

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ Декан физического факультета

/H.M. Буднев «02» апреля 2025 г.

Рабочая программа дисциплины

Физический факультет

Наименование дисциплины: Б1.В.08 Нейтринная астрофизика

Направление подготовки: 03.03.02 Физика

Направленность (профиль) подготовки: Фундаментальная физика и физика Космоса

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №<u>49</u> от «<u>26</u>» марта 202<u>5</u> г.

Председатель

Н М Булнев

Рекомендовано кафедрой:

Протокол №6

От «24» марта 2025 г.

Зав. кафедрой

С.В. Ловцов

Иркутск 2025 г.

Содержание

I. Цели и задачи дисциплины
II. Место дисциплины в структуре ОПОП
III. Требования к результатам освоения дисциплины
IV. Содержание и структура дисциплины (модуля)
4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных за-
нятий и отведенного на них количества академических часов
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине4
4.3. Содержание учебного материала5
4.3.1. Перечень семинарских, практических занятий и лабораторных работ 6
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в
рамках самостоятельной работы (СРС)
4.4. Методические указания по организации самостоятельной работы студентов
4.5. Примерная тематика курсовых работ
V. Учебно-методическое и информационное обеспечение дисциплины
а) список литературы
б) периодические издания
в) список авторских методических разработок
г) базы данных, информационно-справочные и поисковые системы
VI. Материально-техническое обеспечение дисциплины9
VII. Образовательные технологии
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации9
Приложение: фонд оценочных средств

І. Цели и задачи дисциплины

Нейтринная астрофизика - сравнительно новый раздел астрофизики высоких энергий, открывающий новое окно в астрономии, расширяющей возможности исследования процессов в Галактике, удаленных галактиках и внегалактических объектах.

Цель курса «Нейтринная астрофизика» - изучение процессов в астрофизических объектах, в которых генерируются нейтрино в широком диапазоне энергий — от долей МэВ до сотен ПэВ, а также методов регистрации и детекторов нейтринного излучения. В результате изучения курса студент приобретает фундаментальные знания о процессах генерации нейтрино в астрофизических объектах, включая Солнце и Землю, познакомится с методами регистрации на Земле потоков космического излучения, приобретает навыки решения конкретных задач.

Задачи курса

Ввести студентов в круг проблем современной нейтринной астрофизики, дать представление о физических процессах в астрофизических источниках излучения высокой энергии, познакомить с результатами измерений космического излучения, принципами работы крупномасштабных установок для детектирования астрофизических нейтрино, изучить специальные методы решения астрофизических задач. В рамках курса «Нейтринная астрофизика» студенты изучают основы устройства астрофизических объектов – потенциальных источников космических лучей, гамма-квантов и нейтрино, механизмы генерации высокоэнергетического космического излучения.

II. Место дисциплины в структуре ОПОП

«Нейтринная астрофизика» относится к дисциплинам, формируемым участниками образовательного процесса. Курс «Нейтринная астрофизика» предназначен для подготовки бакалавра по профилю «Фундаментальная физика», способного работать в составе коллектива исследователей, проводящих эксперименты на гигантских установках по регистрации космического излучения. В результате изучения данной дисциплины специалист должен знать современное состояние исследований в области нейтринной астрофизики, знать принципы регистрации нейтрино в широком диапазоне энергий, иметь представление о детекторах астрофизических нейтрино, понимать более широкую постановку астрофизических задач.

Изучение курса предполагает наличие полученных на предыдущем уровне образования основных знаний, умений и компетенций по дисциплинам «Математический анализ», «Дифференциальные уравнения», «Интегральные уравнения и вариационное исчисление», «Методы математической физики», «Квантовая теория», «Термодинамика и статистическая физика», «Ядерная физика», «Слабые взаимодействия», «Астрофизика высоких энергий».

