МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра гидрологии и природопользования

УТВЕРЖДАЮ

С.Ж Вологжина

«18» июня 2021 г.

Рабочая программа дисциплины

Наименование дисциплины

Б1.В.19.02 Динамика жидкости и газа

Направление подготовки

05.03.06 Экология и природопользование

Направленность (профиль) подготовки Экологическая безопасность и управление природопользованием

Квалификация выпускника - бакалавр Форма обучения - очная

Согласовано факультета	С	УМК	географического	Рекомендовано природопользов Протокол № 12 (ания:		И
Протокол № <u>6</u> Председатель		-	20 <u>21</u> г. .Ж. Вологжина	Зав. кафедрой		<u>.м</u> 20 <u>21</u> г. . Аргучинцева	

Содержание

	стр
 Цели и задачи дисциплины (модуля) 	
II. Место дисциплины (модуля) в структуре ОПОП.	3
III. Требования к результатам освоения дисциплины (модуля)	3
IV. Содержание и структура дисциплины (модуля)	4
4.1 Содержание дисциплины, структурированное по темам, с	4
указанием видов учебных занятий и отведенного на них количества	
академических часов	
4.2 План внеаудиторной самостоятельной работы обучающихся	5
по дисциплине	
4.3 Содержание учебного материала	6
4.3.1 Перечень семинарских, практических занятий и	6
лабораторных работ	
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное	7
изучение в рамках самостоятельной работы студентов	
4.4. Методические указания по организации самостоятельной	7
работы студентов	
V. Учебно-методическое и информационное обеспечение	8
дисциплины (модуля)	
а) перечень литературы	8
б) базы данных, поисково-справочные и информационные	8
системы	
VI. Материально-техническое обеспечение дисциплины (модуля)	9
6.1. Учебно-лабораторное оборудование:	9
6.2. Программное обеспечение	9
6.3. Технические и электронные средства обучения:	9
VII. Образовательные технологии	9
VIII. Оценочные материалы для текущего контроля и промежуточной	10
аттестации	

І. Цели и задачи дисциплины (модуля):

Цель: Получение общих и специальных знаний о динамике жидкостей и газов. Цели освоения данной дисциплины определяют её основные задачи:

Задачи дисциплины:

- получению базовых знаний по динамике жидкости и газа
- формировать умение решать задачи динамики жидкости и газа.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина (модуль) <u>Б1.В.19.02 Динамика жидкости и газа</u> относится к части, формируемой участниками образовательных отношений. Совокупность разделов, включенных в программу данного курса, представляет собой важный этап единой системы подготовки бакалавров в области экологии и природопользования.

Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:

Б1.В.03 Математический анализ

Б1.О.15 Физика

Б1.В.19.01 Кинематика жидкости и газа

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

Б1.В.26 Математические методы и модели в задачах окружающей среды

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки <u>05.03.06 Экология и природопользование</u>.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с инликаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
	компетенций	
ПК-1	ИДК _{ПК1.1}	Знать: задачи динамики жидкости и газа,
Способен использовать	Применяет знания,	методы их решения;
знания математических	подходы и	Уметь: проводить анализ поставленной
наук при решении	методический аппарат	задачи на основе современного
научно-	математических наук	математического аппарата;
исследовательских задач	для решения	формулировать и решать задачи по
в сфере экологии,	профильных научно-	движению жидкостей и газов
природопользования и	исследовательских	Владеть: представлениями о прикладных
охраны окружающей	задач	задачах изучения течений жидкости для
среды		решения профильных научно-
		исследовательских задач.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 3 зачетные единицы, 108 часов

Форма промежуточной аттестации: экзамен

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/н	Раздел дисциплины/тема		часов	Из них практическая подготовка обучающихся		самостоятельную	ку и трудоемкост (в часах)	ГЬ	тельная наскую	Форма текущего контроля успеваемости/ Форма промежуточной аттестации (по семестрам)
		Семестр	Всего ча	Из них пран подготовка	Лекция	Семинар/ Практическое, лабораторное занятие	Консультация	КСР	Самостоя работа	
1	2	3	4	5	6	7	8	9	10	11
1	І. КЛАССИФИКАЦИЯ СИЛ, ДЕЙСТВУЮЩИХ НА ЖИДКОСТЬ	6	12		6	4	2			Проверочная работа (решение задач)
2	II. УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ	6	12		7	3	2			Проверочная работа (решение задач)
3	III. ИНТЕГРАЛЫ УРАВНЕНИЙ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ	6	9		5	2	2			Проверочная работа (решение задач)
4	IV. ГИДРОСТАТИКА	6	39		5	2	2	2	28	Проверочная работа (решение

