

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ИГУ»)

Институт математики и информационных технологий Кафедра информационных технологий

УТВЕРЖДАЮ»
Директор ИМИТ ИГУ
М. В. Фалалеев
11» апредя 2025 г.

Рабочая программа дисциплины (модуля)

Б1.В.07 Алгоритмы компьютерной графики

Направление подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки Фундаментальная информатика и

программная инженерия

Квалификация выпускника бакалавр

Форма обучения очная

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Пель

Дать представление об алгоритмах, используемых в различных видах компьютерной графики и на разных этапах обработки графической информации, рассмотреть вопросы, связанные с эффективностью различных графических алгоритмов.

Задачи:

- дать представление об алгоритмической основе в различных областях компьютерной графики;
- рассмотреть алгоритмы, используемые в векторной графике;
- рассмотреть алгоритмы, используемые при векторно-растровых преобразованиях;
- рассмотреть алгоритмы, используемые в растровой графике;
- рассмотреть алгоритмы, используемые в «графическом конвейере визуализации».

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- 2.1. Учебная дисциплина (модуль) относится к части программы, формируемой участниками образовательных отношений, и изучается на четвертом курсе.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, сформированные следующими дисциплинами:: Б1.О.13 Программирование, Б1.О.14 Линейная алгебра, Б1.О.15 Основы алгоритмизации, Б1.В.20 Компьютерная геометрия.
- 2.3. Дисциплины, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной не предусмотрены.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций (элементов следующих компетенций) в соответствии с $\Phi \Gamma OC$ ВО по соответствующему направлению подготовки.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компетенций	Результаты обучения	
ПК-5 Способность соби-	ИДК _{ПК5.1}	Знает основные техноло-	
рать, обрабатывать и ин-	Способен собирать, обрабаты-	гии, используемые при	
терпретировать экспери-	вать и интерпретировать экспе-	сборе, обработке и интер-	
ментальные данные, необ-	риментальные данные, необхо-	претации эксперименталь-	
ходимые для проектной и	димые для проектной и произ-	ных данных, необходи-	
производственно-техноло-	водственно-технологической де-	мых для проектной и про-	
гической деятельности;	ятельности	изводственно-технологи-	
способность к разработке		ческой деятельности.	
новых алгоритмических,		Умеет собирать, обрабаты-	
методических и технологи-		вать и интерпретировать	
ческих решений в конкрет-		экспериментальные дан-	
ной сфере профессиональ-		ные, необходимые для	
ной деятельности, в том		проектной и производ-	
числе с применением тех-		ственно-технологической	
нологий искусственного		деятельности.	
интеллекта			
	ИДК _{ПК5.2}	Владеет навыками по раз-	
	Способен к разработке новых ал-	работке новых алгоритми-	
	горитмических, методических и		

		·
	технологических решений в кон-	ческих, решений в кон-
	кретной сфере профессиональ-	кретной сфере профессио-
	ной деятельности	нальной деятельности
ПК-4 Способность пони-	ИДК _{ПК4.1}	Знает необходимые для ра-
мать и применять в научно-	Способен понимать современ-	боты современные языки
исследовательской и при-	ные языки программирования и	программирования и необ-
кладной деятельности со-	программное обеспечение; опе-	ходимое программное
временные языки програм-	рационные системы и сетевые	обеспечение.
мирования и программное	технологии	Умеет выбрать оптималь-
обеспечение; операцион-		ный для решения постав-
ные системы и сетевые тех-		ленной задачи язык про-
нологии; применять алго-		граммирования.
ритмы и структуры данных		Владеет навыками про-
при разработке программ-		граммирования на совре-
ных решений		менных языках.
	ИДК _{ПК4.2}	Умеет применять в
	Способен применять в научно-	научно-исследовательской
	исследовательской и приклад-	и прикладной деятельно-
	ной деятельности современные	сти современные языки
	языки программирования и про-	программирования и про-
	граммное обеспечение; операци-	граммное обеспечение
	онные системы и сетевые техно-	
	логии	
	ИДК _{ПК4.3}	Знает алгоритмы и струк-
	Способен применять алгоритмы	туры данных, используе-
	и структуры данных при разра-	мые при решении различ-
	ботке программных решений	ных задач компьютерной
		графики.
		Умеет применять алго-
		ритмы и структуры дан-
		ных при разработке алго-
		ритмов, решающих раз-
		личные задачи компьютер-
		ной графики.

4. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 2 зачетных единиц, 72 часа, практическая подготовка 72 часа. Форма промежуточной аттестации: 7 семестр - зачет.