III. Требования к результатам освоения дисциплины

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами лостижения компетенций

Компетенция	ПК-1: Способен использовать специализированные знания в области физики и астрофизики для освоения профильных физических дисциплин.
Индикаторы компетенции	$ИДК_{пк\ 1.1}$ Способен проводить анализ научных данных, результатов экспериментов и наблюдений, используя специализированные знания в области физики и астрофизики. $ИДК_{\Pi K1.2}$ Способен проводить анализ новых направлений исследований и опытно-конструкторских разработок в соответствующей области знаний.
Результаты обучения	Знает: основные закономерности процессов, происходящих в звездах главной последовательности, и вне ее, характер процессов генерации космического излучения высокой и сверхвысокой энергии; принципы его детектирования, основные методы решения задач

нейтринной астрофизики, иметь представление о пакетах программ моделирования отклика детектора на излучение.

Умеет: получать простые модельные оценки характеристик космического нейтринного излучения, и предполагаемой статистики событий в детекторе.

Владеем: математическим аппаратом описания генерации излучения в источнике и прохождения излучения через вещество.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 2 зачетных единицы, 72 часа, в том числе 35 часов контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку не отводится часов.

Форма промежуточной аттестации: зачет.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/п	Раз- дел дис- ци- пли- ны/	C e M e c	Вс ег о ча со	ег них о прак- ча тиче-	включая самостоятельную работу обучающихся, практиче- рак- иче- кая код- мод- мод-				Формы текущего контроля успеваемости; Форма промежуточной аттестации
	темы	p		го-					(по семе-
				товка обу- чаю- щих- ся	Лекции	Семинарские /практические /лабораторные занятия	Консультации	paoora	страм)
1	1-15	8	72	-	24	-	1	37	Практиче- ское зада- ние; вопро- сы к экзаме- ну
Итог	o:		72	-	24	24 - 1 37			

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

Семестр	Название раздела, те- мы		ьная работа об Сроки вы- полнения	учающихся Оценочно средство емксть	Оценочное средство	Учебно- методиче- ское обеспе-	
		работы	(час.)		чение само- стоятельной работы		
8	Тема 1-15	Задание в виде задачи	После пройденных тем	37	Демонстра- ция готовых решений	Источники из основной и до- полнительной литературы по	

			теме і	практиче-
			ских	занятий;
			Образ	ователь-
			ные	ресурсы,
			до-сту	пные по
			логин	у и паро-
			лю, п	редостав-
			ляемы	ім Науч-
			ной б	библиоте-
			кой И	ГУ.

4.3. Содержание учебного материала

Содержание разделов и тем дисциплины

- **Тема 1**. Свойства нейтрино. Ограничения на массу, время жизни, заряд и магнитный момент. Нейтрино в Стандартной Модели. Понятие о дираковской и майорановской массе. Лептонные числа и гипотеза нейтринных осцилляций.
- **Тема 2**. Рассеяние нейтрино на электронах и нуклонах. Структурные функции нуклона. Рассеяние нейтрино на кварках. Сечение vN-рассеяния в кварк-партонной модели. Поведение сечений с ростом энергии нейтрино, оценки пробега нейтрино до взаимодействия, процессы с заряженными и нейтральными токами. Взаимодействие нейтрино с ядрами, когерентное рассеяние.
- **Тема 3.** Генерация нейтрино в цепочках термоядерных реакций на Солнце. Нейтринное излучение Солнца. Результаты экспериментов Homestake, Kamiokande, Super-Kamiokande, SAGE, GALLEX, GNO, SNO, Borexino, MiniBooNE, T2K, J-PARC (Japan Proton Accelerator Research Complex), NOvA.
- **Тема 4.** Нейтринные осцилляции в веществе, эффект Михеева-Смирнова-Вольфенштейна. Конверсия нейтрино как решение проблемы солнечных нейтрино. Параметры смешивания солнечных нейтрино. Эксперименты с реакторными нейтрино.
- **Тема 5.** Классификация вспышек сверхновых, общие представления о физических процессах, предшествующих вспышке сверхновой и сопровождающих вспышку СН.
- **Тема 6.** Сверхновые типа II, динамика коллапса ядра массивной звезды. Роль нейтрино в гравитационном коллапсе звезд. Нейтринное излучение при вспышках сверхновых.
- **Тема** 7. Сверхновая СН 1987А. Регистрация нейтринного импульса от SN 1987А, ограничения на свойства нейтрино, полученные на основе детектирования нейтринного импульса. Детекторы нейтрино от сверхновых: АСД, БПСТ, KamLand, LVD, S-K, SNO.
- **Тема 8.** Нейтрино в астрофизике и космологии. Космологические ограничения на массу и число сортов нейтрино. Механизмы генерации нейтрино в сценарии "снизу-вверх". Космогенные нейтрино: рү- и рр-нейтрино от взаимодействия космических лучей с реликтовыми фотонами, с веществом и радиационными полями межзвездной среды.
- **Тема 9.** Галактические и внегалактические источники нейтрино, диффузные потоки нейтрино высоких энергий.
- *Тема 10.* Дискретные источники космических лучей, гамма-квантов и нейтрино высоких энергий: Активные ядра галактик как источники нейтрино: модели и оценки потоков.
- **Тема 11.** Источники космологических гамма-всплесков гипотетические источники космических лучей, гамма-квантов и нейтрино высоких и сверхвысоких энергий. Модельно-независимые оценки потоков нейтрино от гамма-барстеров.
- *Тема 12.* .Генерация нейтрино в ядерно-каскадном процессе. Атмосферные нейтрино (от распадов π и K-мезонов, мюонов, τ -лептонов, очарованных частиц) как фон для астрофизических