									задач) /Реферат
5	V. ДИНАМИКА ВЯЗКОЙ ЖИДКОСТИ	6	10	5	3	2			Проверочная работа (решение задач)
	Контроль		26						
	ОТОТИ		108	28	14	10	2	28	экзамен

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

			Самостоятельная р	абота обучающихся			Учебно-
Семестр	Название раздела, темы		ид самостоятельной работы	Сроки выполнения	Трудоемкость (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
5	IV. ГИДРОСТАТИКА	Рефера Архиме	ат на тему: «Парадоксы гда и Паскаля»	До начала промежуточной аттестации	28	Оценка реферата на educa.isu.ru (оценка в баллах: от 0 до 10 баллов)	осн. – 1-3 доп. – 1

4.3. Содержание учебного материала

І. КЛАССИФИКАЦИЯ СИЛ, ДЕЙСТВУЮЩИХ НА ЖИДКОСТЬ

Понятие сплошной среды. Понятие динамики. Системы отсчёта. Инерционные системы отсчета. Закон инерции. Классификация сил, действующих в жидкости: массовые, поверхностные силы. Главный вектор массовых сил. Главный вектор поверхностных сил. Примеры сил. Сила тяжести, сила Кориолиса.

Баротропность и бароклинность. Случай несжимаемой жидкости. Случай сжимаемой жидкости. Вязкая (реальная) и идеальная жидкость. Модели жидкости.

II. УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ

Уравнения движения идеальной жидкости в форме Эйлера.

Уравнения движения идеальной жидкости в форме Громека.

Уравнение притока энергии. Возможности замыкания системы уравнений движения идеальной жидкости. Начальные и граничные условия (на свободной поверхности и на твердой стенке).

ІІІ. ИНТЕГРАЛЫ УРАВНЕНИЙ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ

Интегралы уравнений движения идеальной жидкости (Бернулли, Лагранжа, Лагранжа-Бернулли). Их физическая и геометрическая интерпретации. Примеры применения интеграла Бернулли к простейшим задачам.

Динамические свойства вихревого движения (основные уравнения теории вихрей, примеры образования вихрей).

IV. ГИДРОСТАТИКА

Уравнения гидростатики. Условия для сил, удерживающих жидкость в равновесии. Закон Паскаля. Равновесие тяжелой жидкости. Барометрические формулы.

Гидростатическая подъемная сила и устойчивость.

V. ДИНАМИКА ВЯЗКОЙ ЖИДКОСТИ

Уравнения движения вязкой жидкости в напряжениях (в форме Навье). Гипотезы Стокса. Уравнения движения вязкой жидкости в форме Навье-Стокса. Закон Ньютона. Коэффициент вязкости.

Понятие подобия. Необходимые и достаточные условия подобия. Обезразмеривание уравнений. Критерии подобия. Физический смысл критериев подобия.

4.3.1 Перечень семинарских, практических занятий и лабораторных работ

№ п/н	№ раздела и темы	Наименование семинаров, практических	Трудоемкость (час.)		Оценочные средства	Формируемые компетенции (индикаторы)
		и лабораторных работ	Всего часов	Из них практическая подготовка		
1	2	3	4	5	6	7
1.	І. КЛАССИФ ИКАЦИЯ СИЛ, ДЕЙСТВУ ЮЩИХ НА ЖИДКОСТ Ь	Решение задач: определение ускорения силы тяжести и силы Кориолиса для заданных пунктов	4	-	Проверочная работа (решение задач) (оценка в баллах: от 0 до 10 баллов)	ИДКпкі.і
2.	II. УРАВНЕН ИЯ	Решение задач: уравнения движения идеальной	3	-	Проверочная работа (решение задач) (оценка	ИДКпк1.1

