

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и экспериментальной физики

УТВЕРЖДАЮ

Генан физического факультета

факультета

В расти от данный униваний униваний

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): <u>Б1.В.13 Введение в физику</u> конденсированного состояния

Направление подготовки: 03.03.02 Физика

Направленность (профиль) подготовки: Физика конденсированного состояния

Квалификация выпускника: бакалавр

Форма обучения: очная.

Согласовано с УМК:

физического факультета **Протокол** № 30_

от «31» августа 2021 г.

Зам. председателя, к.ф.-м.н, доцент

В.В. Чумак

Рекомендовано кафедрой:

общей и экспериментальной физики

Протокол № 1_

от « <u>30</u> » августа <u>2021 г.</u>

Зав. кафедрой, д.ф.-м.н., профессор

____ А.А. Гаврилюк

Содержание

І. Цели и задачи дисциплины (модуля)	3
II. Место дисциплины (модуля) в структуре ОПОП ВО	
III. Требования к результатам освоения дисциплины	3
IV. Содержание и структура дисциплины (модуля)	4
4.1. Содержание дисциплины, структурированное по темам, с указанием видов	j
учебных занятий и отведенного на них количества академических часов	5
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплин	e6
4.3. Содержание учебного материала	7
4.3.1. Перечень семинарских, практических занятий и лабораторных работ	8
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение	
студентами в рамках самостоятельной работы (СРС)	8
4.4. Методические указания по организации самостоятельной работы студенто	в9
4.5. Примерная тематика курсовых работ (проектов) (при наличии)	9
V. Учебно-методическое и информационное обеспечение дисциплины (модуля)	10
а) перечень литературы	10
б) периодические издания	10
в) список авторских методических разработок	10
г) базы данных, информационно-справочные и поисковые системы	10
VI. Материально-техническое обеспечение дисциплины (модуля)	10
6.1. Учебно-лабораторное оборудование	10
6.2. Программное обеспечение	10
6.3. Технические и электронные средства.	11
VII. Образовательные технологии	
VIII. Оценочные материалы для текущего контроля и промежуточной аттестаци	и.11

І. Цели и задачи дисциплины (модуля):

Программа разработана в соответствии с основной образовательной программой ФГОС по направлению 03.03.02 Физика и предназначена для обеспечения курса «Введение в физику конденсированного состояния», изучаемого студентами в течение пятого семестра.

Основная цель курса:

- дать студентам целостное, в рамках существующих естественнонаучных положений и современного развития физики конденсированного состояния представление о классификации конденсированного состояния вещества, его основных физических свойствах и областях применения веществ различного типа.

Для достижения данной цели были поставлены задачи:

- ознакомление студентов с основными типами веществ (диэлектрики, полупроводники, металлы) и их физическими характеристики, присущими данному типу материала;
- ознакомление студентов с основными принципами формирования зонной структуры вещества и ее связь с физическими свойствами;
- освоение методов квантово-механического описания простейших квантовых систем.

II. Место дисциплины (модуля) в структуре ОПОП ВО:

Дисциплина «Введение в физику конденсированного состояния» является дисциплиной профессионального цикла.

Методика преподавания направлена на системный подход к обучению и интеграцию дисциплин естественнонаучного цикла, т. к. при изучении курса используются разделы и темы следующих дисциплин: «Математический анализ», «Квантовая теория».

III. Требования к результатам освоения дисциплины (модуля):

Курс «Теоретические основы физики конденсированного состояния», согласно положениям федерального государственного образовательного стандарта высшего профессионального образования при подготовке бакалавра по направлению 03.03.02 Физика, позволяет студенту приобрести следующие компетенции:

- Способен использовать специализированные знания в области физики и физики конденсированного состояния для освоения профильных физических дисциплин (ПК-1).