нейтрино и калибровка нейтринных телескопов. Атмосферные нейтрино, потоки прямых нейтрино.

- **Тема 13.** Прохождение нейтрино высоких энергий через плотное вещество. Уравнение переноса нейтрино, поглощение и регенерация нейтрино. Эффект регенерации ν_{μ} за счет рождения и распада мюонов. Эффект регенерации ν_{τ} за счет рождения и распада τ -лептонов. Специфика переноса электронных антинейтрино. Резонанс Глэшоу.
- **Тема 14.** Принципы регистрации нейтрино от астрофизических источников: а) черенковские детекторы, б) радиодетектирование, в) акустические детекторы.
- **Тема 15.** Нейтринные телескопы: HT200+, IceCube, ANTARES, Km3NeT, NEMO и др. Измерение спектров атмосферных нейтрино в экспериментах AMANDA, ANTARES и IceCube. Регистрация событий от астрофизических нейтрино высоких энергий в эксперименте IceCube.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

Практических занятий не предусмотрено учебным планом.

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в

рамках самостоятельной работы (СРС)

No	Тема	Вид само-	Задание	Рекомендуе-	Количе-
нед.		стоятель-		мая литерату-	ство ча-
		ной работы		pa	сов
1	Свойства ней- трино в Стан- дартной Модели	Внеаудиторная, решение задач	Свойства нейтрино, дираковская и майорановская масса, гипотеза нейтринных осцилляций	Источники из основной и до- полнительной литературы по	3
2	Взимодействие нейтрино с веществом		Вычисление сечений рассеяние нейтрино на электронах и нуклонах в кварк-партонной модели. Оценки пробега нейтрино до взаимодействия, процессы с заряженными и нейтральными токами.	теме практиче- ских занятий; образователь- ные ресурсы Научной биб- лиотекой ИГУ,	3
3	Нейтринное из- лучение Солнца		Генерация нейтрино в цепочках термо- ядерных реакций на Солнце. Вычисле- ние энергетического спектра солнеч- ных нейтрино	сайта физиче- ского факульте- та ИГУ. база данных по фи-	3
4	Нейтринное из- лучение сверх- новых		Расчет спектров нейтрино от вспышки сверхновой	зике inspirehep.net	3
5	Нейтринные со- бытия в детек- торе		Оценка числа событий в детекторах нейтрино от вспышек сверхновых		3
6	Свойства ней- трино	Внеаудитор- ная, реше- ние задач	Ограничения на свойства нейтрино на основе детектирования нейтринного импульса от SN 1987A		3
7	Образование нейтронной звезды		Оценить радиуса нейтриносферы протонейтронной звезды R_{ν} . Каково соотношение между R_{ν_e} $R_{\nu_{\mu}}$ и $R_{\nu_{\tau}}$?		3
8	Процесс переноса нейтрино в протонейтронной звезде		При каких условиях происходит захват нейтрино в мантии протонейтронной звезды?		3
9	Механизм нейтринного нагрева веществ за фронтом УВ в коллапсирующей звезде		Оценить передачу энергии от нейтрино за фронтом УВ, достаточную для сброса звездной оболочки		3

