

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и экспериментальной физики

УТВЕРЖДАЮ Цекан И. Буднев

0», -апреля 2023 г.

Физический Факультет

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): Квантовая и оптическая электроника

Код дисциплины: **Б1.В.ДВ.01.01**

Направление подготовки: 11.03.04 Электроника и наноэлектроника

Тип образовательной программы: бакалавриат

Профиль подготовки: "Электроника и наноэлектроника"

Степень (квалификация) выпускника – бакалавр

Форма обучения: очная.

Согласовано с УМК физического факультета

Протокол № 38 от 18.04.2023 г.

Председатель: д.ф.-м.н., профессор

Н.М. Буднев

Рекомендовано кафедрой

Общей и экспериментальной физики

Протокол № <u>7</u>_

От « <u>31</u> » <u>января</u> 2023 г.

Зав. кафедрой

А.А. Гаврилюк

Иркутск 2023 г.

Содержание

		стр.
1.	Цели и задачи дисциплины (модуля)	3
2.	Место дисциплины (модуля) в структуре ОПОП	3
3.	Требования к результатам освоения дисциплины (модуля)	3
4.	Объем дисциплины (модуля) и виды учебной работы	4
5.	Содержание дисциплины (модуля)	5
	5.1 Содержание разделов и тем дисциплины (модуля)	
	5.2 Разделы дисциплины (модуля) и	
	междисциплинарные связи с обеспечиваемыми	
	(последующими) дисциплинами (модулями)	
	5.3 Разделы и темы дисциплин (модулей) и виды	
	занятий	
6.	Перечень семинарских, практических занятий, лабораторных	10
	работ, план самостоятельной работы студентов, методические	
	указания по организации самостоятельной работы студентов	
7.	Примерная тематика курсовых работ (проектов) (при	11
	наличии)	
8.	Учебно-методическое и информационное обеспечение	12
	дисциплины (модуля):	
	а) основная литература;	
	б) дополнительная литература;	
	в) программное обеспечение;	
	г) базы данных, поисково-справочные и	
	информационные системы	
9.	Материально-техническое обеспечение дисциплины	13
	(модуля).	
10	Образовательные технологии	14
11	.Оценочные средства (ОС).	14

Цели и задачи дисциплины (модуля):

Целью дисциплины является ознакомление студентов с принципами работы современных квантовооптических элементов, используемых в современной электронике и микроэлектронике, демонстрация возможностей современных устройств квантовой и оптической электроники, обсуждение возможных способов применения таких устройств для улучшения характеристик систем электроники и микроэлектроники.

Задачей дисциплины является получение информации о принципах усиления и генерации света на основе индуцированного излучения, об оптических резонаторах лазерных систем, принципах действия различных типов лазеров, об устройствах оптоэлектроники и принципах приёма, переработки и хранения информации.

1. Место дисциплины в структуре ОПОП:

Учебная дисциплина «Квантовая и оптическая электроника» является дисциплиной профессионального цикла базовой части. Код учебного цикла Б1.В.ДВ.01.01.

Дисциплина базируется на курсе "Квантовая оптика и атомная физика", «Физика полупроводников» и тесно связан с курсами "Твердотельная электроника", "Микро- и наноэлектроника", "Материалы электронной техники", "Современное физическое материаловедение".

Общая трудоемкость - 3 зачетные единицы.

3. Требования к результатам освоения дисциплины (модуля):

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций:

профессиональные компетенции (ПК): ПК-3, ПК-5

- (ПК-3) Способность внедрять и контролировать качество новых процессов и оборудования для модификации свойств наноматериалов и наноструктур
- (ПК-5) Способность аргументированно выбирать и реализовывать на практике эффективные методики экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения.

В результате изучения дисциплины студент должен:

Знать:

Индекс	Индекс	Образовательный результат
компетенции	образовательного	
	результата	
ПК-5	3-1	физическую сущность процессов, протекающих при взаимодействии электромагнитного (оптического) излучения с веществом, возможности и технические характеристики приборов и устройств квантовой и оптической электроники; области их применения в современной науке и технике.
ПК-3	3-2	о принципах действия устройств квантовой и оптической
		электроники, применяемых для модификации свойств наноматериалов и наноструктур

Уметь:

Индекс	Индекс	Образовательный результат
компетенции	образовательного	
	результата	
ПК-5	У-1	аргументированно выбирать и реализовывать на практике
		эффективные методики экспериментального исследования
		параметров и характеристик приборов, схем, устройств и
		установок квантовой и оптической электроники
ПК-3	У-2	анализировать методы и оборудование квантовой и
		оптической электроники для модификации свойств
		наноматериалов и наноструктур

Владеть:

Индекс	Индекс	Образовательный результат
компетенции	образовательного	
	результата	
ПК-5	B-1	методами экспериментального исследования параметров и характеристик приборов, схем, устройств и установок квантовой и оптической электроники (элементов квантовых генераторов, оптоэлектронных приборов и устройств)
ПК-3	B-2	методами использования оборудования квантовой и оптической электроники для модификации свойств наноматериалов и наноструктур

4. Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

Вид учебной работы	Всего часов /	Семестры
	зачетных	7
	единиц	
Аудиторные занятия (всего)	76/2,1	76/2,1
В том числе:		
Лекции	34/0,94	34/0,94
Практические занятия (ПЗ)	-	-
Лабораторные работы	34/0,94	34/0,94
Контроль общий (КО)	8/0,22	8/0,22
Самостоятельная работа (всего)	32/0,9	32/0,9
В том числе:		
Курсовой проект (работа)		
Расчетно-графические работы		
Реферат (при наличии)		
Другие виды самостоятельной работы		
Подготовка докладов по темам, решение задач, подготовка к зачету	32/0,9	32/0,9
Вид промежуточной аттестации: зачет	Зачет	Зачет
Вид итоговой аттестации:		
Общая трудоемкость: часы	108	108
зачетные единицы	3	3

5. Содержание дисциплины (модуля)

Особенности оптической и квантовой электроники. Преимущества оптического диапазона связи. Взаимодействие электромагнитного излучения с атомами и молекулами. Усиление и генерация электромагнитного излучения. Свойства, распространение и преобразование лазерных пучков. Оптические явления в однородных полупроводниках и гетероструктурах. Линейная кристаллооптика. Нелинейная оптика. Газовые, твёрдотельные и жидкостные лазеры. Светодиоды и полупроводниковые лазеры. Лазеры с использованием квантово-размерных эффектов. Фотоприемники и приборы управления оптическим излучением. Оптические методы передачи и обработки информации.

5.1. Содержание разделов и тем дисциплины (модуля).

Введение. Предмет дисциплины и ее задачи. Особенности оптической и квантовой электроники. Преимущества оптического диапазона связи. Перспективы и основные направления развития оптической и квантовой электроники.

Раздел 1. Взаимодействие электромагнитного излучения с атомами и молекулами.

1.1. Способы описания электромагнитного излучения. 1.2. Квантовые переходы. Вероятность перехода. Матричный элемент. Дипольное приближение. 1.3 Спонтанное и индуцированное излучение. Коэффициенты Эйнштейна. 1.4. Уширение спектральных линий. Механизмы уширения. Однородное и неоднородное уширение.

Раздел 2. Усиление и генерация электромагнитного излучения

2.1. Принцип работы о.к.г. Инверсия населенностей. Возбуждение активного вещества - накачка. Методы накачки. 2.2. Кинетические уравнения. Двух-, трех-, и четырехуровневые схемы работы. 2.3. Пороговая мощность источника накачки. 2.4. Оптические резонаторы. Добротность резонатора. Потери в оптических резонаторах. Собственные типы колебаний - моды. Требования к резонаторам оптического диапазона. Типы резонаторов. 2.5. Спектральные характеристики и распределение поля. 2.6. Условие устойчивости. Неустойчивые резонаторы. Селекция аксиальных и неаксиальных типов колебаний. 2.7. Условие самовозбуждения лазеров. Пороговая энергия накачки по генерации. Насыщение усиления. 2.8. Одномодовая и многомодовая генерация. Нестационарная генерация. 2.9. Модуляция добротности резонатора. Гигантские импульсы. Методы модуляции добротности. Синхронизация мод и сверхкороткие лазерные импульсы.

Раздел 3. Свойства, распространение и преобразование лазерных пучков

3.1. Монохроматичность. Поляризация. Когерентность. Пространственная и временная когерентность. Направленность лазерного излучения. Яркость. Энергетическая и фотометрическая яркость. 3.2. Гауссовы пучки. Распространение и преобразование гауссовых пучков.

Раздел 4. Линейная кристаллооптика

4.1. Оптика изотропных сред. Прохождение света через границу раздела двух сред. 4.2. Оптика анизотропных сред. Тензор диэлектрической проницаемости. Оптическая индикатриса. Естественное двулучепреломление. Электрооптические эффекты Поккельса и Керра. Магнитооптические эффекты. Брегговская дифракция на акустических волнах.

Раздел 5. Нелинейная оптика

5.1. Нелинейная поляризуемость кристалла и нелинейные оптические эффекты. Генерация гармоник. Условие фазового синхронизма. Параметрическое преобразование и параметрическая генерация света.

Раздел 6. Оптические явления в однородных полупроводниках и гетероструктурах

6.1. Оптические переходы в полупроводниках. Особенности зонной структуры и

оптических свойств полупроводниковых соединений A_3B_5 , A_2B_6 и A_4B_6 . Электронные состояния и оптическое поглощение в твердых растворах и сильнолигированных 6.2 Люминесценция полупроводников. Квазиуровни полупроводниках. Механизмы излучательной рекомбинации. 6.3. Фотоэлектрические эффекты в однородных кристаллах. Фотоэлектрические эффекты в неоднородных структурах и р-п-переходах. Гетеропереходы полупроводниках. Свойства гетеропереходов. В Эффект односторонней инжекции.

Раздел 7. Газовые лазеры

7.1. Общая характеристика и особенность газовых лазеров. 7.2. Гелий-неоновый лазер. Лазер на парах меди. 7.3. Ионные газовые лазеры. Гелий-кадмиевый лазер. Аргоновый лазер. 7.4. Молекулярный лазер. Газоразрядные CO_2 -лазеры. Газодинамические лазеры. Азотный лазер. 7.5. Эксимерные лазеры.

Раздел 8. Твердотельные и жидкостные лазеры

8.1. Общая характеристика и особенности твердотельных лазеров. Активные материалы. Требования к матрицам. Требования к активаторам. 8.2. Рубиновый лазер. 8.3. Лазеры на кристаллах и стеклах, активированных неодимом. 8.4. Твердотельные перестраиваемые лазеры. 8.5. Общая характеристика и особенности жидкостных лазеров.