3.	ДВИЖЕНИ Я ИДЕАЛЬН ОЙ ЖИДКОСТ И III. ИНТЕГРАЛ	жидкости в форме Громека и Эйлера Решение задач: примеры	2	-	в баллах: от 0 до 10 баллов) Проверочная работа	ИДК _{ПК1.1}
	ИНТЕГРАЛ Ы УРАВНЕН ИЙ ДВИЖЕНИ Я ИДЕАЛЬН ОЙ ЖИДКОСТ И	применения интеграла Бернулли к простейшим задачам			(решение задач) (оценка в баллах: от 0 до 10 баллов)	
4.	IV. ГИДРОСТ АТИКА	Решение задач: Уравнения гидростатики. Условия для сил, удерживающих жидкость в равновесии. Закон Паскаля. Равновесие тяжелой жидкости. Барометрическ ие формулы	2	-	Проверочная работа (решение задач) (оценка в баллах: от 0 до 10 баллов)	ИДКпк1.1
5.	V. ДИНАМИК А ВЯЗКОЙ ЖИДКОСТ И	Решение задач: Уравнения движения вязкой жидкости в форме Навье и в форме Навье- Стокса.	3	-	Проверочная работа (решение задач) (оценка в баллах: от 0 до 10 баллов)	ИДКпкі.і

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

№ п/п	Тема	Задание	Формируемая компетенция	идк
1	2	3	4	5
1.	IV.	Реферат на тему:	ПК-1	ИДКпк1.1
	ГИДРОСТАТИКА	«Парадоксы Архимеда и		
		Паскаля»		

4.4. Методические указания по организации самостоятельной работы студентов

Цель самостоятельной работы – изучить определенные темы некоторых разделов дисциплины самостоятельно. Для лучшей проработки и усвоения материала студенту

необходимо написать **реферат** на заданную тему. Проверка самостоятельной работы осуществляется путем размещения студентом реферата на портале educa.isu.ru.

Выполненная работа оценивается в баллах, согласно разработанной балльной системе (реферат может быть от **0** до **10** баллов в зависимости от степени освещения заданной тематики). При недостаточном освещении заданной темы – студенту возвращается задание на доработку с последующим собеседованием для выявления степени усвоения.

Результаты самостоятельных работ фиксируются на портале educa.isu.ru в электронном виде, что является основанием для отслеживания успеваемости студентов.

Для выполнения всех перечисленных самостоятельных работ студенту предоставляется возможность использования одного из трех компьютерных классов во внеучебное время (все компьютеры подключены к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду университета), фондов стационарной библиотеки и фундаментальной библиотеки ИГУ, читальных залов Институтов академии наук (согласно заключенным с ними Договорами), фондов библиотеки Иркутского управления по гидрометеорологии и мониторингу окружающей среды, индивидуальных консультаций с преподавателями факультета (согласно графику еженедельных консультаций).

Методические указания по организации самостоятельной работы, с подробным описанием каждого задания, представленного в таблице 4.3.2, размещены в ЭИОС по соответствующей дисциплине.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

- а) перечень литературы основная литература
- *1.* **Аргучинцев В.К.** Механика жидкости и газа [Текст] : учеб. пособие / В. К. Аргучинцев, А. В. Аргучинцева. Иркутск : Изд-во ИГУ, 2015. 125 с. (45 экз.)
- 2. **Аргучинцев В.К., Аргучинцева А.В.** Механика жидкости и газа [Текст] : учеб.-метод. пособие / Иркутский гос. ун-т, Геогр. фак. ; сост.: В. К. Аргучинцев, А. В. Аргучинцева. Иркутск : Изд-во ИГУ, 2010. 59 с.. **Имеются экземпляры в отделах:** всего 61 : нф (1), геохим (60)
- **3.** Лойцянский, Лев Герасимович Механика жидкости и газа [Текст] : учеб. для студ. вузов, обуч. по спец. 010500 "Механика" / Л. Г. Лойцянский. 7-е изд., испр. М. : Дрофа, 2003. 840 с. Имеются экземпляры в отделах: всего 15 : нф (1), геохим (14) дополнительная литература
- 1. **Высоцкий**, Л. И. Математическое и физическое моделирование потенциальных течений жидкости [Электронный ресурс] / Л. И. Высоцкий, Г. Р. Коперник, И. С. Высоцкий. Москва: Лань", 2014. 64 с.; 21 см. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ.
 - б) базы данных, информационно-справочные и поисковые системы

http://e.lanbook.com/ - ЭБС «Издательство Лань»

https://isu.bibliotech.ru/ - ЭБС ЭЧЗ «Библиотех»

http://rucont.ru/ - ЭБС «Национальный цифровой ресурс «Руконт»

http://ibooks.ru - ЭБС «Айбукс.py/ibooks.ru»

http://www.sciencemag.org - Научная база данных SCIENCE -ONLINE- SCINCE-NOW

http://www.nature.com - Научная база данных Nature

http://ingrid.Idgo.colombia.edu/ - Библиотека климатических данных (IRILDEO);

http://www.ncdc.noaa.gov - Всемирный центр метеорологических и океанографических данных (NOAA);

