

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Кафедра естественнонаучных дисциплин

УТВЕРЖДАЮ А.В. Семиров

марта 2022 г.

Рабочая программа дисциплины (модуля)

Наименование дисциплины Б1.В.11 Органическая химия

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Направленность (профиль) подготовки Биология - Химия

Квалификация (степень) выпускника Бакалавр

Форма обучения Очная

Согласовано с УМС ПИ ИГУ

Рекомендовано кафедрой:

Протокол № 7 от «11» марта 2022 г.

Протокол № 6 от «24» февраля 2022 г.

_М.С. Павлова Зав. кафедрой Сенскова

І. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ (МОДУЛЯ)

Основной **целью** изучения дисциплины «Органическая химия» является формирование у студентов основных представлений о химии органических соединений: способах синтеза, химических превращениях, механизмах реакций, пространственном расположении и взаимном влиянии атомов в органических молекулах, а также умения применять эти представления в процессе профессиональной педагогической деятельности учителя химии.

Основные задачи дисциплины:

- систематизировать знания о теории строения органических соединений как основы преподавания органической химии в школе;
- дать представление о пространственном расположении и взаимном влиянии атомов в органических молекулах, а также показать их связь с химическими свойствами молекул;
- сформировать знания об основных классах органических соединений, химических и физических свойствах, строении, изомерии;
 - сформировать навыки экспериментальной работы с органическими соединениями: синтеза, выделения и идентификации; подготовить студентов к проведению лабораторных исследований в области органической химии в профессиональной педагогической деятельности

ІІ. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина (модуль) относится кчасти программы, формируемой участниками образовательных отношений.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: Аналитическая химия.
- 2.3. Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: Биохимия, Прикладная химия, Методика обучения и воспитания (химия).

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ЛИСЦИПЛИНЫ (МОЛУЛЯ)

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компе-	Индикаторы компетенций	Результаты обучения
тенция		
ПК-1. Способен осваивать и использовать базовые научно-теоретические знания и практические умения по предмету в профессиональной деятельности	ИДК пк1.1 Анализирует и грамотно излагает базовые предметные научнотеоретические представления об изучаемых объектах, процессах и явлениях	знает: основные понятия органической химии, ее теоретические основы; строение и свойства основных классов органических веществ. умеет: планировать использование знаний по органической химии в преподавании химии в школе. владеет: навыками разработки учебных заданий по органической химии с целью развития обучающихся в учебной и внеучебной деятельности

ИДКпк1.2

Демонстрирует специальные умения проведения химического и биологического исследования (эксперимента) и использует в своей педагогической деятельности.

ИДКпк1 3

Планирует учебные занятия на основе дифференциации в обучении. Учитывает требования к соблюдению техники безопасности. Использует современные методы, педагогическую технику и образовательные технологии, включая информационные для реализации компетентностного подхода.

знает: основные правила техники безопасности при проведении химического эксперимента.

умеет: обрабатывать теоретические и экспериментальные данные, применять основные законы и методы химии к изучению органических веществ

владеет: методами получения и обработки учебной и научной информации по химии

знает: основные современные методы преподавания химии, педагогическую технику и образовательные технологии.

умеет: доносить до обучающихся базовые предметные научно-теоретические представления по органической химии.

владеет: навыками самостоятельной работы с химической литературой (учебной, учебнометодической, научной).

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

4.1. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего	Семестры		
	часов / зачет-	4	5	-
	ных			
	единиц / очн.			
Аудиторные занятия (всего)	324/9	180	144	
В том числе:				
Лекции (Лек)	72/2	40/1.1	32/0.9	
Практические занятия (Пр)	-	-		
Лабораторные работы (Лаб)	92/2,6	60	32	
Консультации (Конс)	4	2	2	
Самостоятельная работа (СР)	102/2,83	78	24	
Вид промежуточной аттестации: экзамен.		-	10	
Контроль (КО)	44		44	
Контактная работа, всего (Конт.раб)	178	102	76	
Общая трудоемкость:зачетные единицы	9	5	4	
часы	324	180	144	