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

	пидикаторами достижени	и компетенции
Компетенция	Индикаторы компетенций	Результаты обучения
ПК-1	ПК-1.1	Знает:
	Знает основные научные	- основные сведения о структуре кристаллов,
	методы теоретического и	основные постулаты и положения квантовой
	экспериментального иссле-	теории;
	дования объектов, процес-	- роль квантовой статистики в формировании
	сов и явлений.	зонной структуры твердого тела;
		- классификацию твердых тел на металлы, по-
		лупроводники и диэлектрики с точки зрения
		зонной теории.
		Умеет:
		-понимать, излагать и критически анализиро-
		вать базовую общефизическую информацию;
		-пользоваться теоретическими основами, ос-
		новными понятиями, законами и моделями фи-
		зики.
		Владеет:
		- методами квантово-механического описания
		кристаллических твёрдых тел;
		-методами обработки и анализа эксперимен-
		тальной и теоретической информации.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 2 зачетные единицы, 72 часа, в том числе 56 часов контактной работы. Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. На практическую подготовку отводится 16 аудиторных часов (во время выполнения практических заданий). Форма промежуточной аттестации: зачёт.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/н	Раздел дисциплины/тема	Семестр	го часов	практическая ка обучающихся	включая само практический контактная	Виды учебной раб стоятельную рабо кую подготовку и (в часах) г работа преподав бучающимися	ту обучаю трудоемко		Формы текущего контроля успеваемости; Форма промежуточной аттестации (по семестрам)
			Всего	Из них п	Лекции	Семинарские/ практические/ лабораторные занятия	Кон- сульта- ции	Самостоят ная рабо	
1	2	3	4	5	6	7	8	9	10
1	Раздел 1. Строение кристаллических твердых тел.	5	8		4	2	-	2	Опрос
2	Раздел 2. Колебания решётки.	5	25		13	6	ı	6	Решение задач
4	Раздел 3. Электроны в идеальном кристалле.	5	25		13	6	-	6	Решение задач
6	Раздел 4. Магнитные свойства вещества.	5	8		4	2	ı	2	Опрос
	Зачё	г 5	-						Тестирование
	KC	5	6						
	Итого часов		72		34	16		16	

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

	Самостоятельная работа обучающих			кся		Учебно-
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки вы-	Трудоемкость (час.)	Оценочное сред- ство	методическое обеспечение само- стоятельной рабо-
5	Разделы 1,2,3,4	Решение домашних задач	В течение семестра	16	Задачи и упражне- ния	Из списка основной и дополнительной литературы.
7	Подготовка к зачёту	Работа с лекционным материалом и учебной литературой	К концу семестра		Тест	Из списка основной и дополнительной литературы.
Общий о	бъем самостоятельной работы по дисциплине (час)			16		

4.3. Содержание учебного материала

Содержание разделов и тем дисциплины

1. Строение кристаллических твердых тел.

1.1 Элементы точечной и трансляционной симметрии; базис, кристаллические классы, сингонии и решетки Бравэ. Простые и сложные решетки, стехиометрические соотношения. Координационные числа. Обозначения плоскостей и направлений, индексы Миллера. Обратная решетка.

2. Колебания решётки.

- 2.1 Упругие свойства кристаллов. Упругие волны. Частотный спектр. Тепловые колебания, фононы, тепловая энергия, термодинамические функции твердых тел.
- 2.2 Теплоемкости по Эйнштейну, Дебаю, закон Дюлонга-Пти.

3. Электроны в идеальном кристалле.

- 4.1 Модель свободных электронов. Уравнение Шредингера, волновые функции, уровни энергии и их заполнение, уровень Ферми при 0 К, функция распределения энергетических состояний по энергии, вероятность заполнения энергетических уровней (функция распределения Ферми-Дирака), функция распределения электронов по энергиям.
- 4.2 Теплоемкость вырожденного электронного газа. Понятие о зонной теория твердых тел. Зоны Бриллюэна. Сравнение зонной модели и модели свободных электронов. Распределение электронов по зонам. Проводники, полупроводники, диэлектрики. Представление эффективной массы электрона.

4. Магнитные свойства вещества.