Раздел 9. Светодиоды и полупроводниковые лазеры

9.1. Общая характеристика и особенность полупроводниковых светодиодов. Светодиоды на основе полупроводников с прямой и непрямой структурой энергетических зон. 9.2. Общая характеристика и особенность полупроводниковых лазеров. Требования к активным материалам. 9.3. Лазеры с электронной и оптической накачкой. 9.4. Инжекционные лазеры на гетеропереходах. 9.5. Лазеры на двойных гетероструктурах. 9.6. Лазеры с раздельным оптическим и электронным ограничением. 9.7. Лазеры с использованием квантово-размерных эффектов.

Раздел 10. Фотоприемники и приборы управления оптическим излучением

10.1. Классификация и технические характеристики приемников оптического излучения. 10.2. Полупроводниковые фотоприемники. 10.3. Фоторезисторы. 10.4 Фотодиоды. P-i-n фотодиоды и лавинные фотодиоды. 10.5. Приемники оптических изображений. Приборы с зарядовой связью в качестве фотоприемников. 10.6. Модуляторы лазерного излучения. 10.7. Электрооптические модуляторы. Абсорбционные модуляторы. Акустооптические модуляторы света. Пассивные затворы. 10.8. Дефлекторы.

Раздел 11. Оптические методы передачи и обработки информации

11.1. Характеристика и особенность оптической связи. Структурные элементы оптоэлектроники. 11.2. Оптопары, оптроны как структурные элементы оптоэлектроники. Типы оптопар. 11.3. Передача оптических сигналов по световодам. Волоконно-оптические линии связи. 11.4. Элементы интегральной оптики.

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

Курс «Квантовая и оптическая электроника» является основой для изучения

следующих дисциплин профессионального цикла:

<u>No</u>	Наименование обеспе-	No No	раздел	ов и те	м данн	юй дис	циплин	ны, нео	бходим	иых
п/п	чиваемых (последую-	для	изуче	ения	обесп	ечивае	мых	(посл	едуюш	(их)
	щих) дисциплин	дисци	плин (1	вписыв	аются	разрабо	отчиког	м)		
1.	Материалы электронной	6	10	11						
	техники									
2.	Современное физическое	6	9	10	11					
	материаловедение									
3.	Государственная	1	2	3	7	8	9	10	11	
	итоговая аттестация									

5.3. Разделы и темы дисциплин (модулей) и виды занятий

No	Наименование раздела	Виды занятий в часах					
п/п	Наименование темы	Лекц.	Практ. зан.	Лаб	КО	CPC	Всего
	Р1. Взаимодействие						
1.	электромагнитного излучения с	2			1	2	5
	атомами и молекулами.						
2.	Р2. Усиление и генерация	4			1	4	9
	электромагнитного излучения				-		
3.	Р3. Свойства, распространение и	4			1	4	9
	преобразование лазерных пучков				_		
4.	Р4. Линейная кристаллооптика	2				2	4
5.	Р5. Нелинейная оптика	2				2	4
	Р6. Оптические явления в						
6.	однородных полупроводниках и	4			1	4	9
	гетероструктурах						
7.	Р7. Газовые лазеры	2			1	2	5
8.	Р8. Твердотельные и жидкостные	2			1	2	5
0.	лазеры				1	2	
9.	Р9. Светодиоды и	4			1	2	7
9.	полупроводниковые лазеры	4			1	2	/
	Р10. Фотоприемники и приборы						
10.	управления оптическим	4			1	4	9
	излучением						
11.	Р11. Оптические методы передачи	4		34		4	42
11.	и обработки информации	4		J 4		4	42
	Итого:	34		34	8	32	108

No	Наименование	Наименование темы		Вид	цы зан	ятий	в часах	K
п/п	раздела		Лекц.	Практ. зан.	Сем.	КО	CPC	Всего
1.	Взаимодейст вие электромагн итного излучения с атомами и	1.1. Способы описания электромагнитного излучения. 1.2. Квантовые переходы. Вероятность перехода. Матричный элемент. Дипольное приближение. 1.3 Спонтанное и индуцированное излучение. Коэффициенты Эйнштейна. 1.4. Уширение	2			1	2	5

