

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Φ ГБОУ ВО «ИГУ»

Кафедра общей и экспериментальной физики

Рабочая программа дисциплины (модуля)

Наименование дисциплины <u>Б1.В.05 Компьн</u>	отерные технологии в научных исследованиях
Направление подготовки : <u>11.04.04</u> Электроп	ника и наноэлектроника
Направленность (профиль) подготовки: <u>Эл</u>	вектроника и наноэлектроника
Квалификация выпускника: магистр	
Форма обучения: очная	
Согласовано с УМК:	Рекомендовано кафедрой:
физического факультета	общей и экспериментальной физики
Протокол № <u>49</u> от « <u>26</u> » марта 2025 г.	Протокол №
	от « <u>21 » февраля 2</u> 025_г.
Председатель: д.фм.н., профессор	Зав.кафедрой д.фм.н., профессор
Н.М. Буднев	А.А. Гаврилюк

Иркутск 2025 г.

Содержание

І. Цели и задачи дисциплины (модуля)	3
II. Место дисциплины (модуля) в структуре ОПОП ВО	3
III. Требования к результатам освоения дисциплины	
IV. Содержание и структура дисциплины (модуля)	
4.1. Содержание дисциплины, структурированное по темам, с указанием видов уче	
занятий и отведенного на них количества академических часов	
4.1. План внеаудиторной самостоятельной работы обучающихся по дисциплине	
4.3. Содержание учебного материала	
4.3.1. Перечень семинарских, практических занятий и лабораторных работ	
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение	
студентами в рамках самостоятельной работы (СРС)	8
4.4. Методические указания по организации самостоятельной работы студентов	9
4.5. Примерная тематика курсовых работ (проектов) (при наличии)	9
V. Учебно-методическое и информационное обеспечение дисциплины (модуля)	
а) перечень литературы	
б) периодические издания	
в) список авторских методических разработок	10
г) базы данных, информационно-справочные и поисковые системы	
VI. Материально-техническое обеспечение дисциплины (модуля)	11
6.1. Учебно-лабораторное оборудование:	11
6.2. Программное обеспечение:	11
6.3. Технические и электронные средства:	12
VII. Образовательные технологии	
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации	12
ПРИ ПОЖЕНИЕ: Фонд ополонии ку сполств	16

І. Цели и задачи дисциплины (модуля)

В настоящее время научные исследования во многих областях знаний проводятся большими коллективами ученых, инженеров и конструкторов с помощью сложного и дорогостоящего оборудования. Значительные затраты ресурсов для проведения таких исследований обусловили необходимость повышения эффективности этой работы. Кроме того, эффективность научных исследований во многом связана с уровнем использования компьютерной техники.

Целью дисциплины является изучение принципов постановки физического и инженерного эксперимента, принципов построения аппаратных и программных решений автоматизированных систем научных исследований, освоение работы с элементами аналоговой и цифровой техники, знакомство с методами цифровой обработки сигналов.

Знания, полученные на лекциях, закрепляются на практических занятиях.

Задачи курса:

показать разнообразные методы математического и компьютерного моделирования, анализа и синтеза цифровых систем управления и обработки сигналов для различных объектов и систем; познакомить будущих магистрантов с базовыми методами и алгоритмами цифровой обработки сигналов

II. Место дисциплины (модуля) в структуре ОПОП ВО

Данная учебная дисциплина входит в обязательную часть данной образовательной программы. Она изучается в первом семестре на первом курсе магистратуры.

Для освоения содержания дисциплины необходимо знание основ радиофизики, электроники, информатики.

III. Требования к результатам освоения дисциплины

Процесс освоения дисциплины направлен на формирование компетенций в соответствии с ФГОС ВО и по данному направлению подготовки (11.04.04 Электроника и наноэлектроника):

- Осознанно выбирать пути решения научных задач на основе анализа знаний из области физического материаловедения (ПК-2).