4.2. Содержание учебного материала дисциплины

Раздел 1. Теоретические основы органическойхимии

- 1.1. Введение. Предмет органической химии. Органические вещества.
- 1.2. Теориястроенияорганическихсоединений.
- 1.3. Строение атома углерода. Валентные состояния атомауглерода.
- 1.4. Классификация и номенклатураорганических соединений
- 1.5. Изомерияорганических соединений
- 1.6. Типы химической связи в органическихсоединениях
- 1.7. Взаимное влияние атомов в молекулах органическихсоединений
- 1.8. Типы химических реакций в органическойхимии

Раздел 2. Ациклические углеводороды

- 2.1. Алканы
- 2.2. Алкены
- 2.3. Алкины
- 2.4 Алкадиены

Раздел 3. Циклические углеводороды

- 3.1. Циклоалканы
- 3.2. Ароматическиесоединения
- 3.3. Гетероциклическиесоединения

Раздел 4. Производные углеводородов

- 4.1. Галогенпроизводныеуглеводородов
- 4.2. Спирты и фенолы
- 4.3. Альдегиды икетоны

Раздел 5. Карбоновые кислоты и их производные

- 5.1. Монокарбоновыекислоты
- 5.2. Дикарбоновыекислоты
- 5.3. Непредельные и ароматические кислоты
- 5.4 Гидрокси- и оксокислоты
- 5.6. Ангидриды и сложные эфиры кислот

Раздел 6. Азотсодержащиесоединения

- 6.1. Нитросоединения
- 6.2. Амины
- 6.3. Диазо- иазосоединения
- 6.4. Аминокислоты и белки
- 6.5. Нуклеиновыекислоты

Раздел 7. Углеводы и жиры

- 7.1. Моносахариды
- 7.2. Дисахариды
- 7.3. Полисахариды
- 7.4 Жиры

4.3. Разделы и темы дисциплин (модулей)и виды занятий

№ п/п	Наименование раздела / темы	Виды учебной работы,включая са- мостоятельную работу обучающихся, практическую подготовку (при на- личии) и трудоемкость(в часах)		Оценочные средства Формируемые компетенции (индикаторы)		Всего (в часах)		
		Лекции	Практ. занятия	Лаб. занятия*	CPC			
1	Раздел 1. Теоретические основы органической химии	10	-	10	15	Устный опрос Тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	35
2	Ациклические углеводороды	12	-	15	12	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	39
3	Циклические углеводороды	10	-	15	15	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	40
4	Производные углеводородов	14	-	14	15	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	43
5	Карбоновые кислоты и их производные	12		14	15	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	41
6	Азотсодержа- щие соеди- нения	8		12	10	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	30
7	Углеводы и жиры	6		12	20	Устный опрос, тестирование, индивидуальное задание, отчет по ЛР	ИДК _{ПК1.1-3}	38
	контроль	70		0.2	102			44
	Итого	72		92	102			266

4.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа заключается в том, что в ходе такого обучения студенты прежде всего учатся приобретать и применять знания, искать и находить нужные для них средства обучения и источники информации, уметь работать с этой информацией.

Самостоятельная работа студента направлена на углубление знаний по изучаемому предмету, а также на формирование умений самостоятельно проводить анализ и синтез на

основании имеющегося материала.

В рамках изучаемой дисциплины предлагаются следующие формы самостоятельной работы:

- Учебное задание вид поручения преподавателя студенту, в котором содержится требование выполнить какие-либо учебные (теоретические и практические) действия, например, дать письменные ответына вопросы, решение задач и т.д. Критерии оценки по каждому заданию преподаватель выставляет дополнительно.
- Отчет по ЛР написание отчета по выполненным лабораторным работам, включающего формулировку цели, протокол проведенных наблюдений, уравнения протекающих при этом химических реакций, объяснение наблюдаемых явлений и выводы.
- Поиск материалов в сети Интернет и библиотеке по предлагаемой для СРС теме студент осуществляет поиск учебной, научной и научно-популярной информации, относящейся к изучаемой теме, включая современные воззрения специалистов в данной области химической науки, описание различных точек зренияна эту проблему с обязательными ссылками на источники(объем не менее 2-х печатных страницы, A4 шрифт TimeNewRoman 12 кегль через 1 интервал и не менее 5-ти источников для одной темы).
- Составление докладов и презентаций подготовка материала по конкретной теме, включающей не менее 10 слайдов с иллюстрациями, ссылки на используемые источники (не менее 3-х).