	монокупами	спектральных линий. Механизмы					
	молекулами.	уширения. Однородное и					
		неоднородное уширение.					
2.	Усиление и	2.1. Принцип работы о.к.г. Инверсия					
2.		населенностей. Возбуждение					
	генерация	активного вещества - накачка.					
	электромагн	Методы накачки. 2.2. Кинетические					
	ИТНОГО	уравнения. Двух-, трех-, и					
	излучения	четырехуровневые схемы работы.					
		2.3. Пороговая мощность источника					
		накачки. 2.4. Оптические					
		резонаторы. Добротность					
		резонатора. Потери в оптических					
		резонаторах. Собственные типы колебаний - моды. Требования к					
		резонаторам оптического диапазона.					
		Типы резонаторов. 2.5.					
		Спектральные характеристики и	4		1	4	9
		распределение поля. 2.6. Условие	_		1	_	
		устойчивости. Неустойчивые					
		резонаторы. Селекция аксиальных и					
		неаксиальных типов колебаний. 2.7.					
		Условие самовозбуждения лазеров.					
		Пороговая энергия накачки по					
		генерации. Насыщения усиления.					
		2.8. Одномодовая и многомодовая					
		генерация. Нестационарная					
		генерация. 2.9. Модуляция					
		добротности резонатора. Гигантские					
		импульсы. Методы модуляции					
		добротности. Синхронизация мод и сверхкороткие лазерные импульсы.					
3.	Свойства,	3.1. Монохроматичность.					
J.		Поляризация. Когерентность.					
	распростране	Пространственная и временная					
	ние и	когерентность. Направленность					
	преобразован	лазерного излучения. Яркость.	4		1	4	9
	ие лазерных	Энергетическая и фотометрическая					
	пучков	яркость. 3.2. Гауссовы пучки.					
		Распространение и преобразование					
		гауссовых пучков.					
4	Линейная	4.1. Оптика изотропных сред.					
	кристалло-	Прохождение света через границу					
	оптика	раздела двух сред. 4.2. Оптика анизотропных сред. Тензор					
		диэлектрической проницаемости.					
		Оптическая индикатриса.					
		Естественное двулучепреломление.	2			2	4
		Электрооптические эффекты					
		Поккельса и Керра.					
		Магнитооптические эффекты.					
		Брегговская дифракция на					
		акустических волнах.					
5	Нелинейная	5.1. Нелинейная поляризуемость					
	оптика	кристалла и нелинейные оптические					
		эффекты. Генерация гармоник.	2			2	4
		Условие фазового синхронизма.					
		Параметрическое преобразование и параметрическая генерация света.					
6	Оптинования	6.1. Оптические переходы в					
U	Оптические	полупроводниках. Особенности	4		1	4	9
	явления в	зонной структуры и оптических	-		1		
L	1	Johnson Cipjarjpbi ii Oliffi ICCRIA	ı	ı	l .	l	

	однородных полупроводн иках и гетерострукт урах	свойств полупроводниковых соединений АЗВ5, А2В6 и А4В6. Электронные состояния и оптическое поглощение в твердых растворах и сильнолигированных полупроводниках. 6.2 Люминесценция полупроводников. Квазиуровни Ферми. Механизмы излучательной рекомбинации. 6.3. Фотоэлектрические эффекты в однородных кристаллах. Фотоэлектрические эффекты в неоднородных структурах и р-ппереходах. 6.4. Гетеропереходы в полупроводниках. Свойства гетеропереходов. Эффект односторонней инжекции.					
7	Газовые лазеры	7.1. Общая характеристика и особенность газовых лазеров. 7.2. Гелий-неоновый лазер. Лазер на парах меди. 7.3. Ионные газовые лазеры. Гелий-кадмиевый лазер. Аргоновый лазер. 7.4. Молекулярный лазер. Газоразрядные СО ₂ -лазеры. Газодинамические лазеры. Азотный лазер. 7.5. Эксимерные лазеры.	2		1	2	5
8	Твердотельн ые и жидкостные лазеры	8.1. Общая характеристика и особенности твердотельных лазеров. Активные материалы. Требования к матрицам. Требования к активаторам. 8.2. Рубиновый лазер. 8.3. Лазеры на кристаллах и стеклах, активированных неодимом. 8.4. Твердотельные перестраиваемые лазеры. 8.5. Общая характеристика и особенности жидкостных лазеров.	2		1	2	5
9	Светодиоды и полупроводн иковые лазеры	9.1. Общая характеристика и особенность полупроводниковых светодиодов. Светодиоды на основе полупроводников с прямой и непрямой структурой энергетических зон. 9.2. Общая характеристика и особенность полупроводниковых лазеров. Требования к активным материалам. 9.3. Лазеры с электронной и оптической накачкой. 9.4. Инжекционные лазеры на гетеропереходах. 9.5. Лазеры на двойных гетероструктурах. 9.6. Лазеры с раздельным оптическим и электронным ограничением. 9.7. Лазеры с использованием квантоворазмерных эффектов.	4		1	2	7
10.	Фотоприемн ики и приборы управления оптическим излучением	10.1. Классификация и технические характеристики приемников оптического излучения. 10.2. Полупроводниковые фотоприемники. 10.3. Фоторезисторы. 10.4 Фотодиоды. Рі-п фотодиоды и лавинные	4		1	4	9

	фотодиоды. 10.5. Приемники оптических изображений. Приборы с зарядовой связью в качестве фотоприемников. 10.6. Модуляторы лазерного излучения. 10.7. Электрооптические модуляторы. Абсорбционные модуляторы. Акустооптические модуляторы света. Пассивные затворы. 10.8. Дефлекторы.					
11 Оптическі методы передачи і обработки информац	оптической связи. Структурные элементы оптоэлектроники. 11.2. Оптопары, оптроны как структурные элементы оптоэлектроники. Типы	4	34		4	42
	Всего за семестр:	34	34	8	32	108

6. Перечень семинарских, практических занятий, лабораторных работ, план самостоятельной работы студентов, методические указания по организации самостоятельной