10	Космогенные р+- и рр- нейтрино		Космогенные нейтрино: р+- и рр-нейтрино от взаимодействия космических лучей с реликтовыми фотонами, с веществом и радиационными полями межзвездной среды	3
11	Галактические и внегалактические источники нейтрино	Внеаудитор- ная, реше- ние задач	Получить оценку диффузных потоков нейтрино на Земле, используя данные об интенсивности космического гамма-излучени	4
12	Атмосферные нейтрино как фон для астрофизических нейтрино		Расчет углового усиления потоков атмосферных мюонных нейтрино	3

4.4. Методические указания по организации самостоятельной работы студентов

В разделе 4.3.2 студентам для более углубленного изучения дисциплины предлагаются задачи и упражнения по изучаемым разделам. Предполагается, что студент самостоятельно изучит дополнительный материал из рекомендованной литературы (п. 5) и решит предложенные задачи. Оценка самостоятельной работы студентов проводится в виде домашних контрольных работ и опросов на практических занятиях.

4.5. Примерная тематика курсовых работ

Учебным планом написание курсовых работ не предусмотрено.

V. Учебно-методическое и информационное обеспечение дисциплины

а) список литературы

Основная литература:

1. Синеговский, С.И. Космические нейтрино высоких энергий: учеб. пособие / С. И. Синеговский. - Иркутск: Изд-во Иркут. гос. ун-та, 2009. - 61 с. (11)

Дополнительная литература:

1. Мурзин, В. С. Астрофизика космических лучей: учеб. пособие для вузов / В. С. Мурзин. - Москва: Логос, 2007. - 487 с. - Режим доступа: ЭБС "Руконт". - Неогранич. доступ. - ISBN 978-5-98704-171-6

Базы данных, информационно-справочные и поисковые системы:

- 1. http://library.isu.ru/ Научная библиотека ИГУ;
- 2. <u>http://inspirehep.net/</u>, <u>http://arxiv.org/</u> Базы данных журнальных статей, материалов конференций и электронных препринтов по физике и астрофизике высоких энергий.

б) периодические издания

- нет

в) список авторских методических разработок

- Синеговский, С.И. Космические нейтрино высоких энергий: учеб. пособие / С.
- И. Синеговский. Иркутск: Изд-во Иркут. гос. ун-та, 2009. 61 с. (11)

г) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

- https://isu.bibliotech.ru/ ЭЧЗ «БиблиоТех»;
- http://e.lanbook.com ЭБС «Издательство «Лань»;
- http://rucont.ru ЭБС «Руконт» межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое; http://ibooks.ru/ ЭБС «Айбукс»- интернет ресурсы в свободном доступе.

VI. Материально-техническое обеспечение дисциплины

Учебная аудитория с доской и мелом для проведения лекционных и практических занятий. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук.

Материалы курса (частично) доступны на сайте http://www.pd.isu.ru/sost/teor_phi/homepage/sinegovsky.html.

VII. Образовательные технологии

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- лекции, нацеленные на получение необходимой информации, и ее использование при решении задач;
- **практические занятия**, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения задач;
- консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- текущий контроль работы студентов осуществляется через практические задания

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

Фонд оценочных средств представлен в приложении.

8.1. Оценочные средства для входного контроля

Для изучения данного курса студент должен владеть основами физики и теоретической физики, уметь пользоваться стандартными поисковыми сервисами сети Интернет. Входной контроль умений и знаний не проводится.

8.2. Оценочные средства текущего контроля — вопросы и задания на практических занятиях.

