

Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ Декан физического факультета

/Н.М. Буднев

«22» апреля 2020 г.

Физический факультет

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.15 Квантовая теория излучения

Направление подготовки:

03.03.02 Физика

Н.М. Буднев

Тип образовательной программы: Академический бакалавриат

Направленность (профиль) подготовки: Фундаментальная физика

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №25 от «21» апреля 2020 г.

Председатель

Протокол №8

От «14» апреля 2020 г.

Рекомендовано кафедрой:

И.о. зав. кафедрой

Содержание

1. Цели и задачи дисциплины	.3
2. Место дисциплины в структуре ОПОП	.3
3. Требования к результатам освоения дисциплины	
4. Объем дисциплины и виды учебной работы	
5. Содержание программы	
6. Перечень семинарских, практических занятий и лабораторных работ работ	
7. Примерная тематика курсовых работ	
8. Учебно-методическое обеспечение дисциплины	.7
9. Материально-техническое обеспечение дисциплины	8.
10. Образовательные технологии:	
11. Оценочные средства (ОС):	
Приложение: фонд оценочных средств	

1. Цели и задачи дисциплины

Целью курса «Квантовая теория излучения» является углубление и развитие представлений о квантовых процессах в атомных и ядерных системах при их взаимодействии с полем излучения; приобретение навыков вычисления атомных спектральных характеристик и релятивистских поправок к ним; вычисления вероятностей переходов в атомах и спектральных функций излучения; использования свойств симметрии возмущений для определения правил отбора; использования квазиклассических методов в квантовых расчетах; введение в релятивистскую теорию квантованных полей.

Данный курс призван решать следующие задачи:

- изучение тонкого и сверхтонкого расщепления уровней энергии в атомах;
- знакомство с нестационарной теорией возмущений;
- формирование умений и навыков самостоятельного вычисления вероятностей процессов испускания и поглощения света;
- изучение процессов рассеяния света атомными системами;
- знакомство с методами описания многоэлектронных систем.

Программа ориентирована на развитие у студентов интереса к самостоятельному изучению фундаментальных основ науки.

2. Место дисциплины в структуре ОПОП

Дисциплина является обязательной в вариативной части общенаучного цикла ОПОП. При изучении курса «Квантовая теория излучения» используются знания, приобретенные при изучении основных физических и математических курсов, «Математический анализ», «Линейная алгебра», «Дифференциальные уравнения», «Теоретическая механика», «Линейные и нелинейные уравнения физики», «Электродинамика», «Квантовая механика», «Релятивистская квантовая теория».

Данный курс представляет собой теоретическую основу для последующих разделов курса теоретической физики: «Введение в квантовую теорию поля», «Квантовая электродинамика», «Слабые взаимодействия», а также спецкурсов по физике частиц и астрофизике.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций:

- способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2);
- способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3);
- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1).

В результате изучения дисциплины студент должен:

Знать: основные типы релятивистских поправок к спектру атомов, формулы и правила отбора для вычисления вероятностей переходов электронов в атомах с испусканием или поглощением одного и двух фотонов и фотоэффекта, или рассеяния света на атомах.

Уметь: применять эти формулы для вычисления расщеплений уровней, сечений и вероятностей процессов излучения, поглощения и рассеяния различной мультипольности,

Владеть: навыками точных и качественных, и квазиклассических вычислений, и оценок основных наблюдаемых характеристик этих процессов.

4. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего часов /	Семестр
	зачетных	7
	единиц	
Аудиторные занятия	82 / 2,3	82
Лекции	18 / 0,5	18
Практические занятия (ПЗ)	54 / 1,5	54
KCP	10/0,3	10
Самостоятельная работа (всего)	98 / 2,7	98
Вид промежуточной аттестации (зачет с оценкой)		
Контактная работа (всего)	92/ 2,5	92
Общая трудоемкость: часы / зачетные единицы	180/5	180

5. Содержание программы

5.1 Общее содержание

Тема 1. Расщепление уровней энергии в атомах

- 1. Теория возмущений в отсутствие и при наличии вырождения. Теорема Паули.
- 2. Сдвиги уровней атома за счет релятивистских поправок к кулоновскому потенциалу. Уравнение Паули. Эффекты Зеемана и Пашена–Бака.
- 3. Понятие о вакуумных флуктуациях. Лэмбовский сдвиг.