работы студентов

№ п/п	№ раздела и темы дисциплины	Наименование семинаров, практических и лабораторных работ	Трудо- емкость (часы)	Оценочные средства	Формиру- емые компетенции	
1	2	3	4	5	6	
		Л.р.1. Компьютерная модель планарного оптического волновода.	4	Устный и письменный текущий контроль	ПК-3 ПК-5	
	Раздел 11.1 Физические	Л.р.2. Элементы Фурье-оптики. Опыт Аббе-Портера.	4	Устный и письменный текущий контроль	ПК-3 ПК-5	
1	основы распространения светового луча в оптическом	Л.р.З. Потери в оптическом световоде	4	Устный и письменный ПК	ПК-3 ПК-5	
	волноводе	волноводе	Л.р.4. Ввод оптического излучения в световод. Апертура оптического волокна.	4	Устный и письменный текущий контроль	ПК-3 ПК-5
		Л.р.5. Электрооптическая модуляция светового пучка. Ячейка Поккельса.	4	Устный и письменный текущий контроль	ПК-3 ПК-5	
	Раздел 11.2. Передача и	Л.р.б. Оптические потери в элементах линии связи.	4	Устный и письменный текущий контроль	ПК-3 ПК-5	
2	преобразование светового сигнала в оптоволоконной	Л.р.7. Фильтрация, разделение и объединение оптических сигналов.	6	Устный и письменный текущий контроль	ПК-3 ПК-5	
	линии связи	Л.р.8. Спектральное уплотнение оптических сигналов в линиях связи.	4	Устный и письменный текущий контроль	ПК-3 ПК-5	

6.1. План самостоятельной работы студентов

$N_{\underline{0}}$	Тема	Вид	Задание	Рекомендуемая	Колич
нед.		самостоятельной		литература	ество
		работы			часов
1	P1.	Работа с	Повторение и	Источники 1 из	2
2-4	P2.	учебником,	углубленное	основной и 1-6 из	4
5-6	P3.	справочной	изучение учебного	дополнительной	4
7	P4.	литературой,	материала лекции,	литературы;	2
8	P5.	первоисточникам	ПЗ с использованием	Самостоятельный	2
9-10	P6.	и, конспектом	конспекта лекций,	поиск литературы на	4
11	P7.		литературы,	образовательных	2
12	P8.		Интернет - ресурсов	ресурсах, доступные	2
13-14	P9.			по логину и паролю,	2
15-16	P10.			предоставляемым	4
17-18	P11.			Научной библиотекой	4
				ИГУ	

6.2. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа бакалавров — индивидуальная учебная деятельность, осуществляемая без непосредственного руководства преподавателя (научного руководителя (консультанта)), в ходе которой бакалавр активно воспринимает, осмысливает полученную информацию, решает теоретические и практические задачи. В процессе проведения самостоятельной работы формируются компетенции: ПК-3, ПК-5.

На самостоятельную работу выносятся следующие вопросы по темам дисциплины:

- 1. Линейная кристаллооптика. (Р.4.Т1-Т.3).
- 2. Нелинейная оптика (Р.5.Т1-Т.2).
- 3. Оптические явления в однородных полупроводниках и гетероструктурах (Р.6.Т1-Т.4).
- 4. Газовые лазеры (Р.7.Т1-Т.5).
- 5. Твердотельные и жидкостные лазеры (Р.8.Т.1-Т.5).
- 6. Светодиоды и полупроводниковые лазеры (Р.9.Т.1-Т.5.).
- 7. Фотоприемники и приборы управления оптическим излучением (Р.10.Т.1-Т.5).
- 8. Оптические методы передачи и обработки информации (Р.11.Т1-Т.8).

Проработка лекционного материала и материала практических занятий.

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает: работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме дисциплины; выполнение домашних заданий, домашних контрольных работ; опережающая самостоятельная работа; изучение тем, вынесенных на самостоятельную проработку; подготовка к практическим занятиям; подготовка к контрольным работам; подготовка к защите индивидуальных домашних заданий; подготовка к зачету. Творческая самостоятельная работа включает: анализ индивидуального домашнего задания; поиск, анализ и презентация информации; выполнение расчетно-графической работы; формулирование выводов о проделанной работе.

7. Примерная тематика курсовых работ (проектов) (при наличии)

планом не предусмотрено

8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

а) основная литература

- 1. Светцов В.И. Оптическая и квантовая электроника: Учебное пособие / Иван. гос. хим.-техн. ун-т. Иваново: ИГХТУ, 2004. 122 с http://window.edu.ru/resource/524/69524
- 2. Щука, Александр Александрович. Наноэлектроника [Электронный ресурс] : учеб. пособие для студ. вузов, обуч. по направл. подготовки "Прикл. математика и физика" / А. А. Щука. 2-е изд. ЭВК. М. : Бином. Лаборатория знаний, 2012. (Нанотехнологии). Режим доступа: ЭЧЗ "Библиотех". 15 доступ. ISBN 978-5-9963-1055-5 (+15 экз.)
- 3. Киселев Г.Л. Квантовая и оптическая электроника. Учеб.пособие. СПб: «Лань», 2017.- 313с..- 20 экз.
- 4. Пихтин, Александр Николаевич. Квантовая и оптическая электроника [Текст] : учебник / А. Н. Пихтин. СПб. : Абрис, 2012. 656 с. : ил. ; 22 см. Библиогр.: с. 652-653. ISBN 978-5-4372-0004-9 (12 экз.)
 - 5. Алексеев Г.В. Квантовая и оптическая электроника. 20 экз.