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компетенций	Результаты обучения
ПК-2	ИДК ПК.2.1	Уметь: применять методы и средства измерения физических величин; измерять и самостоятельно проводить испытания различных элементов электрических цепей; привлекать

современные математические методы для решения задач моделирования, анализа и синтеза алгоритмов управления и обработки информации, обеспечивая предельное быстродействие, минимизируя вычислительные затраты; обеспечивать сохранение получаемых данных; планировать и ставить задачи исследования, выбирать методы экспериментальной работы, интерпретировать и представлять результаты научных исследований.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 4 зачетных единицы, 144 часов,

в том числе 62 часа контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 36 аудиторных часов (во время выполнения лабораторных работ).

Форма промежуточной аттестации: зачёт.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/н	Раздел дисциплины/тема	семестр семестр практическая обучающия ка обучающия		Виды учебной работы, включая самостоятельную работу обучающихся практическую подготовку и трудоемкость (в часах) Контактная работа преподавателя с обучающимися			сть	Формы текущего контроля успеваемости; Форма промежуточной аттестации (по семестрам)	
)	Bc	Из них подготові			Консуль тации	Самостоятельна я работа	
1	2	3	4	5	6	7	8	9	10
1	<u>Раздел 1.</u> Аналоговые элементы информационно измерительной техники.	1	62	18	8	18		36	Защита отчётов по лабораторным
2	Раздел 2. Цифровые элементы вычислительной и информационно-измерительной техники.	21	58	14	8	14		36	работам
3	Раздел 3. Операционные усилители.	1	14	4	2	4		8	
	Зачёт							2	Тестирование
	KCP		8						
	<u>Итого часов</u>		144		18	36		82	

4.1. План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная рабо		Учебно-		
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Трудоемкость (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
	Оформление отчётов по лабораторным работам	Обработка полученных экспериментальных данных, анализ результатов	В течение семестра	40	Отчёт	[1-2]

		Самостоятельная рабо	Самостоятельная работа обучающихся			
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Трудоемкость (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
1	Подготовка к защите отчётов	Формулирование выводов по результатам работы. Работа с методическим материалом к каждой работе	В течение семестра	80	Собеседование	[1-2]
1	Подготовка к зачёту	Работа с лекционным материалом и учебной литературой	К концу семестра	2	Тест	[1-2]
Общий	объем самостоятельной работы по дисциплин	82	·			

4.3. Содержание учебного материала

<u>Раздел 1.</u> Аналоговые элементы информационно измерительной техники.

Полупроводниковый диод. Однополупериодный и мостовой выпрямители. Стабилитрон. Биполярный транзистор. Полевой транзистор. Интегратор. Дифференциатор напряжения. Гистерезисный компаратор.

<u>Раздел 2.</u> Цифровые элементы вычислительной и информационно-измерительной техники. Логические элементы. Шифратор и дешифратор. Мультиплексор. Сумматор. Цифровой компаратор. RS-,JK-, D-триггер. Регистр сдвига. Двоично-десятичный счётчик. АЛУ. ОЗУ.

Разд<u>ел 3.</u> Операционные усилители.

Основные параметры операционных усилителей: входное сопротивление, ток смещения, коэффициенты усиления и ослабления, полоса пропускания. Схемы включения операционных усилителей: фазовращатель, инвертирующий усилитель, сложение и вычитание аналоговых сигналов, генератор прямоугольных и треугольных импульсов, компаратор, триггер Шмидта, дифференциатор, интегратор, ждущий мультивибратор.