Тема 2. Излучение, поглощение и рассеяние света

- 1. Квантование ЭМ поля. Фотоны. Калибровочная инвариантность.
- 2. Полуклассическая теория поглощения света.
- 3. Нестационарная теория возмущений. Вероятность перехода. Сечение поглощения. Плотность состояний.
- 4. Связь процессов поглощения и вынужденного испускания света. Детальное равновесие.
- 5. Фотоэффект.
- 6. Спонтанное излучение. Вероятность перехода. Формула Планка.
- 7. Дипольное приближение. Расчеты дипольных переходов в атомах. Правила отбора. Силы осцилляторов. Правила сумм ТРК.
- 8. Магнитно-дипольное и электрическое квадрупольное излучение. Вероятности перехода. Правила отбора.
- 9. Излучение высших мультиполей. Правила отбора и Теорема Вигнера-Эккарта.
- 10. Поляризация и угловое распределение дифференциальной вероятности излучения и операторы конечных вращений.
- 11. Дисперсия света. Тензор поляризуемости.
- 12. Рассеяние света. Тензор рассеяния. Когерентное и некогерентное рассеяние.
- 13. Двухфотонные переходы.
- 14. Резонансная флуоресценция.
- 15 Естественные форма и ширина линии. Различные причины уширения линий

Тема 3. Квазиклассические методы

- 1. Квазиклассические методы: Спектры и волновые функции связанных и резонансных состояний в квазиклассическом приближении.
- 2. Квазиклассические матричные элементы операторов.
- 3. Приближение Томаса-Ферми в многоэлектронных атомах. Дебаевское экранирование.
- 4. Приближения Хартри и Хартри-Фока. Обменная энергия.
- 5. Излучение мягких фотонов классическим током. Теорема Киношиты-Ли.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми дисциплинами

№ п/п	Наименование обеспечиваемых	Nº pa	азделов	и тем	и данн	ой дис	сципл	ины,
	(последующих) дисциплин	необх	одимых	для из	зучения	обеспе	чиває	емых
		(после	едующи	х) дисц	иплин			
1.	Квантовая электродинамика	1	2	3				
2.	Введение в квантовую теорию поля	1	2					
3.	Слабые взаимодействия	1	2	3				

5.3. Разделы и темы дисциплин и виды занятий

Nº	Темы,	Виды подготовки			
	разделы	Лекции	Практ. занятия	СРС	
1.	Расщепление уровней энергии в атомах	6	14	30	
2.	Излучение, поглощение и рассеяние света	8	30	40	
3.	Квазиклассические методы	4	10	28	

6. Перечень семинарских, практических занятий и лабораторных работ

No	№ раздела	Наименование семинаров,	Трудоем	Оценочные	Формируемые
	и темы	практических и лабораторных работ	кость	средства	компетенции
	дисциплин		(часы)	_	
	Ы		, ,		
1	2	3	4	5	6
1.	<u>Тема 1</u>	Теория возмущений в отсутствие и при наличии вырождения. Теорема Паули. Сдвиги уровней атома за счет релятивистских поправок к	14	Домашнее Контрольно е задание	ОПК-2,3, ПК-1
		кулоновскому потенциалу. Уравнение Паули. Эффекты Зеемана и Пашена– Бака. Понятие о вакуумных флуктуациях. Лэмбовский сдвиг.			
2.	<u>Тема 2</u>	Квантование ЭМ поля. Фотоны. Калибровочная инвариантность. Полуклассическая теория поглощения света. Нестационарная теория возмущений. Вероятность перехода. Сечение поглощения. Плотность состояний. Связь процессов поглощения и вынужденного испускания света. Детальное равновесие. Фотоэффект. Спонтанное излучение. Вероятность перехода. Формула Планка. Дипольное приближение. Расчеты дипольных переходов в атомах. Правила отбора. Силы осцилляторов. Правила сумм ТРК. Магнитнодипольное и электрическое квадрупольное и электрическое квадрупольное	30	Домашнее Контрольно е задание	ОПК-2,3, ПК-1