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ (МОДУЛЯ)

а) основная литература?

- 1. Грандберг И.И. Органическая химия : учебник для бакалавров / И. И. Грандберг. Изд.8-е, М.: Юрайт, 2012. 608 с. (31 экз.)
- 2. Евстафьева, И. Т. Органическая химия : учеб.пособие. Ч. 2 / И. Т. Евстафьева, Н. Ф. Чернов ; Иркут.гос. пед. ун-т. Иркутск : Изд-во ИГПУ, 2009. 76 с. (10 экз.)
- 3. Юровская М.А. Основы органической химии [Электронный ресурс]: учеб.пособие / М. А. Юровская, А. В. Куркин. Москва: Бином. Лаборатория знаний, 2010. 236 с. Режим доступа: ЭБС "Издательство "Лань"
- 4. Чернов Н.Ф. «Органическая химия» учебное пособие, Ч. 1 Иркутск: Изд-во «Аспринт», 2019- 112 с.
- 5. Чернов Н.Ф. «Органическая химия» учебное пособие, Ч. 2 Иркутск: Изд-во «Аспринт», 2019- 128 с.

б) дополнительная литература:

- 1. А.И.Артеменко. Органическая химия [Текст]: учеб. пособие для студ. нехим. спец. вузов / А. И. Артеменко. 2-е изд.,. М.:Высш. шк., 2005. 605 с (30 экз.)
- 2. Березин Б. Д. Курс современной органической химии [Текст]: учеб.пособие / Б. Д. Березин, Д. Б. Березин. М.: Высшая школа, 2001. 768 с. (1 экз.)
- 3. Ким А.М. Органическая химия [Текст]: учебное пособие / А. М. Ким. 4-е изд., испр. и доп. Новосибирск: Сиб. унив. изд-во, 2004. 844 с. (10 экз.)
- 4. Чернов Н. Ф.Курс лекций "Органическая химия" : учеб.пособие. Ч. 1 / Н. Ф. Чернов; ВСГАО. - во Иркутск: Изд ВСГАО, 2010. 104 с. (10 экз.)
- 5. Чернов Н. Ф.Курс лекций "Органическая химия" : учеб.пособие. Ч. 2/ Н. Ф. Чернов; ВСГАО. Иркутск: Изд-во ВСГАО, 2011. 114 с. (10 экз.)
- 6. Иванов, В. Г. Органическая химия : учеб.пособие / В. Г. Иванов, В. А. Горленко, О. Н. Гева. 5-е изд., стер. М. : Академия, 2009. 624 с.(10 экз.)
- 7. Задачи по органической химии с решениями [Электронный ресурс] / А. В. Чепраков [и др.]. Москва: Бином. Лаборатория знаний, 2011. 349 с. Режим доступа: ЭБС "Издательство "Лань"

- 8. Задачи по органической химии с решениями: учеб.пособие / А. Л. Курц [и др.]. 3-е изд., перераб. и доп. М.: БИНОМ. Лаборатория знаний, 2011. 350 с. (3 экз.). в) авторские методические разработки:
 - 1. Евстафьева, И. Т. Органическая химия : учеб.пособие. Ч. 2 / И. Т. Евстафьева, Н. Ф. Чернов; Иркут.гос. пед. ун-т. Иркутск: Изд-во ИГПУ, 2009. 76 с. (10 экз.)

г) базы данных, информационно-справочные и поисковые системы:

catalog.iot.ru – каталог образовательных ресурсов сети Интернет

www.ed.gov.ru – сайт Федерального агентства по образованию Министерства образования и науки РФ

http://window.edu.ru/window/library

http://nature.web.ru/

http://www.rusplant.ru/

www.bio.pu.ru – сайт Санкт-Петербургского государственного университета

www.chem.msu.su/rus - сайт химического факультета МГУ

www.chemport.ru – химический сайт

www.issep.rssi.ru - сайт Соросовского образовательного журнала

www.students.chemport.ru – сайт студентов-химиков

Электронные адреса библиотек.

http://library.isu.ru/ - Научная библиотека ИГУ.