б) дополнительная литература

- 1. Звелто, Орацио. Принципы лазеров = Principles of Lasers : рекоменд. студ., аспирантам, науч. сотруд. ун-тов, вузов и науч.-исслед. учрежд. / О. Звелто ; ред. Т. А. Шмаонов ; пер. с англ.: Д. Н. Козлов и др. 4-е изд. СПб. : Лань, 2008. 720 с. : граф. ; 24 см. (Учебные пособия для вузов. Специальная литература). Библиогр. в конце глав. ISBN 978-5-8114-0844- (3 экз.)
- 2. Ярив, Амнон. Квантовая электроника [Текст]: научное издание / А. Ярив; пер. с англ. Я. И. Ханин. 2-е изд. М.: Сов. радио, 1980. 488 с.: ил.; 22 см. Библиогр.: с. 463-481. Предм. указ.: с. 482-484. Загл. 1-го изд.: Квантовая электроника и нелинейная оптика. Пер. изд.: Quantum electronics / Amnon Yariv. New York, 1975. (3.9кз.)
- 3. Рощин, Владимир Михайлович Технология материалов микро-, опто- и наноэлектроники [Электронный ресурс] : учеб. пособие для студ. вузов, обуч. по напр. подгот. 210100 "Электроника и микроэлектроника" : в 2 ч. / В. М. Рощин. 2-е изд. ЭВК. М. : Бином. Лаборатория знаний. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. ISBN 978-5-94774-913-7. Ч. 2. 2012. ISBN 978-5-9963-1471-3
- 4. Раскин, А. А. Технология материалов микро-, опто- и наноэлектроники. Ч. 1 [Текст]: учеб. пособие / А. А. Раскин, авт. В. К. Прокофьев. 2-е изд. (эл.). Москва: БИНОМ. Лаборатория знаний, 2012. 166 с.; есть. Режим доступа: ЭБС "Руконт". Неогранич. доступ. ISBN 978-5-9963-1470-6 (Ч. 1). ISBN 978-5-94774-913-7
- 5. Каменская, А.В. Основы технологии материалов микроэлектроники : учеб.- метод. пособие / А.В. Каменская .— Новосибирск : Изд-во НГТУ, 2010 .— 96 с. ISBN 978-5-7782-1420-0. Руконт. https://rucont.ru/efd/206025.
- 6. Щука, А. А. Электроника [Текст] : учеб. пособие для студ. вузов, обуч. по напр. 654100 Электроника и микроэлектроника / А. А. Щука ; ред. А. С. Сигов. СПб. : БХВ-Петербург, 2005. 799 с. : ил. ; 24 см. Библиогр. в конце глав. Предм. указ.: с.792-799. ISBN 5-94157-461-4 (3 экз.)

в) программное обеспечение

Стандартные сервисы глобальной сети Интернет, стандартные средства просмотра презентаций и научных публикаций в электронном виде, используются стандартные средства Windows и MS Office:

1. ABBY PDF Transformer 3.0 Пакет из 10 неименных лицензий Per Seat (10лиц.) EDU. Код позиции: AT30-1S1P10-102 Котировка № 03-165-11 от 23.11.2011. Бессрочно.

- 2. Microsoft OfficeProPlus 2013 RUS OLP NL Acdmc. Контракт № 03-013-14 от 08.10.2014. Номер Лицензии Microsoft 45936786. Бессрочно.
- 3. WinPro10 Rus Upgrd OLP NL Acdmc. Сублицензионный договор № 502 от 03.03.2017 Счет № ФРЗ- 0003367 от 03.03.2017 Акт № 4496 от 03.03.2017 Лицензия № 68203568. Бессрочно. 17 18
- 4. Kaspersky Free (ежегодно обновляемое ПО). Условия использования по ссылке: http://www.kaspersky.ru/free-antivirus/. Бессрочно.

г) базы данных, информационно-справочные и поисковые системы

- 1) НБ ИГУ http://library.isu.ru/ru
- 2) ЭЧЗ «БиблиоТех» https://isu.bibliotech.ru/
- 3) ЭБС Издательство «Лань» http://e.lanbook.com/
- 4) ЭБС «Руконт» http://rucont.ru межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;
 - 5) ЭБС «Айбукс» http://ibooks.ru - интернет ресурсы в свободном доступе.

Интернет источники:

Научные публикации в реферативных журналах по актуальным проблемам квантовой и оптической электроники, технологии материалов квантовой и оптоэлектроники. Электронные версии журналов: "Квантовая электроника", "Физика и техника полупроводников", "Материаловедение", "Физика твердого тела", "Журнал технической физики", "Письма в журнал технической физики", http://journals.ioffe.ru.

www.quantum-electron.ru/ - "Квантовая электроника"

http://perst.issp.ras.ru – Информационный бюллетень "Перспективные технологии"

www.nanonewsnet.ru - Сайт о нанотехнологиях в России

www.nanodigest.ru – Интернет-журнал о нанотехнологиях

<u>www.nano-info.ru</u> – Сайт о современных достижениях в области микро- и нанотехнологий

www.nanometer.ru – Сайт нанотехнологического сообщества ученых

<u>www.nano-portal.ru</u> - Портал посвященный теме развития нанотехнологий и их внедрения в производство

http://www.technosphera.ru

Доступ к полнотекстовым базам данных из сети Интранет ИГУ:

- Научная электронная библиотека <u>www.eLibrary.ru</u> (доступ к полным текстам ряда научных журналов с 2007 по настоящее время)

9. Материально-техническое обеспечение дисциплины (модуля):

Чтение лекций сопровождается демонстрацией информации, для чего использоваться мультимедийные средства: переносной проектор, переносной экран, ноутбук. Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов, в ходе которой они могут вычитывать научные статьи по темам курса. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

Лабораторный практикум по кантовой и оптической электронике расположен в специальной учебной лаборатории факультета. Имеются компьютеры для обработки экспериментальных данных и модельных работ.