		Вероятности перехода. Правила отбора. Излучение высших мультиполей. Правила отбора и Теорема Вигнера-Эккарта. Поляризация и угловое распределение дифференциальной вероятности излучения и операторы конечных вращений. Дисперсия света. Тензор поляризуемости. Рассеяние света. Тензор рассеяния. Когерентное и некогерентное рассеяние. Двухфотонные переходы. Резонансная флуоресценция. Естественные форма и ширина линии. Различные причины уширения линий.			
		ОПК-2,3, ПК-1			
3.	Тема 3	Квазиклассические методы: Спектры и волновые функции связанных и резонансных состояний в квазиклассическом приближении. Квазиклассические матричные элементы операторов. Приближение Томаса-Ферми в многоэлектронных атомах. Дебаевское экранирование. Приближения Хартри и Хартри-Фока. Обменная энергия.	10	Домашнее Контрольно е задание	ОПК-2,3, ПК-1

6.1. План самостоятельной работы студентов

№ нед ·	Тема	Вид самостоятельной работы	Задание: Текущие задачи на семинарах и 15 задач из семестрового задания	Рекомендуемая литература	Количество часов
	<u>Тема 1</u>	Внеаудиторная, решение задач	http:// www.pd.isu.ru/	Основная и дополнительная	30
	<u>Тема 2</u>	Внеаудиторная, решение задач	sost/teor_phi/ korenb/TDSPh/ zadan.pdf	Основная и дополнительная	40
	<u>Тема 3</u>	Внеаудиторная, решение задач	<u>zudumpur</u>	Основная и дополнительная	28

6.2. Методические указания по организации самостоятельной работы студентов

Своевременное решение 15 задач из семестрового задания.

7. Примерная тематика курсовых работ

Учебным планом написание курсовых работ не предусмотрено.

8. Учебно-методическое обеспечение дисциплины.

- а) Основная литература
- 1. <u>Ландау, Лев Давидович</u>. Теоретическая физика: учеб. пособие : в 10 т. / Л. Д. Ландау, Е. М. Лифшиц. 4-е изд., испр. М. : Наука. Физматлит, 2006.
- Т.4: Квантовая электродинамика [Электронный ресурс] / Б. В. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. 2006. 720 с.: ил. (Теоретическая физика; том IV). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ.
- 2. <u>Киселев, В. В.</u> Квантовая механика [Текст] : курс лекций / В. В. Киселев. М. : Изд-во МЦНМО, 2009. 560 с. : ил. ; 24 см. Библиогр.: с. 541-542. Предм. указ.: с. 543-560. ISBN 978-5-94057-497-2 (4)
- б) Дополнительная литература:
- 1. Давыдов А.С. Квантовая механика, 3-е изд. СП-б: БХВ –Петербург, 2011. (1 экз), 2-е изд. 1973 (13)
- 2. <u>Ландау, Лев Давидович</u>. Теоретическая физика: учеб. пособие : в 10 т. / Л. Д. Ландау, Е. М. Лифшиц. 4-е изд., испр. М. : Наука. Физматлит, 1980, 2001.
- Т.4 : Квантовая электродинамика / Б. В. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский. 1980, 2001-720 с. : ил. (Теоретическая физика ; том IV). (35 экз)
- 3. <u>Ландау, Лев Давидович</u>. Теоретическая физика: учеб.пособие для студ.физ. спец. ун-тов: В 10т. / Л.Д.Ландау,Е.М.Лифшиц; Под ред.Л.П.Питаевского. 5-е изд.,стер. М.:
- Физматлит. Т.III: Квантовая механика. Нерелятивистская теория /Л.Д.Ландау, Е.М.Лифшищ. 5-е изд., стер. -1989, 2001, 808 с. (60 экз)
- 4. <u>Зелевинский, В. Г.</u> Лекции по квантовой механике: учебное пособие / В. Г. Зелевинский. 2-е изд., испр. и доп. Новосибирск: Сиб. унив. изд-во, 2002. (1 экз)
- 5. <u>Сербо, В.</u> Квантовая механика: учеб.пособие / В. Сербо, И.Б. Хриплович ; Новосибирский гос.ун-т. Новосибирск : [s. n.], 2000. 136 с. (1 экз)
- 6. Мессиа, А. Квантовая механика / А. Мессиа. Т. 1., Т. 2. M: Hayka, 1978. (2 экз)
- 7. Галицкий А.М., Карнаков Б.М., Коган В.И. Сборник задач по квантовой механике. М: Наука, 1981, 2001. (54 экз)