Сервер ВИНИТИ, Москва http://www.viniti.msk.su/

Сервер РИНКЦЭ, Москва http://www.extech.msk.su/gnc/vxod.htm

Сервер Международного научного фонда, Mockвa http://www.isf.ru/

Сервер научной библиотеки МГУ, Москва http://www.lib.msu.su/

Сервер "Академгородок", Новосибирск http://www.nsc.ru/

Серверы РАН, Москва http://www.ras.ru/, ftp://ftp.ras.ru/, gopher://gopher.ras.ru/

VI.MATEPИAЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Помешения и оборудование

Помещения – учебные аудитории для проведения учебных занятий, предусмотренных учебным планом ОПОП ВО бакалавриата, оснащены оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ФГБОУ ВО «ИГУ».

Оборудование

Химическая лаборатория на 15 мест, укомплектованная специализированной мебелью и лабораторным оборудованием: вытяжные шкафы, прибор для электролиза солей, плитки лабораторные (4 шт.), водяные бани, центрифуга, выпрямитель В-24, шкаф сушильный ШС-80-0, вакуумный насос НВР-1., термометр электронный, баня комбинированная лабораторная БКЛ, весы учебные лабораторные электронные ВУЛ-50 Э, доска для сушки хим. посуды, весы технические, плитки лабораторные, водяные бани, муфельная печь СНОЛ, рефрактометр, водонагреватель, OHAUS SC-6010, весы «Acculad VIC-300d3», набор аминокислот, компьютеры Celeron, копировальный аппарат Canon 6317, вытяжные шкафы.

Технические средства обучения

Компьютерная техника, подключенная к сети «Интернет» с общим доступом в ЭИОС ИГУ

Демонстрационное оборудование, учебно-наглядные пособия, химическая посуда, химические реактивы.

6.2. Лицензионное и программное обеспечение

MicrosoftOfficeProfissionalPLUS 2010

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В образовательном процессе используются активные и интерактивные формы(компьютерные симуляции, деловые и ролевые игры, разбор конкретных ситуаций, тренинги, групповые дискуссии), в том числе дистанционные образовательные технологии, используемые при реализации различных видов учебной работы, развивающие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств и формирующие компетенции.

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕ-МОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 8.1. Оценочные средства для проведения текущего контроля успеваемости
- **8.1.1.Оценочные средства для проведения текущего контроля** (тесты) Образец тестовых заданий
- 1. Основные положения теории строения органических соединений сформулировал
- а) Г. А.М. Бутлеров
- б) Б. Ж..Б. Дюма,
- в) Д.И. Менделеев,
- г) А. Я.Берцелиус
- д) Д. А.Ф. Кекуле.
- 2. Согласно теории строения органических соединений физические и химические свойства их определяются:
- а) составом их молекул
- б) пространственным строением
- в) составом молекул, химическим, пространственным и электронным строением
- г) составом вещества и химическими связями
- 4. Первое валентное состояние углеродного атома определяется:
- а) SP гибридизацией, угол между связями составляет 120^{0} ,
- б) SP^3 гибридизацией, связи ориентированы в пространстве под углом $109^0\,28'$,
- в) SP^2 гибридизацией и углом между связями 120^0 ,
- г) SP^3 гибридизацией и углом между связями 180^0 ,
- д) SP гибридизацией и углом между связями $109^0 \, 28^{\prime}$
- 5. Второе валентное состояние атома углерода определяется:
- а) SP^2 гибридизацией, и наличием тройной связи и угол между связями в пространстве составляет 180^0 ,