Сайт Федеральной службы по гидрометеорологии и мониторингу окружающей среды, http:// www.meteorf.ru;

VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Учебно-лабораторное оборудование:

Учебная аудитория с мультимедийным проектором для проведения лекционных занятий. Компьютерные классы для выполнения практических и самостоятельных работ. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети ИГУ и находятся в едином домене.

6.2. Программное обеспечение:

Программа Microsoft Office Ward для написания реферата представления материалов и результатов.

6.3. Технические и электронные средства:

Учебный материал подается с использованием современных средств визуализации с применением мультимедийного оборудования.

Персональные компьютеры для выполнения практических и самостоятельных работ.

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

Информационные технологии: использование электронных образовательных ресурсов при подготовке к занятиям, занятия сопровождаются мультимедийными презентациями, просмотром роликов по проходимым темам.

Проектная технология: организация самостоятельной работы студентов, когда обучение происходит в процессе деятельности, направленной на разрешение проблемы, возникшей в ходе изучения темы

Проблемное обучение: стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы, его элементы используются в ходе занятий.

Контекстное обучение: мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением;

Обучение на основе опыта: активизация познавательной деятельности студента проводится за счет ассоциации и собственного опыта.

Обучение критическому мышлению: построение занятия по определенному алгоритму – последовательно, в соответствии с тремя фазами: вызов, осмысление и рефлексия. Цель данной образовательной технологии – развитие мыслительных навыков обучающихся, необходимых не только при изучении учебных предметов, но и в обычной жизни, и в профессиональной деятельности (умение принимать взвешенные решения, работать с информацией и др.).

Станционное обучение: организация целенаправленной и планомерной самостоятельной работы студентов на занятии в мини-группах в целях более эффективного усвоения проходимого материала, когда каждая группа выбирает свою образовательную траекторию, и студенты сами оценивают свою работу.

No	Тема занятия	Вид занятия	Форма / Методы	Кол-во часов
			интерактивного	
			обучения	
1	І. КЛАССИФИКАЦИЯ СИЛ,	Лекция	Информационны	6
	ДЕЙСТВУЮЩИХ НА		е технологии	
	ЖИДКОСТЬ			
2	ІІ. УРАВНЕНИЯ	Лекция	Информационны	7
	ДВИЖЕНИЯ ИДЕАЛЬНОЙ		е технологии	
	жидкости			
3	III. ИНТЕГРАЛЫ	Лекция	Информационны	5
	УРАВНЕНИЙ ДВИЖЕНИЯ		е технологии	
	ИДЕАЛЬНОЙ ЖИДКОСТИ			
4	IV. ГИДРОСТАТИКА	Лекция	Информационны	5
			е технологии	
5	V. ДИНАМИКА ВЯЗКОЙ	Лекция	Информационны	5
	жидкости		е технологии	

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства для входного контроля — не предусмотрены Оценочные средства текущего контроля

Тема или раздел дисциплины	Показатель	Критерий оценивания	Формируемы е компетенции
			и индикаторы
I. КЛАССИФИКАЦ ИЯ СИЛ, ДЕЙСТВУЮЩИ Х НА ЖИДКОСТЬ	Знает понятия баротропности и бароклинности, идеальной и реальной жидкости, знает силы, действующие на жидксоть. Владеет представлениями о системах отсчета	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ПК-1 ИДК _{ПК1.1}
II. УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ	Умеет определять ускорение силы тяжести и силы Кориолиса Знает уравнения движения идеальной жидкости в форме Эйлера и Громека. Владеет представлениями о возможности замыкания системы уравнений движения идеальной жидкости. Умеет решать задачи на движение идеальной жидкости	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ПК-1 ИДК _{ПК1.1}
III. ИНТЕГРАЛЫ УРАВНЕНИЙ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ	Знает примеры применения интеграла Бернулли к простейшим задачам. Владеет представлениями о физической и геометрической интерпретации интегралов Бернулли, Бернулли-Эйлера и Лагранжа-Коши. Умеет интегрировать уравнения движения идеальной жидкости	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ПК-1 ИДК _{ПК1.1}
IV. ГИДРОСТАТИКА	Знает уравнения гидростатики и условия для сил, удерживающих жидкость в равновесии Умеет применять на практике уравнение гидростатики	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно» Написал реферат с оценкой не ниже «Удовлетворительно»	ПК-1 ИДК _{ПК1.1}