в) базы данных, информационно-справочные и поисковые системы

Основные материалы по курсу доступны на персональной странице

http://www.pd.isu.ru/sost/teor_phi/korenb/korenb.html

http://www.pd.isu.ru/sost/teor_phi/korenb//TDSPh/radscet.htm

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/zadan.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/qm_ngu.pdf

http://www.pd.isu.ru/sost/teor_phi/korenb/TDSPh/alfaro_redje.djvu

Литература также доступна на http://library.isu.ru/ - Научная библиотека ИГУ

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

https://isu.bibliotech.ru/ - ЭЧЗ «БиблиоТех»;

http://e.lanbook.com - ЭБС «Издательство «Лань»;

http://rucont.ru - ЭБС «Руконт» - межотраслевая научная библиотека,

9. Материально-техническое обеспечение дисциплины

Аудитория минимум с двумя досками и мел. Доступ к ресурсам ИГУ из сети Интернет. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук.

10. Образовательные технологии:

Лекция, практические занятия, индивидуальная работа при сдаче семестровых заданий.

11. Оценочные средства (ОС):

Фонд оценочных средств представлен в приложении.

Формы текущего контроля: контрольные вопросы на занятиях.

Форма промежуточного контроля – зачет. Прием семестрового задания.

11.1. Варианты контрольных вопросов:

- 1. Калибровочная инвариантность и калибровочные преобразования ЭМП.
- 2. Вычисление квадратов МЭ магнитно-дипольного и квадрупольного переходов.
- 3. Поляризационная матрица плотности фотона.
- 4. Правила отбора для векторных операторов.
- 5. Спин и полный момент фотона.
- 6. Связь *D*-функций Вигнера с матричными элементами группы вращений
- 7. Нерелятивистский предел уравнения Дирака в кулоновском поле
- 8. Коэффициенты Клебша-Гордана для сложения моментов L и 1.
- 9. Суперпозиция лоренцевских спектральных линий для амплитуд и вероятностей.

11.2 Пример задачи из семестрового задания:

Уровни 2S1/2 и 2P1/2 расщеплены лишь за счет лэмбовского сдвига $\Delta E_L \propto mc^2 \alpha^5 \ln(1/\alpha)$.

Оценить вероятность однофотонного перехода между ними.

11.3. Примерный список вопросов к зачету:

- 1. Теория возмущений в отсутствие и при наличии вырождения. Теорема Паули.
- 2. Сдвиги уровней атома за счет релятивистских поправок к кулоновскому потенциалу. Уравнение Паули. Эффекты Зеемана и Пашена–Бака.
- 3. Понятие о вакуумных флуктуациях. Лэмбовский сдвиг.
- 4. Квантование ЭМ поля. Фотоны. Калибровочная инвариантность.
- 5. Полуклассическая теория поглощения света.
- 6. Нестационарная теория возмущений. Вероятность перехода. Сечение поглощения. Плотность состояний.
- 7. Связь процессов поглощения и вынужденного испускания света. Детальное равновесие.
- 8. Фотоэффект.
- 9. Спонтанное излучение. Вероятность перехода. Формула Планка.

- 10. Дипольное приближение. Расчеты дипольных переходов в атомах. Правила отбора. Силы осцилляторов. Правила сумм ТРК.
- 11. Магнитно-дипольное и электрическое квадрупольное излучение. Вероятности перехода. Правила отбора.
- 12. Излучение высших мультиполей. Правила отбора и Теорема Вигнера-Эккарта.
- 13. Поляризация и угловое распределение дифференциальной вероятности излучения и операторы конечных вращений.
- 14. Дисперсия света. Тензор поляризуемости.
- 15. Рассеяние света. Тензор рассеяния. Когерентное и некогерентное рассеяние.
- 16. Двухфотонные переходы.
- 17. Резонансная флуоресценция.
- 18. Естественные форма и ширина линии. Различные причины уширения линий
- 19. Квазиклассические методы: Спектры и волновые функции связанных и резонансных состояний в квазиклассическом приближении.
- 20. Квазиклассические матричные элементы операторов.
- 21. Приближение Томаса-Ферми в многоэлектронных атомах. Дебаевское экранирование.
- 22. Приближения Хартри и Хартри-Фока.

Разработчик:

профессор кафедры теоретической физики С. Э. Коренблит

Программа рассмотрена на заседании <u>кафедры теоретической физики</u> «14» апреля 2020 г.

Протокол №8 И.о. зав. кафедрой

С.В. Ловцов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.