- 4.1 Классификация веществ по магнитным свойствам. Обменное взаимодействие. Намагниченность и восприимчивость.
- 4.2 Ферромагнетики. Петля гистерезиса. Доменная структура.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№ п/п	№ раздела	Наименование семинаров, практических и лабораторных работ		ремкость нас.) Из них практи- ческая подго- товка	Оценочные средства	Формиру- емые компетен- ции
1	2	3	4	5	6	7
1.	Строение кристаллических твердых тел.	Решение задач по теме раздела.	2	1	Опрос, кон- трольное зада- ние	ПК-1
2.	Колебания решётки.	Решение задач по теме раздела.	6	2	Опрос, контрольное задание	ПК-1
4.	Электроны в идеальном кристалле.	Решение задач по теме раздела.	6	2	Опрос, контрольное задание	ПК-1
6.	Магнитные свойства вещества.	Решение задач по теме раздела.	2	1	Опрос, кон- трольное зада- ние	ПК-1

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

No	Тема	Вид самостоя-	Задание	Рекомендуемая ли-	Количество
нед.		тельной работы		тература	часов
1.	Строение кристалли-	Внеаудиторная	Изучение лите-	Из списка основной	
	ческих твердых тел.	работа.	ратуры. Решение	и дополнительной	2
			задач	литературы.	
2.	Колебания решётки.	Внеаудиторная	Изучение лите-	Из списка основной	
		работа.	ратуры. Решение	и дополнительной	6
			задач	литературы.	
4.	Электроны в идеаль-	Внеаудиторная	Изучение лите-	Из списка основной	
	ном кристалле.	работа.	ратуры. Решение	и дополнительной	6
			задач	литературы.	
6.	Магнитные свойства	Внеаудиторная	Изучение лите-	Из списка основной	
	вещества.	работа.	ратуры. Решение	и дополнительной	2
			задач	литературы.	
10.	Текущие консультации	[
11.	Подготовка к экзамену			вся литература	

4.4. Методические указания по организации самостоятельной работы студентов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий, написание курсовых и выпускных квалификационных работ. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Теоретические знания, полученные студентами на практических занятиях и при самостоятельном изучении курса по литературным источникам, закрепляются при выполнении практических заданий.

При выполнении практических заданий обращается особое внимание на выработку у студентов умения грамотно выполнять и оформлять документацию, умения пользоваться научнотехнической справочной литературой. Каждый студент должен подготовиться к защите своего отчета, разобравшись с теорией исследуемого явления.

Текущая работа над учебными материалами включает в себя систематизацию теоретического материала каждой практической работы, заполнения пропущенных мест, уточнения схем и выделения главных мыслей основного содержания работы. Для этого используются имеющиеся учебно-методические материалы и другая рекомендованная литература.

Границы между разными видами самостоятельных работ достаточно размыты, а сами виды работы пересекаются. Таким образом, самостоятельной работа студентов может быть как в аудитории, так и вне ее.

Закрепление всего изученного материала осуществляется на контрольной работе. Также может быть проведен опрос по всем темам курса. Преподаватель помогает разобраться с проблемными вопросами и задачами (по мере их поступления) в ходе текущих практических занятий.

4.5. Примерная тематика курсовых работ (проектов) (при наличии)