Тема или раздел	Показатель	Критерий оценивания	Формируемы
дисциплины			e
			компетенции
			И
			индикаторы
V. ДИНАМИКА	Знает уравнение движения вязкой	Владеет материалом	ПК-1
ВЯЗКОЙ	жидкости в форме Навье и Навье-Стокса	данного раздела.	ИДКпк1.1
ЖИДКОСТИ	Владеет представлениями о критериях	Выполнил проверочную	
	подобия и их физическом смысле	работу по разделу с	
	Умеет решать задачи на динамику вязкой	оценкой не ниже	
	жидкости	«Удовлетворительно»	

Критерии оценки практических заданий (текущий контроль, формирование компетенций):

«Отлично»:

10 баллов: правильно решил все задачи проверочных работ, студент четко и без ошибок ответил на все контрольные вопросы;

«Хорошо»:

8 баллов: решил все решил все задачи проверочных работ с отдельными недочетами, студент ответил на все контрольные вопросы с замечаниями;

«Удовлетворительно»:

6 баллов: решил все решил все задачи проверочных работ с ошибками, студент ответил на все контрольные вопросы с замечаниями;

«Неудовлетворительно»:

3 балла: студент неправильно решил все задачи проверочных работ или решил не все задачи, студент ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

0 баллов: студент не решил все задачи проверочных работ.

Критерии оценивания индивидуального отчета о выполнении самостоятельной работы (реферата) (текущий контроль, формирование компетенций):

«Отлично»:

10 баллов: работа выполнена в срок, оформление, структура и стиль работы образцовые; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; правильные ответы на все вопросы при защите реферата; тема реферата раскрыта полностью; список использованных источников содержит требуемое в задании число источников;

«Хорошо»:

8 балла: содержание работы соответствует тематике реферата; работа выполнена с незначительными замечаниями; работа выполнена в срок, в оформлении, структуре и стиле проекта нет грубых ошибок; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; правильные ответы на все вопросы с помощью преподавателя при защите реферата;

«Удовлетворительно»:

6 балла: содержание реферата в целом соответствует заявленной теме; написанное реферата имеет значительные замечания; сдана с нарушением графика, в оформлении,

структуре и стиле работы есть недостатки; работа выполнена самостоятельно, присутствуют собственные обобщения; ответы не на все вопросы при защите отчета;

«Неудовлетворительно»:

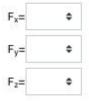
причины, вызывающие движение.

3 балла: содержание реферата значительно отклоняется от заявленной темы; отсутствуют или сделаны неправильные выводы и обобщения; оформление работы не соответствует требованиям; нет ответов на вопросы при защите отчета.

0 баллов: работа не выполнена или не является оригинальной, не соответствует заявленной теме; выполнена не самостоятельно

8.1.1 Оценочные материалы для промежуточной аттестации в форме - экзамен Темы рефератов и заданий поисково-исследовательского характера

Реферат на тему: «Парадоксы Архимеда и Паскаля»


- раздел механики, в котором изучаются

Демонстрационный вариант теста (фрагмент)

Динамика	Магнетизм	Статика
Релятивизм	Кинематика	
		1
Сила	\$	является равнодействующей
	맛이 있는데 가장 하다 하는데 하다.	силы притяжения Земли и
центробежно	й силы инер	ции. Данная сила относится к
	Ф сил	пам
	$\rho \vec{F} = g$	radp
векторным у		
векторным у	равнением	radp называепся
	равнением ижения идеал т вид:	

Если из массовых сил действует только сила тяжести, а оси ОХ и ОҮ направить по горизонтали, ось ОZ вертикально вверх, то

Темы практических работ

- Решение задач: определение ускорения силы тяжести и силы Кориолиса для заданных пунктов
- Решение задач: уравнения движения идеальной жидкости в форме Громека и Эйлера
- Решение задач: примеры применения интеграла Бернулли к простейшим задачам
- Решение задач: Уравнения гидростатики. Условия для сил, удерживающих жидкость в равновесии. Закон Паскаля. Равновесие тяжелой жидкости. Барометрические формулы
- Решение задач: Уравнения движения вязкой жидкости в форме Навье и в форме Навье-Стокса.