- б) SP гибридизацией, наличием π -связей и углом между связями в пространстве 120° ,
- в) SP^2 гибридизацией, углом между связями 120^0 и наличием π -связи,
- г) SP^3 гибридизацией, углом между связями 180^0 и наличием π -связи,
- д) SP^2 гибридизацией, наличием двойной связи с углом между связями $109^0 28^7$
- 6. Третье валентное состояние атома углерода определяется:
- а) SP- гибридизацией, наличием тройной связи и углом между связями 180° ,
- б) SP гибридизацией, наличием π связи и углом между связями 120° ,
- в) SP^3 гибридизацией, наличием π связей и углом между связями 120^0 ,
- г) SP^2 гибридизацией, углом между связями 109^028^7
- д) SP^3 гибридизацией, наличием тройной связи и углом между связями 180^0 ,
- 7. Электроноакцепторный заместитель это:
- а) заместитель, несущий отрицательный заряд и способный передавать свои электроны для образования ковалентной связи,
- б) положительно заряженные или нейтральные частицы, способные принимать электроны, образуя ковалентную связь,
- в) заместитель, несущий положительный заряд.
- г) заместитель, имеющий избыток электронной плотности.
- 8. Отрицательный индуктивный эффект(-J) вызывают заместители:
- a)CH₃-, C₂ H₅-, C₃H₇-,
- б) Li-, Na-, Ca-, Al-,
- $B) -SiH_3, -BH_2 -PH_2,$
- г) F-, Cl-,CF₃-, CCl₃-, CH₂=CH-,
- д)(CH₃)₃C-, (CH₃)₂CH-
- 9. Положительный индуктивный эффект (+J) вызывают заместители:
- a) Cl, Br, J, F,
- б) –OH, -NO₂, -NH₂, OR,
- в) CH₃-, C₂H₅-, (CH₃)₃C
- г) -CHO, -COOH, -COOR, -CN,
- д) CF₃-, CCl₃-, CHCl₂-
- 10. Учитывая индуктивный эффект заместителя, самая сильная кислота:
- a) CH₃COOH,
- б) ClCH₂COOH,
- B) NO₂CH₂COOH,
- г) JCH₂COOH,

- д) NO₂CH₂CH₂COOH
- 11. Мезомерный эффект можно наблюдать в соединениях:
- a) CH₂=CHCH=CH₂,
- б) CH₃CH=CH₂,
- B) ClCH₂CH₂CH=CH₂,
- г) CH₃-CH₂-CH₃,
- 13. Отрицательный (-М) мезомерный эффект вызывают заместители:
- a) Cl-,
- б) ОН-,
- B) -COOH,
- г) CH₃-,

оценка	2	3	4	5
диапазон тест. баллов (% от макс.)	до 50	51-70	71-85	85-100

- 8.1.2. Пример индивидуального задания по теме «Альдегиды и кетоны»
 - 1) Напишите структурную формулу 4-оксибутаналя, пентандиона-2,4.
 - 2) Предложите схему получения альдегида или кетона из: а) бутена-2, б)1,1-дихлорпропанона, в) диметилацетилена, г) бутанола-2.
 - 3) Из уксусного альдегида при помощи реактива Гриньяра получите бутанол-2.
 - 4) Напишите схему альдольной конденсации пентанона-3 с ацетоном.

8.2. Оценочные средства для итоговой аттестации (в форме экзамена).

Примерный перечень вопросов к экзамену (4 семестр)

- 1. Предмет органической химии. Добутлеровские представления о строении
- 2. органических соединений. Теория строения А.М. Бутлерова и её значение.
- 3. Типы химической связи.
- 4. Валентное состояние атома углерода. Гибридизации атома углерода.
- 5. Образование химической связи.
- 6. Теория электронных смещений. Индуктивный и мезомерный эффекты.
- 7. Типы сопряжения. Влияние электронных эффектов на реакционную способность органических соединений.
- 8. Виды изомерии. Структурная, пространственная. Таутомерия. Примеры.
- 9. Классификация органических соединений.
- 10. Типы органических реакций. Классификация реакций по характеру реагирующих частиц (нуклеофильных, электрофильных, радикальных).
- 11. Алканы. Номенклатура, изомерия. Основные способы получения.
- 12. Переработка нефти. Химические свойства. Использование алканов.
- 13. Этиленовые углеводороды (алкены). Изомерия. Получение алкенов с сохранением или изменением углеводородной цепи. Химические свойства