Курсовые работы учебным планом не предусмотрены

V. Учебно-методическое и информационное обеспечение дисциплины (модуля)

перечень литературы

- а) основная литература
- 1. Щербаченко Л.А. Физика конденсированного состояния. Часть 1. Учебно-методическое пособие в 2-х частях. Иркутск: Изд-во ИГУ, 2013. 98с. (50 экз.)
- 2. Щербаченко Л.А. Физика конденсированного состояния. Часть 2. Учебно-методическое пособие в 2-х частях. Иркутск: Изд-во ИГУ, 2013. 95 с. (50 экз.)
- 3. Душутин Н.К., Моховиков А.Ю. Из истории физики конденсированного состояния. Учебное пособие. Иркутск: Изд-во ИГУ, 2014. 337 с. (8 экз.)
- 4. Байков Ю.А. Физика конденсированного состояния [Электронный ресурс]: ЭВК. М.: Бином. Лаборатория знаний, 2013. (Учебник для высшей школы). Режим доступа: ЭЧЗ «Библиотех». Неогранич. доступ.
- б) дополнительная литература
- 1. Аграфонов Ю.В. Физика конденсированного состояния вещества. Метод функций распределения [Электронный ресурс]: Иркутский гос. ун-т, Науч. б-ка. Электрон. текстовые дан. Иркутск: Изд-во НБ ИГУ, 2005
- 2. Валишев М.Г., Повзнер А.А. Курс общей физики [Электронный ресурс]. 2010. Режим доступа: ЭБС «Издательство «Лань». Неогранич. доступ.
- 3. Епифанов Г.И. Физика твердого тела [Электронный ресурс]. 2011. Режим доступа: ЭБС «Издательство «Лань». Неогранич. доступ.
- в) список авторских методических разработок
- г) базы данных, поисково-справочные и информационные системы:
- •. Книгафонд библиотека онлайн чтения. www.knigafund.ru
- ЭЧЗ «БИБЛИОТЕХ» https://isu.bibliotech.ru/
- 3FC «JIAHЬ» http://e.lanbook.com/

- ЭБС «РУКОНТ» http://rucont.ru
- Архив научных журналов JSTOR (<u>http://www.jstor.org</u>)

VI. Материально-техническое обеспечение дисциплины (модуля)

6.1. Учебно-лабораторное оборудование:

Практические занятия по данной дисциплине проводятся в учебной аудитории по расписанию. Лабораторное оборудование не предусмотрено.

На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет, стандартные средствами просмотра презентаций и других материалов по курсу.

Имеются списки заданий и методическое руководство в электронном и печатном виде, в том числе в авторском учебном пособии.

6.2. Программное обеспечение:

Стандартные сервисы сети Интернет, стандартные средствами просмотра презентаций и других материалов по курсу

6.3. Технические и электронные средства:

Для проведения практических и лекционных занятий в качестве демонстрационного оборудования используются проектор, экран и меловая доска. Используются современные образовательные технологии: информационные (лекции и презентации в Power Point), проектные (мультимедиа, видео, документальные фильмы). Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов, в ходе которой они могут вычитывать научные статьи по темам курса. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

<u>Материалы</u>: научные статьи и монографии из рецензируемых журналов, рассматривающие современные походы и исследования в области физики магнитных явлений.

VII. Образовательные технологии

В соответствии с требованиями ФГОС ВО, в учебном процессе используются активные и интерактивные формы проведения занятий. Интерактивные формы работы на учебных занятиях предусматривают активную позицию студентов при изучении материала, например, самостоятельно подготовить дополнение к теме и вынести его на обсуждение, провести дискуссию, включить элементы собственных научных исследований и сделать краткую презентацию своих выступлений на научных конференциях. Все это формирует способности при-

менять знания, умения и личностные качества для успешной деятельности в области исследований конденсированного состояния вещества.

На практических занятиях студенты используют авторские задачи. По материалам наблюдений они приобретают исследовательские навыки, необходимые для работы по междисциплинарным направлениям, после получения базового образования и формируют компетенцию готовности выявить естественнонаучную сущность проблем, компетенцию готовности использовать методы теоретической и экспериментальной физики в профессиональной деятельности для изучения различных веществ.

Программа основана на использовании современных образовательных технологий: информационных (лекции и презентации в Power Point), проектных (мультимедиа, видео), дистанционные, научно-исследовательской направленности и т. п.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации Фонд оценочных средств (ФОС) представлен в приложении.

8.1.1. Оценочные средства для входного контроля

Проводится опрос на первом занятии.

8.1.2. Оценочные средства текущего контроля

Содержание учебного материала разделено на дидактические единицы (ДЕ) – предметные темы, подлежащие обязательному изучению и усвоению в процессе обучения. Учитывается промежуточная аттестация по итогам самостоятельной работы, предусмотренной программой курса.

Примерные тестовые задания по физике конденсированного состояния приведены в фондах оценочных средств.