Тематика вопросов для самостоятельной работы

- В чем суть уравнения Громека?
- Для чего проводят усреднение уравнений движения?
- В чем суть критериев подобия?
- В чем различия уравнений движения, записанных в различных формах: Эйлера, Навье, Навье-Стокса, Рейнольдса?
- Барометрические формулы.
- Гидростатическая подъемная сила и устойчивость.

Пример проверочной работы

Задача 1. Найти ускорение силы тяжести $g[m/c^2]$ по рабочим расчетным формулам:

$$g_{z,\phi} = g_0 * (1 + 0.0053024 * \sin \phi - 0.0000058 * \sin^2 2\phi) - a_0 * z$$
 (1)

$$g_{z,\Phi} = g_{0.45} (1 - a_1 \cos 2\phi) (1 - a_2 z), \qquad (2)$$

где $g_{z,\phi}$ - ускорение силы тяжести на широте ϕ [°] и на высоте над уровнем моря Z [м], $g_0 \!\!=\!\! 9,\! 780327$ м/с²

 a_0 =0,000003086 1/ c^2

 $g_{0.45} = 9,806159 \text{ м/c}^2$ - ускорение силы тяжести на широте 45° и на уровне моря;

 $a_1 = 0,0026, \ a_2 = 3,14 \cdot 10^{-7} \ 1/M.$

для следующих пунктов: Анадырь, Хабаровск, Дели, Эльбрус (западная вершина)

•••

Примерный перечень вопросов и заданий к экзамену

Понятие сплошной среды. Понятие динамики. Системы отсчёта. Инерционные системы отсчета. Закон инерции.

Классификация сил, действующих в жидкости: массовые, поверхностные силы. Главный вектор массовых сил. Главный вектор поверхностных сил. Примеры сил. Сила тяжести сила Кориолиса.

Случай несжимаемой жидкости. Случай сжимаемой жидкости. Баротропность и бароклинность. Вязкая (реальная) и идеальная жидкость. Модели жидкости.

Уравнения движения идеальной жидкости в форме Эйлера.

Уравнения движения жидкости в форме Громека.

Интегралы уравнений движения идеальной жидкости (Бернулли, Лагранжа, Лагранжа – Бернулли). Их физическая и геометрическая интерпретации.

Уравнения гидростатики. Условия для сил, удерживающих жидкость в равновесии. Закон Паскаля. Равновесие тяжелой жидкости.

Уравнения движения вязкой жидкости в напряжениях (в форме Навье).

Тензор напряжений. Уравнения движения вязкой жидкости в форме Навье – Стокса. Допущения, предложенные Стоксом. Коэффициент вязкости.

Критерии оценивания устного ответа на контрольные вопросы (промежуточный контроль, формирование компетенций):

Экзамен проводится в форме тестового задания средствами образовательного портала *educa.isu.ru* из 20 вопросов и оценивается по 2 балла за каждый правильный ответ на вопрос (максимально 40 баллов за тест).

Общая оценка выставляется как сумма текущего контроля и промежуточного контроля по балльной системе:

Суммарные баллы, полученные	Академическая оценка
обучающимся за текущий контроль и	
промежуточный контроля	
60-70 баллов	удовлетворительно
71-85 баллов	хорошо
86-100 баллов	ончило

Разработчик:		
8108	Доцент кафедры гидрологии и	Е.Н. Сутырина
(подпись)	природопользования	(инициалы, фамилия)
	(занимаемая должность)	

Программа составлена в соответствии с требованиями ФГОС ВО по направлению и профилю подготовки 05.03.06 Экология и природопользование, Направленность (профиль) подготовки Экологическая безопасность и управление природопользованием.

Программа рассмотрена на	заседании кафедры	гидрологии и пр	риродопол	ьзования
			(наименование)	

«05» июня 2021 г. П	ротокол №12	
'Зав. Кафедрой	9105	Аргучинцева А.В.

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.

Лист согласования, дополнений и изменений на 2022/2023 учебный год

Изменений в рабочей программе дисциплины на 2022/2023 учебный год нет.

Декан географического факультета

Вологжина С.Ж.