10. Образовательные технологии:

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;
- практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
- лабораторные работы, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
 - консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- **текущий контроль** за деятельностью студентов осуществляется на лекционных и практических занятиях в ходе самостоятельного решения задач, в том числе у доски.

На лекциях используются активные методы обучения (компьютерных симуляций, разбор конкретных ситуаций). Практические занятия проводятся в интерактивной форме. Лабораторные работы проводятся с использованием ПЭВМ с последующей защитой.

№ п/п	Виды учебной работы	Образовательные технологии					
1.	Лекция	Вводная лекция, информационная лекция, лекция с					
		элементами дискуссии, интерактивная лекция (лекция диалог),					
		информационная лекция с элементами обратной связи.					
2.	Лабораторные	Занятия проводятся в экспериментальной лаборатории на					
	работы	лабораторных установках, с последующим написанием отчета					
		по лабораторной работе и его защите. Изучение физических					
		основ распространения светового луча в оптическом волноводе					
		и принципов передачи и преобразования светового сигнала в					
		оптоволоконной линии связи.					

11. Оценочные средства (ОС):

Фонд оценочных средств представлен в Приложении к программе.

11.1. Оценочные средства для входного контроля (могут быть в виде тестов с закрытыми или открытыми вопросами).

11.2. Оценочные средства текущего контроля

Текущий контроль осуществляется в устной и письменной форме при выполнении студентами учебных заданий - решении задач и выполнении контрольных работ или тестовых заданий, выступлении с докладами по предложенным темам на протяжении всего курса. Текущий контроль направлен на выявление сформированности компетенций ПК-3 и ПК-5. Ответы студентов оцениваются по пятибалльной шкале, заносятся в журнал и используются как дополнительная информация при аттестации студентов в середине семестра и получении студентом зачета.

11.3. Оценочные средства для промежуточной аттестации

Промежуточная аттестация направлена на проверку сформированности компетенции ПК-3 и ПК-5 и проводится в форме контрольных работ, тестирования или коллоквиума по ранее изученным темам. Оценка выставляется по пятибалльной системе.

Пример тестовых заданий для проверки сформированности компетенции ПК-3:

1. Аббревиатура ТЕМ обозначает:

- а) продольную электромагнитную волну
- б) поперечную электромагнитную волну
- в) продольную моду резонатора

2. **Оптопара** – это

- а) оптоэлектронный прибор, состоящий из излучающего и фотоприёмного элементов, между которыми имеется оптическая связь и обеспечена электрическая изоляция;
- б) оптоэлектронный прибор, состоящий из двух фотоприёмных элементов
- в) оптоэлектронный прибор, состоящий из двух излучающих элементов

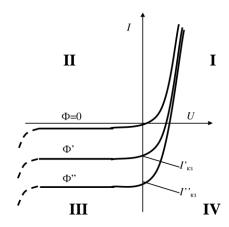
3. Что характеризует числовая апертура оптического волокна:

- а) эффективность ввода излучения в световод;
- б) эффективность вывода излучения из световода;
- в) диаметр сердцевины оптического волокна;
- г) диаметр оболочки оптического волокна?

4. Для получения усиления в среде

- а) необходима инверсная населённость;
- б) превышение усиления, достигнутого за счёт процессов вынужденного испускания, над всеми возможными потерями;
- в) и то и другое.

5. Условие устойчивости открытого оптического резонатора длиной L с радиусами кривизны зеркал r_1 и r_2 :


6. Импульсный режим работы лазера можно реализовать:

- а) только модуляцией $Q_{\rm pes}$
- б) только модуляцией скорости накачки F_2
- в) модуляцией $Q_{\text{рез}}$ и/или модуляцией скорости накачки F_2

7. Какой механизм генерации излучения реализуется в полупроводниках:

- а) эффект термоэлектронной эмиссии;
- б) эффект генерации электронно-дырочных пар;
- в) эффект рекомбинации;
- г) эффект фотолюминесценции?

8.

Какой из квадрантов ВАХ р-пперехода используется в фотодиодах, а какой в солнечных преобразователях энергии? (найти соответствие)

- I II а) Фотодиоды б) Солнечные преобразователи IIIIV
- 9. Каков принцип работы светоизлучающего диода?
 - а) принцип работы аналогичен лампе накаливания, т.е. излучение света при повышении температуры за счет нагревания р-п перехода большим прямым током;
 - б) при прямом напряжении в светодиодном p-n переходе происходит инжекция основных носителей заряда через барьер и в дальнейшем их рекомбинация с носителями противоположного знака, которая сопровождается испусканием фотонов:
 - в) излучение света в светодиодах наблюдается при обратном смещении, когда неосновные носители заряда получают возможность ускоряться в поле p-nперехода:
 - г) принцип работы светодиодов заключается в свечении экрана, покрытого люминесцирующим веществом, при соударении с ним неосновных носителей, ускоренных во внешнем электрическом поле.
- 10. Если обозначить через $\Delta E_{\rm B}$, $\Delta E_{\rm 3}$, и $\Delta E_{\rm II}$ ширину валентной зоны, запрещенной зоны и зоны проводимости полупроводника соответственно, то частота излучения полупроводникового лазера будет:

а)
$$\nu_{\text{изл}} \approx \Delta E_{\text{B}}/h$$

б)
$$v_{\text{изл}} \approx \Delta E_3/h$$

в)
$$\nu_{\text{изл}} \approx \Delta E_{\Pi}/h$$

$$\Gamma$$
) $\nu_{\text{изл}} \approx (\Delta E_{\Pi} + \Delta E_{\text{B}})/h$

Пример тестовых заданий для проверки сформированности компетенции ПК-5:

1. Во сколько раз ослабнет сигнал в световоде длиной 500 м, если коэффициент затухания составляет 2 дБ/км.

a)
$$P_{BX}/P_{BJX} = 1.26$$

б)
$$P_{BX}/P_{BLIX} = 2$$

B)
$$P_{BX}/P_{BMX} = 0.5$$

- 2. Определить энергию кванта света, имеющего длину волны 632,8 нм. $(h=6.63\cdot10^{-34} \ Дж.c, n=1)$ a) $3.14\cdot10^{-19} \ Дж$ б) $1.88\cdot10^{-19} \ Дж$

 - в) 1,88·10⁻²⁰ Дж г) 8,72·10⁻¹⁹ Дж; д) 6,03·10⁻¹⁹ Дж.
- 3. Длина резонатора 10 см, длина волны 1 мкм, коэффициент отражения равен 0.9. Добротность резонатора равна
 - a) $12.56 \cdot 10^6$,
- б) $12.56 \cdot 10^{-6}$, в) $2 \cdot 10^{6}$.
- Вероятность перехода A_{mn} составляет 2·10 с⁻¹. Определить время жизни частицы в возбужденном состоянии и ширину энергетического уровня.
 - а) 0.05 c; $2.1 \cdot 10^{-33}$ Дж
 - б) 0,5 c; 8,4·10⁻²³ Дж
 - в) 1 мс; $6.5 \cdot 10^{-28}$ Дж

11.4. Оценочные средства для итогового контроля

Итоговый контроль направлен на проверку сформированности компетенции ПК-3 и ПК-5 и проводится в форме зачета. Форма проведения зачета — устный по билетам или письменный в виде итогового теста. Зачет проводится перед экзаменационной сессией.

В течение семестра проводятся контрольные работы, устный опрос или промежуточное тестирование. Результат учитывается во время зачета.

Студент бакалавр допускается к зачету в том случае, если в течение семестра им выполнены все лабораторные работы предусмотренные курсом.

Vayyaayyy	ОЦЕНКА				
Критерии		НЕ ЗАЧТЕНО			
Знание	Всесторонние глубокие знания	Знание материала в пределах программы	Отмечены пробелы в усвоении программного материала	Не знает основное содержание дисциплины	
Понимание	Полное понимание материала, приводит примеры, дополнительные вопросы не требуются	Понимает материал, приводит примеры, но испытывает затруднения с выводами, однако достаточно полно отвечает на дополнительные вопросы	Суждения поверхностны, содержат ошибки, примеры не приводит, ответы на дополнительные вопросы неуверенные	С трудом формулирует свои мысли, не приводит примеры, не дает ответа на дополнительные вопросы	
Применение проф. терминологии	Дает емкие определения основных понятий, корректно использует профессиональную терминологию	Допускает неточности в определении понятий, не в полном объеме использует профессиональную терминологию	Путает понятия, редко использует профессиональную терминологию	Затрудняется в определении основных понятий дисциплины, некорректно использует профессиональную терминологию	
Соблюдение норм литературного языка	Соблюдает нормы литературного языка, преобладает научный стиль изложения	Соблюдает нормы литературного языка, допускает единичные ошибки	Допускает множественные речевые ошибки при изложении материала	Косноязычная речь искажает смысл ответа	

Примерный перечень вопросов к зачету по курсу: «Квантовая оптика и атомная физика»

- 1. Спонтанное и вынужденное излучение (квантовые переходы, коэффициенты Эйнштейна).
- 2. Уширение спектральных линий (однородное и неоднородное уширение, форма контуров, форм факторы).
- 3. Активные среды и методы создания инверсной населённости.
- 4. Оптические резонаторы (моды резонатора, добротность резонатора, потери резонатора).
- 5. Поглощение и усиление излучения квантовой системой (инверсная населённость, отрицательная температура, активная среда).
- 6. Насыщение усиления в активных средах при однородном уширении линий.
- 7. Режим свободной генерации лазера.
- 8. Режим модулирований добротности.
- 9. Многомодовая генерация. Синхронизация мод.
- 10. Твёрдотельные лазеры (рубиновый, неодимовый лазер).

- 11. Жидкостные лазеры.
- 12. Газовые лазеры.
- 13. Полупроводниковые лазеры (лазеры на гомо- и гетеропереходах).
- 14. Свойства лазерного излучения.
- 15. Фоторезисторы (явление фотопроводимости, технология изготовления, конструктивные особенности, основные характеристики и параметры.)
- 16. Фотовольтаический эффект: фотодиоды, фототранзисторы, фототиристоры (технология изготовления, конструктивные особенности, основные характеристики и параметры.)
- 17. Преобразователи ИК- излучения.
- 18. Светодиоды: механизм действия, конструктивные особенности, основные характеристики.
- 19. Оптроны (классификация оптопар, среда оптического канала, области применения).

Программа составлена в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки 11.03.04 «Электроника и наноэлектроника».

Разработчики:

Шорье к.ф.-м.н., доцент Морозова Н.В.

Программа рассмотрена на заседании **кафедры общей и экспериментальной физики ИГУ**

« <u>31</u> » <u>января</u> 2023 г.

Протокол № 7_

Зав.кафедрой

д.ф.-м..н. Гаврилюк А.А.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.