4.1. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, СТРУКТУРИРОВАННОЕ ПО ТЕМАМ, С УКАЗАНИЕМ ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ И ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ

№	Разлел лисциплины/темы		Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах) Контактная работа преподава-				Формы теку- щего кон-
п/п			Лекции	я с обучающ Семинар- ские (прак- тические занятия)		Самостоятель ная работа + контроль	троля успевае- мости
1	Тема 1. Введение. Области применения алгоритмов в компьютерной графике.	7	1	0		0	
2	Тема 2. Моделирование кривых и поверхностей.	7	1	2	1	4	
3	Тема 3. Реализация аффинных преобразований и проекций.	7	2	2	1	4	
4	Тема 4. Графический конвейер визуализации.	7	2	2	1	4	Задание для
5	Тема 5. Алгоритмы экранной растеризации и интерполяция.	7	2	2	1	4	самостоятель-
6	Тема 6. Видимость и отсечение.	7	2	2	1	4	нения, доклад
7	Тема 7. Освещение и текстурирование.	7	2	2	1	4	777
8	Тема 8. Растрово-растровые преобразования.	7	4	4	2	8	
Ито	ого часов		16	16	8	32	

4.2. ПЛАН ВНЕАУДИТОРНОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

	Название раздела, темы	Самостоятельная работа обучающихся				Учебно-методи-
Се-		Вид самостоя- тельной работы		Затраты времени (час.)	ство	ческое обеспече- ние самостоя- тельной работы
7	Тема 2. Моделирование кривых и поверхностей.			4		
7	Тема 3. Реализация аффинных преобразований и проекций.	D		4	ргичения	УМО разме- щено на плат- форме ИОС
7	Тема 4. Графический конвейер визуализации.	Выполнение за-		4		
7	Тема 5. Алгоритмы экранной растеризации и интерполяция.	мостоятельного	В течение семестра	4		
7	Тема 6. Видимость и отсечение.	выполнения	4		DOMIC	
7	Тема 7. Освещение, затенение и текстурирование.			4		
7	Тема 8. Растрово-растровые преобразования.			8		
Общая	рудоемкость самостоятельной работы по дисциплине (час		32			
Из них объем самостоятельной работы с использованием электронного обучения и дистанционных образовательных технологий (час)						

4.3. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1 Введение. Области применения алгоритмов в компьютерной графике: алгоритмы, используемые в векторной графике, алгоритмы, используемые при векторно-растровых преобразованиях, алгоритмы, используемые в растровой графике, графическом конвейер, вопросы эффективности алгоритмов компьютерной графики, геометрический поиск и

- Тема 2. Моделирование кривых и поверхностей: общее представление кубических кривых, формы Эрмита, Безье, В-сплайнов, билинейные поверхности, линейчатые поверхности, линейные поверхности Кунса, бикубические поверхности, формы Эрмита и Безье, алгоритмы приближения кривых отрезками и поверхностей треугольниками, фрактальное моделирование.
- Тема 3. Реализация аффинных преобразований и проекций: матрица преобразований, однородные координаты, композиция преобразований, эффективность вычислений, матричное описание проекций, отсечение по границе канонического объема, переход к координатам физического устройства, технология использования шейдеров.
- Тема 4. Графический конвейер визуализации: моделирование, позиционирование, преобразование, видимость, проекция, растеризация, затенение, текстурирование.
- Тема 5. Алгоритмы экранной растеризации и интерполяция: связь проецирования, отсечения и растеризации, правило левого верхнего угла, алгоритмы построения линий (Брезенхема, ЦДА), варианты алиасинга, интерполяция, Traversal алгоритмы, интерполяция в Traversal алгоритмах, алгоритмы заполнения.
 - Тема 6. Видимость и отсечение: двумерные и трехмерные отсечения, алгоритм Сазерленда-Коэна для регулярного окна, алгоритм Лайэнга-

Барски для регулярного окна, алгоритм Сайруса Барски для выпуклого окна, отсечение относительно параллелипипеда и усеченной пирамиды, отсечение многоугольников, удаление невидимых поверхностей, алгоритмы отсечения по глубине, алгоритмы, использующие z-буфер, алгоритмы построчного сканирования, алгоритм Варнока.

Тема 7. Освещение, затенение и текстурирование: элементарные модели освещения, затенение Гуро и Фонга, BRDFs в моделях освещения, глобальное освещение, трассировка лучей, излучаемость, алгоритмы текстурирования, mapping, процедурное текстурирование, преобразование между RGB и HSV.