Примерные варианты задач для практических занятий:

- 1. С какой силой взаимодействуют между собой соседние ионы цезия и хлора в кристалле хлористого цезия?
- 2. Сколько атомов содержится в каждой элементарной ячейке кристалла, если она является:
- а) простой; б) объемно центрированной; в) гранецентрированной кубической ячейкой?
- 3. Сколько атомов приходится на одну элементарную ячейку в кристаллах с простой, объемоцентрированной и гранецентрированной кубической структурой?
- 4. Сколько атомов приходится на одну элементарную ячейку в кристаллах с простой и плотноупакованной гексагональной структурой?
- 5. Показать, что для идеальной гексагональной структуры с плотной упаковкой c/a = 1,633.
- 6. Доказать, что направление [hkl] в кубической решетке нормально к плоскости (hkl).

- 7. Какие плоскости в структуре гранецентрированного куба и объемноцентрированного куба имеют наибольшую плотность упаковки атомов? В каких направлениях в этих плоскостях линейная плотность расположения атомов максимальна?
- 8. Вычислить минимальную длину волны Дебая в титане, если его характеристическая температура 5° C, а скорость распространения звука $6\cdot10^{3}$ м·с⁻¹.
- 9. Какова максимальная энергия фононов в кристалле свинца, если характеристическая температура его 94 К?
- 10. Какова удельная теплоемкость цинка при 100° С?
- 11. Удельная теплоемкость алюминия при 20° C равна 840 Дж·кг⁻¹·К⁻¹. Выполняется ли при этой температуре для него закон Дюлонга и Пти?
- 12. Вычислить удельную теплоемкость алмаза при температуре 30К.
- 13. Как образуются зоны разрешенных энергий электронов в кристаллах?
- 14. Каковы длины волн де Бройля для электрона, движущегося у верхнего или нижнего края свободной зоны?
- 15. В чем смысл адиабатического и одноэлектронного приближений при решении уравнения Шредингера для электрона в кристалле? Вид волновой функции и энергии в рамках этих приближений.
- 16. Что такое зона Бриллюэна? Сформулируйте правило построения зон Бриллюэна.
- 17. Сущность приближений почти свободных и почти связанных электронов. Какие основные выводы можно сделать из решения уравнения Шредингера этими методами. Какие еще методы решения вы знаете?
- 18. Чем отличаются зонные схемы для полупроводников, диэлектриков и металлов?
- 19. Перечислите различные типы локальных уровней энергии электронов в запрещенной зоне.
- 20. Что понимается под идеальной кристаллической решеткой? Как идеальная решетка воздействует на движение электрона по кристаллу?
- 21. Эффективная масса электрона в кристалле. Ее физический смысл.
- 22. Связь эффективной массы с кривизной изоэнергетической поверхности, скоростью и квазиимпульсом
- 23. Понятие полупроводника, металла, диэлектрика в зонной теории.
- 24. Что такое водородоподобная модель примесных состояний?
- 25. В кристалле кремния массой 120 г равномерно по объему распределены 25,7µкг фосфора и 38,2 µкг галлия. Считая, что атомы примеси полностью ионизированы, вычислить удельное сопротивление кристалла.

8.1.3. Оценочные средства для промежуточной аттестации

Промежуточная аттестация проводится в форме зачёта.

Материалы для проведения текущего и промежуточного контроля знаний студентов:

	1 1	J 1 J	1 2, 1
№ п\п	Вид контроля	Контролируемые темы (разделы)	Компетенции, компо- ненты которых контро-
\			лируются
1.	Опрос	Строение кристаллических твердых тел.	ПК-1
2	Проверка решения до-	Колебания решётки.	ПК-1
۷.	машней задачи		
4	Проверка решения до-	Электроны в идеальном кристалле.	ПК-1
4.	машней задачи		
6.	Контрольная работа	Магнитные свойства вещества.	ПК-1

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 Физика.

Разработчик:	
	к.фм.н., доцент Зубрицкий С.М.
9	1

Программа рассмотрена на заседании кафедры общей и экспериментальной физики «30» августа 2021 г.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.