Перечень лекционных занятий

No	№ раздела и темы	Наименование	Трудое	Оценочные	Форми
Π/Π	дисциплины (модуля)	используемых	мкость	средства	руемые
		технологий	(часы)		компет
					енции
1	2	3	4	5	6
1.	Знакомство с			нет	ПК2
	возможностями	Вводная лекция	2		
	базовой станции NI				
	ELVIS II				
2.	Полупроводниковый		1	Приведены	ПК2
	диод			в п.11	
3.	Выпрямители	Информационная лекция	1	D 11.11	
4.	Транзисторы	с элементами лекции- визуализации	2		
5.	Интегратор и дифференциатор		2		
6.	Логические элементы	Вводная лекция	2		ПК2
7.	Шифратор и дешифратор		2		ПК2
8.	Цифровой компаратор	Информационная лекция	1		
9.	Триггеры	с элементами лекции-	2		
10.	АЛУ и ОЗУ	визуализации	1		
11.	Операционные усилители		2		

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№ п/п	№ раздела	Наименование семинаров, практических и лабораторных	Трудо	оемкость час.) Из них практическ	Оценочные средства	Формируе мые компетенц
1	2	1	раоот ая подготовка			ии
1	2	3	4	5	6	7
1.	Раздел 1	Полупроводниковый диод. Однополупериодный и мостовой выпрямители. Стабилитрон.	2	8	практ. и твор. задания, собес.	
2.	Раздел 1	Биполярный транзистор. Полевой транзистор.	4	4	практ. и твор. задания, собес.	
3.	Раздел 1	Интегратор. Дифференциатор напряжения. Гистерезисный компаратор.	2	8	практ. и твор. задания, собес.	
4.	Раздел 2	Логические элементы. Шифратор и дешифратор.	2	4	практ. и твор. задания, собес.	ПК-2.1
5.	Раздел 2	Мультиплексор. Сумматор. Цифровой компаратор. RS-,JK-, D-триггер. Регистр сдвига.	2	4	практ. и твор. задания, собес.	
6.	Раздел 2	Двоично-десятичный счётчик. АЛУ. ОЗУ.	4	4	практ. и твор. задания, собес.	
7.	Раздел 3	Основные параметры операционных усилителей	4	2	практ. и твор. задания, собес.	
8.	Раздел 3	Схемы включения операционных усилителей	3	2	практ. и твор. задания, собес.	

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

№ нед.	Тема	Вид самостоятельной работы	Задание	Рекомендуема я литература	Количес тво часов
1.	Все темы	- изучение теоретической части практических заданий; - оформление отчета; - подготовка к защите	- Оформить отчет по лаб.работе; - ответить на контрольные вопросы; - защитить работу преподавателю	Вся рекомендуема я литература	80
2.	Все темы	Подготовка к зачёту		Вся рекомендуема я литература	2

4.4. Методические указания по организации самостоятельной работы студентов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

Самостоятельная работа реализуется:

- 1) Непосредственно в процессе аудиторных занятий, при выполнении лабораторных работ.
- 2) В контакте с преподавателем вне рамок расписания на консультациях по учебным вопросам, в ходе творческих контактов, при ликвидации задолженностей, при выполнении индивидуальных заданий и т.д.
- 3) В библиотеке, дома, в общежитии, на кафедре при выполнении студентом учебных и творческих задач.

Границы между этими видами работ достаточно размыты, а сами виды самостоятельной работы пересекаются. Таким образом, самостоятельной работа студентов может быть как в аудитории, так и вне ее.

4.5. Примерная тематика курсовых работ (проектов) (при наличии)

Курсовые работы не предусмотрены.

V. Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) перечень литературы

основная литература

- 1. Черных, А.А. Цифровая обработка сигналов на основе платы Emona SIGEх [Электронный ресурс] / А. А. Черных, Ю. В. Ясюкевич, В. Л. Паперный. ЭВК. Иркутск: Изд-во ИГУ, 2014. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
- 2. Воробьёв, С. Н. Цифровая обработка сигналов [Электронный ресурс] : учеб. для студ. учрежд. высш. проф. образования по направл. подгот. 210700 "Инфокоммуникац. технологии и системы связи" / С. Н. Воробьёв. ЭВК. М. : Академия, 2013. Режим доступа: ЭЧЗ "Библиотех". 20 доступов. ISBN 978-5-7695-9560-8 : 779.98 р.