Тема 8. Растрово-растровые преобразования: цветовые модели, форматы растровых файлов, алгоритмы сжатия, используемые в различных форматах, алгоритмы выделения по цвету, свертки, алгоритмы, используемые для коррекции изображения, математическая морфология.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№ п/н	№ раздела и темы	Наименование семинаров, практических и лабораторных работ		емкость ас.)	Оценочные средства	Формируемые компетенции (индика- торы)*
			Всего часов	Из них практи- ческая подго-	•	•
1	2	3	4	товка 5	6	7
1	Тема 2.	Моделирование кривых и поверхностей.	2	2	Задание для само-	ПК-4 (ИДК _{ПК5.1} , ИДК _{ПК5.2} , ИДК _{ОПК5.3}) , ПК-5 (ИДК _{ПК5.1} , ИДК _{ПК5.2}).
2		Реализация аффинных преобразований и проекций.	2	2	попредид поклад	Π К-4 (ИДК $_{\Pi$ K5.1, ИДК $_{\Pi$ K5.2, ИДК $_{O\Pi$ K5.3}) , Π K-5 (ИДК $_{\Pi$ K5.1, ИДК $_{\Pi$ K5.2}).
3	Тема 4.	Графический конвейер визуализации.	2	_		
4		Алгоритмы экранной растеризации и интерполяция.	2	2		ПК-4 (ИДК $_{\Pi K5.1}$, ИДК $_{\Pi K5.2}$, ИДК $_{O\Pi K5.3}$) , ПК-5 (ИДК $_{\Pi K5.1}$, ИДК $_{\Pi K5.2}$).
5	Тема 6.	Видимость и отсечение.	2	1 2		ПК-4 (ИДК _{ПК5.1} , ИДК _{ПК5.2} , ИДК _{ОПК5.3}) , ПК-5 (ИДК _{ПК5.1} , ИДК _{ПК5.2}).
6		Освещение, затенение и текстурирование.	2	2		ПК-4 (ИДК $_{\Pi K5.1}$, ИДК $_{\Pi K5.2}$, ИДК $_{O\Pi K5.3}$) , $_{\Pi K-5}$ (ИДК $_{\Pi K5.1}$, ИДК $_{\Pi K5.2}$).

7	Тема 8.	Растрово-растровые преобразования.	4	4	ПК-4 (ИДК _{ПК5.1} , ИДК _{ПК5.2} , ИДК _{ОПК5.3}) , ПК-5 (ИДК _{ПК5.1} , ИДК _{ПК5.2}).
		Всего	16	16	

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СР) Не предусмотрено.

4.4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Методические указания по организации самостоятельной работы расположены в ИОС DOMIC на странице курса.

4.5. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ РАБОТ (ПРОЕКТОВ)

Не предусмотрено.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

а) перечень литературы

- 1. Боресков, А. В. Основы компьютерной графики: учебник и практикум для вузов / А. В. Боресков, Е. В. Шикин. Москва: Издательство Юрайт, 2022. 219 с. (Высшее образование). ISBN 978-5-534-13196-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/489497 (дата обращения: 23.03.2022).
- 2. Вечтомов, Е. М. Компьютерная геометрия: геометрические основы компьютерной графики: учебное пособие для вузов / Е. М. Вечтомов, Е. Н. Лубягина. 2-е изд. Москва: Издательство Юрайт, 2022. 157 с. (Высшее образование). ISBN 978-5-534-09268-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/493171 (дата обращения: 23.03.2022).
- 3. Гинсбург, Д. OpenGL ES 3.0. Руководство разработчика : руководство / Д. Гинсбург, Б. Пурномо ; перевод с английского А. Борескова. Москва : ДМК Пресс, 2015. 448 с. ISBN 978-5-97060-256-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/82816 (дата обращения: 23.03.2022).
- 4. Лубягина, Е. Н. Линейная алгебра : учебное пособие для среднего профессионального образования / Е. Н. Лубягина, Е. М. Вечтомов. 2-е изд. Москва : Издательство Юрайт, 2022. 150 с. (Профессиональное образование). ISBN 978-5-534-12504-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/495174 (дата обращения: 23.03.2022).
- 5. Вольф, Д. OpenGL 4. Язык шейдеров. Книга рецептов / Д. Вольф; перевод с английского А. Н. Киселева. Москва: ДМК Пресс, 2015. 368 с. ISBN 978-5-97060-255-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/73071 (дата обращения: 23.03.2022)
- 6. Компьютерная графика: учебно-методическое пособие / А. Ю. Борисова, М. В. Царева, И. М. Гусакова, О. В. Крылова. Москва: МИСИ МГСУ, 2020. 76 с. ISBN 978-5-7264-2347-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/165179 (дата обращения: 23.03.2022).
- 7. Войтова, Н. А. Компьютерная графика : методические указания / Н. А. Войтова. Брянск : Брянский ГАУ, 2020. 129 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/172054 (дата обращения: 23.03.2022).

