1. Двоичные наборы. Расстояние Хэмминга. Булев куб. Примеры булева куба. Сфера заданного радиуса.
- 2. Булевы функции. Число всех булевых функций от n переменных. Перечислить все булевы функции от 2-х аргументов.
- 3. Способы задания булевых функций. Примеры.
- 4. Аргументы булевых функций. Остаточные функции. Существенные и фиктивные аргументы. Примеры.
- 5. Существенные функции. Число существенных функций от n аргументов.

- 6. Представление булевых функций термами. Внешняя функция терма. Суперпозиция функций. Эквивалентные термы. Примеры.
- 7. Специальные представления булевых функций. Дизъюнктивные преставления булевых функций. Сднф. Определение и примеры.
- 8. Построение СДНФ по таблице.
- 9. Построение СДНФ эквивалентными преобразованиями.
- 10. Конъюнктивные представления булевых функций. Скнф.
- 11. Построение СКНФ эквивалентными преобразованиями.
- 12. Полиномиальные представления булевых функций. Полином Жегалкина. Определение и примеры.
- 13. Построение полинома Жегалкина.
- 14. Замкнутость и полнота множества булевых функций. Понятия замкнутости и полноты. Примеры замкнутых множеств.
- 15. Классы функций, сохраняющих 0 и сохраняющих 1. Определение. Примеры. Число функций от n переменных, сохраняющих 0 (1).
- 16. Класс монотонных функций.
- 17. Класс самодвойственных функуций. Число самодвойственных функций от n переменных.
- 18. Класс линейных функций. Число линейных функций от n переменных.
- 19. Лемма о нелинейной функции.
- 20. Лемма о несамодвойственной функции.
- 21. Лемма о немонотонной функции.
- 22. Критерий полноты.
- 23. Теорема о попарной различности классов To, T1, S, L, M.
- 24. Теорема о максимальной мощности базиса.

Графы.

- 25. Графы. Способы задания графов. Ориентированные и неориентированные графы. Степень вершины. Маршруты, цепи, циклы. Определение и примеры.
- 26. Связные графы. Эйлеровы и полуэйлеровы цепи и циклы. Теорема Эйлера.
- 27. Гамильтоновы и полугамильтоновы графы. Определение и примеры.
- 28. Планарные графы. Теорема о вершинах, ребрах и гранях плоского графа.
- 29. Непланарность графов К5 и К33.
- 30. Вершинная и реберная раскраска графов. Теорема о 5-ти красках.
- 31. Деревья. Листья и ветви. Помеченные и непомеченные деревья. Код Прюфера. Деревья двоичного кода.
- 32. Алгоритмы на графах. Кратчайшие пути. Алгоритм построения матрицы кратчайших путей для графа.
- 33. Алгоритм построения матрицы кратчайших путей для заданной вершины.
- 34. Алгоритмы обхода графа в глубину и ширину. Примеры.
- 35. Построение кратчайшего остова.
- 36. Связные графы. Компоненты связности. Оценка числа ребер через вершины и компоненты связности.
- 37. Теорема Менгера. Задачи о свадьбах, системе различных представителей, совершенном паросочетании.
- 38. Ориентированные графы. Сети. Критический путь.

Разработчики:			
faming	_ зав. каф. АиИС	Пант	елеев В.И.
(подпись)	(занимаемая дол	жность)	(Ф.И.О.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 02.03.02 «Фундаментальная информатика и информационные технологии» (уровень бакалавриата), утвержденный приказом Министерства образования и науки

Российской Федерации от 23 августа 2017 г. N 808, зарегистрированный в Минюсте России «14» сентября 2017 г. № 48185 с изменениями и дополнениями с изменениями и дополнениями

от: 26 ноября 2020 г., 8 февраля 2021 г.