Примеры заданий

- 1. Вычислить сечение рассеяния нейтрино на электронах и нуклонах в кварк-партонной модели.
- 2. Расчитать спектр нейтрино от вспышки сверхновой.
- 3. Оценить радиус нейтриносферы протонейтронной звезды R_{ν} . Каково соотношение между R_{ν} R_{ν} R_{ν} ?

- 4. При каких условиях происходит захват нейтрино в мантии протонейтронной звезды?
- 5. Оценить передачу энергии от нейтрино за фронтом УВ, достаточную для сброса звездной оболочки.

Примерный список устных вопросов для собеседования

- 1. Дираковская и майорановская масса нейтрино.
- 2. Лептонные числа и гипотеза нейтринных осцилляций.
- 2. Оценки пробега нейтрино до взаимодействия, процессы с заряженными и нейтральными токами.
- 3. Основные термоядерные реакции на Солнце, в которых рождаются нейтрино.
- 4. Роль нейтрино в гравитационном коллапсе звезд.
- 5. Нейтринное излучение при вспышках сверхновых.
- 6. Детектирование нейтринного всплеска от сверхновой SN 1987A факты и гипотезы.
- 6. рү- и рр-нейтрино в астрофизических источниках.
- 7. Активные ядра галактик и микроквазары как источники нейтрино.
- 8. Атмосферные нейтрино как фон для астрофизических нейтрино.
- 9. Прохождение нейтрино высоких энергий через плотное вещество. Эффекты регенерации нейтрино.
- 10. Резонанс Глэшоу
 - 8.3 Оценочные средства промежуточного контроля

Форма проведения промежуточной аттестации — зачет.

Примерный перечень вопросов к экзамену

- 1. Свойства нейтрино, гипотеза нейтринных осцилляций.
- 2. Процессы рассеяния нейтрино с заряженными и нейтральными токами, оценки пробега нейтрино до взаимодействия.
- 3. Генерация нейтрино в цепочках термоядерных реакций на Солнце. Нейтринное излучение Солнца
- 4. Общие представления о физических процессах, предшествующих вспышке сверхновой.
- 5. Роль нейтрино в гравитационном коллапсе звезд.
- 6. Нейтринное излучение при вспышках сверхновых.
- 7. Детектирование нейтринного всплеска от сверхновой SN 1987A факты и гипотезы.
- 8. ру- и рр-нейтрино в астрофизических источниках.
- 9. Активные ядра галактик и микроквазары как источники нейтрино.
- 10. Генерация нейтрино в широком атмосферном ливне, расчеты и данные эксперимента.
- 11. Принципы и методы регистрации нейтрино высоких и сверхвысоких энергий от астрофизических источников.
- 12. Нейтринные телескопы, регистрация астрофизических нетйрино.

Пример тестовых заданий для проверки сформированности компетенций, указанных выше n.3:

- 1. Какой тип нейтрино обладает самой минимальной энергией:
- а). геонейтрино
- б). солнечные нейтрино
- в). реликтовые нейтрино
- 2. Какой тип нейтрино или антинейтрино в большинстве случаев рождается в результате распада заряженного пи-мезона:
 - а). электронное

- б). мюонное
- в). тау-нейтрино
- 3. В каких взаимодействиях могут участвовать нейтрино:
- а). только в сильных
- б). в сильных и слабых
- в). в слабых
- 4. Матрица Понтекорво—Маки—Накагавы—Сакаты описывает:
- а). процесс смешивания кварков в Стандартной Модели
- б). процесс смешивания типов нейтрино
- в). такой матрицы не существует
- 5. Спиральностью частицы называется:
- а). способность частицы участвовать в осцилляциях
- б). число зарядовых состояний адрона
- в). проекция спина частицы на направление движения

Разработчики:

доцент кафедры теоретической физики И.А. Перевалова

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 03.03.02 Физика.

Программа рассмотрена на заседании кафедры теоретической физики

«24» марта 2025 г.

Протокол №6 Зав. кафедрой _____ С.В. Ловцов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.