- (механизм реакции присоединения). Правило Марковникова (статический и динамический подход объяснения правила). Правило Хараша. Окисление олефинов (автоокисление, перекисями, окислителями, озоном).
- 14. Полимеризация (радикальная, катионная, анионная, координационная).
- 15. Алкадиены. Классификация, номенклатура. Особенности электронного строения сопряженных диенов. Способы получения и химические свойства (реакция Дильса—Альдера). Каучуки (натуральный, синтетический). Понятие о гомополимерах и сополимерах.
- 16. Ацетиленовые углеводороды (алкины). Номенклатура, изомерия. Способы получения. Химические свойства. Механизмы A_E , A_N , A_R .
- 17. Особенности реакций замещения и присоединения (причинно-следственная связь строения и свойств).
- 18. Алициклические углеводороды. Изомерия, номенклатура. Устойчивость циклов (теория Байера, «банановая связь»). Способы получения и химические свойства малых и нормальных циклов. Практическое применение.
- 19. Ароматические углеводороды. Ароматичность (правило Хюккеля). Способы получения (реакция Фриделя-Крафтса). Химические свойства (механизм реакций присоединения, замещения). Ориентация замещения (ориентанты I и II рода, согласованная и несогласованная ориентация).
- 20. Галогенпроизводные углеводородов. Способы получения. Химические свойства, механизмы реакций S_{N1} , S_{N2} , E_1 и E_2 . Реактив Гриньяра и его использование в органическом синтезе.

(5 семестр)

- 1. Алканолы. Номенклатура и изомерия. Основные способы получения.
- 2. Химические свойства гидроксильной группы, реакции радикала, окисление, комплексообразование.
- 3. Фенолы: одно-, двух- и трехатомные. Способы получения. Химические свойства (с участием ОН-группы и ароматического кольца). Применение. Экологические проблемы утилизации фенолов.
- 4. Простые эфиры. Номенклатура. Циклические эфиры. Способы получения эфиров и их свойства.
- 5. Тиоспирты, тиоэфиры. Номенклатура, получение, свойства и применение.
- 6. Нитросоединения алифатического и ароматического ряда. Основные способы получения, химические свойства, применение.
- 7. Амины алифатического и ароматического рядов. Способы получения, химические свойства. Диамины. Диазосоединения. Применение.
- 8. Альдегиды и кетоны. Электронное строение карбонильной группы. Номенклатура. Способы получения. Физические и химические свойства (реакции присоединения, замещения кислорода карбонильной группы, окисления, замещения у α-углеродного атома, полимеризации.
- 9. Монокарбоновые кислоты. Номенклатура. Способы получения. Электронное строение карбоксильной группы (мезоформула). Химические свойства.
- 10. Непредельные одноосновные кислоты. Ароматические кислоты.
- 11. Предельные дикарбоновые кислоты. Получение. Особенности химических свойств.
- 12. Оксикарбоновые кислоты. Изомерия (оптическая). Способы получения. Химические свойства.
- 13. Производные карбоновых кислот: соли, галогенангидриды, ангидриды, амиды, нитрилы, сложные эфиры.
- 14. Альдегидо- и кетокислоты. Способы синтеза. Практическое применение и биологическая роль.

- 15. Аминокислоты. Способы получения. Свойства. Пептиды и белки. Нахождение в природе, биологическая роль.
- 16. Углеводы. Моносахариды (монозы), формулы Фишера и Хеуорса, явление мутаротации. Химические свойства. Практическое значение углеводов.
- 17. Олигосахариды: сахароза, лактоза, мальтоза, целлобиоза.
- 18. Полисахариды: крахмал, гликоген, целлюлоза. Свойства целлюлозы.

Итоговая аттестация — экзамен — предполагает установление уровня сформированности следующих компетенций:

ПК-1 Способен осваивать и использовать базовые научно-теоретические знания и практические умения по предмету в профессиональной деятельности.

Критерии оценки:

Оценки «отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебного материала дисциплины, умение свободно выполнять задания, предусмотренные программой, усвоивший основную литературу и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки «хорошо» заслуживает студент, обнаруживший полное знание учебного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется учащимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки «удовлетворительно» заслуживает студент, обнаруживший знание основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Документ составлен в соответствии с требованиями ФГОС ВО по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденный приказом Министерства образования и науки Российской Федерации от «22»февраля 2018 г. №125.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.