б) список авторских методических разработок:

Справочные материалы и индивидуальные задания в среде DOMIC// Режим доступа: http://domic.isu.ru.

в) базы данных, информационно-справочные и поисковые системы

- 1. https://e.lanbook.com/ Электронно-библиотечная система издательства «Лань».
- 2. https://urait.ru/ Образовательная платформа Юрайт.
- 3. http://domic.isu.ru Информационно-образовательная среда DOMIC.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. УЧЕБНО-ЛАБОРАТОРНОЕ ОБОРУДОВАНИЕ:

Компьютерная аудитория с доской и проектором.

6.2. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Браузер, редактор кода, pdf-view'ep.

6.3. ТЕХНИЧЕСКИЕ И ЭЛЕКТРОННЫЕ СРЕДСТВА:

ИОС DOMIC, презентационное оборудование, персональный компьютер с возможностью демонстрации презентаций в формате pdf, персональные компьютеры с установленным ПО, описанным в п. 6.2.

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации данного курса используются следующие образовательные технологии: лекции, проблемные лекции, лекции-дискуссии, лекции-конференции, лабораторные работы в традиционной форме, лабораторные работы с заявленной проблематикой.

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ВХОДНОГО КОНТРОЛЯ

Не предусмотрено.

8.2. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ТЕКУЩЕГО КОНТРОЛЯ

Тесты и задания для самостоятельного выполнения размещены на странице курса в ИОС DOMIC.

Пример заданий для самостоятельного выполнения по теме 3:

«Реализация аффинных преобразований и проекций»

Задание 2

Для кадой фигуры необходимо выполнить следующие преобразования:

- 1. масштабирование с сохранением пропорций;
- 2. масштабирование без сохранения пропорций;
- 3. поворот;
- 4. сдвиг.

Смотри далее.

Задание 3. Умножение матриц

Для просмотра результатов работы используйте настроенную портативную версию Firefox Portable.

В рамках данной лабораторной работы вы должны дописать предоставленную программу, чтобы она начала умножать матрицы.

- 1. Скачайте архив.
- 2. Откройте файл script.ts.
- 3. Найдите в этом файле функцию Matrix.mul
- 4. Ваша задача написать классическое умножение матриц. У вас есть 3 матрицы: matrix1, matrix2 и this. Напишите произведение матриц matrix1 и matrix2, а результат произведения поместите в матрицу this.

Задание 4. Матрица перехода

В рамках данной лабораторной работы вы должны научиться использовать матрицы перехода.

- 1. Скачайте архив.
- 2. Откройте файл script.ts.
- 3. Внесите туда реализацию метода Matrix.mul из предыдущей лабораторной
- 4. Теперь вы должны написать код, для работы 9 кнопок на HTML-странице. Данное вебприложение позволяет умножать список векторов на выбранную матрицу. Каждый вектор представлен на одной строчке. При нажатии на соответствующую кнопку все вектора умножаются на матрицу и результат записывается в поле снизу.

Пример задания на контрольную работу по основам Webgl:

Необходимо создать отдельные js файлы, реализующие вывод в двумерном контексте webgl-изображения, отвечающие следующим критериям:

- 1. index1.js: Три отрезка с перечислением вершин без индексов без цвета, соединенных по принципу LINES на любом фоне, два из которых имеют общую точку.
- 2. index2.js: Три отрезка с перечислением вершин и индексов без цвета, соединенных по принципу LINES на любом фоне, два из которых имеют общую точку.
- 3. index3.js: Раскрасить каждый отрезок в свой цвет (выбираете сами, в какой файл добавляете информацию о цвете).
- 4. index4.js: Три отрезка с перечислением вершин без индексов с цветом, соединенных по принципу LINE STRICT на любом фоне.
- 5. index5.js: Два разноцветных треугольника с разной обводкой (в 1 пиксель).
- 6. index6.js: Один цветной вращающийся относительно центра квадрат.

index1.js должен быть структурирован седующим образом:

- 1. Сначала "глобально" перечисляете все необходимые переменные: для связи с canvasc, для шейдеров, для программ, для буфера...
- 2. Затем создаете функцию, которая запускается после загрузки страницы. В ней вызываете последовательно функции (можно без аргументов, так как мы все переменные перечислили глобально) для работы с шейдерами: привязка к сапуаs, создание шейдеров, создание и работа с буферами, создание и работа с программой...
- 3. Далее создаете каждую из перечисленных функций. Перед каждой функцией добавляете комментарий-описание, что там происходит.