дополнительная литература

- 1. Оппенгейм, А. Цифровая обработка сигналов [Электронный ресурс] : издание 3-е, исправленное / А. Оппенгейм. Москва : Техносфера, 2012. 1048 с. Режим доступа: ЭБС "Айбукс". Неогранич. доступ. ISBN 978-5-94836-329-5 : Б. ц.
- 2. Умняшкин, С. В. Теоретические основы цифровой обработки и представления сигналов [Электронный ресурс] : учебное пособие / С. В. Умняшкин. Москва : Техносфера, 2012. 368 с. Режим доступа: ЭБС "Айбукс". Неогранич. доступ. ISBN 978-5-94836-318-9 : Б. ц.
- 3. Баскаков, С. И. Радиотехнические цепи и сигналы [Текст] : учеб. для студ. вузов / С. И. Баскаков. 5-е изд., стер. М. : Высш. шк., 2005. 462 с. : ил. ; 24 см. Библиогр.: с. 457-458. Предм. указ.: с. 459-462. ISBN 5-06-003843-2 : 293.00 р. (56 экз.)
- 4. Хоровиц, Пауль. Искусство схемотехники [Текст]: научное издание / П. Хоровиц, У. Хилл; пер. с англ. Б. Н. Бронина [и др.]. 7-е изд. М.: Бином, 2014. 704 с.: ил.; 24 см. Предм.-имен. указ.: с. 701-702. Пер. изд.: The art of electronics / Paul Horowitz, Winfield Hill. second edition. Cambridge(Ma). ISBN 978-5-9518-0351-1. (56 экз.)
- б) периодические издания

- нет.

в) список авторских методических разработок

- 1. Черных, А.А. Цифровая обработка сигналов на основе платы Emona SIGEx [Электронный ресурс] / А. А. Черных, Ю. В. Ясюкевич, В. Л. Паперный. ЭВК. Иркутск: Изд-во ИГУ, 2014. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
- 2. В системе образовательного портала ИГУ (http://educa.isu.ru/) размещены методические материалы и задания по данному курсу.
- г) базы данных, информационно-справочные и поисковые системы
 - 1) www.ni.com\russia
 - 2) http://www.labview.ru/
 - 3) http://library.isu.ru/ru
 - 4) ЭЧЗ «Библиотех» https://isu.bibliotech.ru/
 - 5) ЭБС «Лань» http://e.lanbook.com/
 - 6) ЭБС «Руконт» http://rucont.ru
 - 7) ЭБС «Айбукс» http://ibooks.ru

VI. Материально-техническое обеспечение дисциплины (модуля)

6.1. Учебно-лабораторное оборудование:

Практические занятия по данной дисциплине проводятся в специально подготовленном компьютеризированном классе, в котором на каждое рабочее место включает в себя компьютер (Intel Atom CPU D2500 и D2550 1.86x2GHz, мониторы Samsung S19B300N и S19C150N) с соответствующим лицензионным программным обеспечением, платформу NI ELVIS II и набор расширительных плат: Emona SIGEx (Emona Signal & Sistems ETT-311, 6 штук), Emona FOTEx (ETT-211, 3 шт), Emona DATEx (ETT-202, 2 шт), расширительные платы «15 ОПЫТОВ по ОУ» (960003-INT-OA Integrator Ltd, 4 шт), макетные платы NI ELVIS II SERIES Prototyping Board (6 штук).

Кроме того, на факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

Хранение и обслуживание лабораторного оборудования происходит в специальном помещении для хранения и профилактического обслуживания учебного оборудования.

Имеются списки заданий и методическое руководство в электронном и печатном виде, в том числе в авторском учебном пособии.