В результате должна получиться скрипт, в котором четко прослеживается последовательной действий при работе с шейдерами.

Остальные js-файлы можете делать в соотвтствие с вашшим стилем программирования. Когда работа будет выполнена, заархивируйте файлы в один архив **result.zip** и выгрузите его на сервер для проверки преподавателем. <u>Загрузка файлов</u>.

Примерные темы докладов

- 1. Аппаратное обеспечение, работающее с компьютерной графикой, графические ускорители, характеристики аппаратного обеспечения, работающего с компьютерной графикой, аппаратная и программная настройка рассмотренного ПО
- 2. Системное программное обеспечение, необходимое для работы с графикой, прикладное программное обеспечение, работающее с разного вида графикой, основные характеристики, особенности выбора.
- 3. Растровая и векторная графика, области использования, плюсы и минусы; основные характеристики растровых изображений, параметры документа, основные принципы редактирования растровых документов, цветовые модели. Основные инструменты, используемые при создании и редактировании растровых изображений, их характеристики.
- 4. Форматы растровой графики. Алгоритмы сжатия.
- 5. Различные способы создания графики на web-страницах: статическая и динамическая графика, SVG-графика, элемент canvas, библиотека CreateJS.
- 6. Общее представление кубических кривых, формы Эрмита, Безье, В-сплайнов, билинейные поверхности, линейчатые поверхности, линейные поверхности Кунса.
- 7. Бикубические поверхности, формы Эрмита и Безье, алгоритмы приближения кривых отрезками и поверхностей треугольниками, фрактальное моделирование.
- 8. Фрактальная графика, моделирование объектов с использованием фракталов.
- 9. Библиотека OpenGL, Библиотеки GLU, GLUT, GLX.
- 10. Матрица преобразований, однородные координаты, композиция преобразований, эффективность вычислений.
- 11. Матричное описание проекций, отсечение по границе канонического объема, переход к координатам физического устройства, технология использования шейдеров.
- 12. Графический конвейер визуализации: моделирование, позиционирование, преобразование, видимость, проекция, растеризация, затенение, текстурирование.

- 13. Правило левого верхнего угла, алгоритмы построения линий (Брезенхема, ЦДА), варианты алиасинга.
- 14. Интерполяция, Traversal алгоритмы, интерполяция в Traversal алгоритмах, алгоритмы заполнения.
- 15. Алгоритм Сазерленда-Коэна для регулярного окна.
- 16. Алгоритм Лайэнга-Барски для регулярного окна.
- 17. Алгоритм Сайруса Барски для выпуклого окна.
- 18. Отсечение относительно параллелипипеда и усеченной пирамиды.
- 19. Алгоритмы, использующие z-буфера.
- 20. Алгоритм Варнока.
- 21. Затенение Гуро и Фонга, BRDFs в моделях освещения.
- 22. Трассировка лучей, излучаемость.
- 23. Алгоритмы выделения по цвету
- 24. Свертки, алгоритмы, используемые для коррекции изображения
- 25. Математическая морфология.

8.3. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПРОМЕЖУТОЧНОГО КОНТРОЛЯ

Каждое задание в курсе оценивается по 100-балльной системе. В каждой теме несколько заданий для самостоятельного выполнения. Оценка по каждой теме выставляется как среднее арифметическое полученных баллов.

В течение семестра студент должен подготовить доклад по одной из предложенных тем.

Оценка по дисциплине выставляется на основе оценок, полученных в течение семестра. Оценка «зачтено» выставляется, если выполнены индивидуальные задания по каждой теме, включая доклад, не менее, чем на 60%.

Разработчики:

доцент кафедры АиИС ИМИТ ИГУ Семичева Н.Л.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 02.03.02 «Фундаментальная информатика и информационные технологии» (уровень бакалавриата), утвержденный приказом Министерства образования и науки Российской Федерации от 23 августа 2017 г. № 808, зарегистрированный в Минюсте России «14» сентября 2017 г. № 48185 с изменениями и дополнениями с изменениями и дополнениями от: 26 ноября 2020 г., 8 февраля 2021 г.