6.2. Программное обеспечение:

- 1) NI LabVIEW ^{ТМ} . Имеется соответствующая коммерческая лицензия. Версия программы автоматически обновляется через сеть Интернет.
- 2) NI ELVISmx Software for NI ELVIS II & NI myDAQ NI. National Instruments. версия периодически бесплатно автоматически обновляется с сайта производителя через сеть Интернет. Изначально прилагается вместе с драйверами к оборудованию NI ELVIS II & NI myDAQ (проприетарное программное обеспечение, не требующая заключения коммерческого договора)
- 3) Microsoft Word и Microsoft Excel 2007 (версия 12.0.4518.1014, номер продукта 89409-708-7331644-65664) в составе пакета MS Office. Лицензия на новые версии периодически обновляется Центром новых информационных технологий ИГУ по всему университету.
- 4) Microsoft Windows 7 Профессиональная SP1 (код продукта 00371-838-5610583-85989 и 55041-008-1638604-86979)
- 5) Браузер Google Chrome 58.0.3029.110 (проприетарное программное обеспечение, бессрочно).
- 6) Adobe Acrobat Reader (проприетарное программное обеспечение, автоматическое обновление, бессрочно).

- 7) Набор программ (виртуальных приборов) для 16 лабораторных работ с исходным кодом от производителя расширительной платы "Практикум по цифровым элементам вычислительной и информационно-измерительной техники" (МИРЭА, Кафедра ИС, бессрочно)
- 8) Набор программ (виртуальных приборов) для 16 лабораторных работ с исходным кодом от производителя расширительной платы "Практикум по аналоговым элементам вычислительной и информационно-измерительной техники" (МИРЭА, Кафедра ИС, бессрочно)
- 9) Набор программ (виртуальных приборов) Operational Amplifiers (RU) 1.1.16-1 для лабораторных работ с исходным кодом от производителя расширительной платы "15 ОПЫТОВ по ОУ" (№539135, бессрочно)

6.3. Технические и электронные средства:

Во время занятий (а также на лекциях) для пояснения поставленных в лабораторных работах заданий студентам демонстрируются на экране дополнительные и вспомогательные материалы (презентации, примеры типичных схем, типовые характеристики).

Для обработки полученных в ходе эксперимента данных на практических занятиях в лаборатории кафедры имеются компьютеры с соответствующим программным обеспечением.

VII. Образовательные технологии

Новые знания студенты получают самостоятельно из методических описаний. Практическим навыкам они обучаются при выполнении практических работ под руководством преподавателя. Студенты выполняют работы небольшими группами, обсуждая последовательность действий, и вместе анализируют полученные результаты.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

8.1.1. Оценочные средства для входного контроля

Для изучения данного курса обучающийся должен знать основы информатики, уметь пользоваться компьютером на продвинутом уровне, прослушать подробную технику безопасности при работе со сложным цифровым оборудованием.

8.1.2. Оценочные средства текущего контроля

Данная дисциплина обеспечивает главным образом формирование профессиональных компетенций (указаны выше) будущих магистров.

Примерные вопросы для текущего контроля:

- 1) Что такое ток насыщения диода?
- 2) Чему равен коэффициент пульсации однопериодного выпрямителя?
- 3) Как устроен ёмкостный фильтр?

- 4) Что такое стабисторы?
- 5) Как определить коэффициент стабилизации параметрического стабилизатора напряжения?
- 6) Чем отличаются конструкции тиристора и динистора?
- 7) Для каких целей служит тиристорный регулятор мощности?
- 8) Зависит ли дифференциальное входное сопротивление биполярного транзистора от тока эмиттера?
- 9) Какие вы знаете способы задания режима работы по постоянному току в транзисторном каскаде с общим эмиттером?
- 10) В чём отличие встроенного и индуцированного каналов ПТИЗ?
- 11) Что такое операционный усилитель?
- 12) За счёт чего повторитель напряжения может иметь большой коэффициент усиления по мошности?
- 13) Какие выходные напряжения могут формироваться на выходе компаратора?
- 14) Что такое логическая функция?
- 15) Что такое таблица истинности?
- 16) Какие логические функции выполняет шифратор?
- 17) Что понимают под унитарным кодом?
- 18) Как увеличить разрядность мультиплексора?
- 19) В чем основное отличие многоразрядных сумматоров параллельного и последовательного действий?
- 20) Какие входы и выходы имеются у микросхемы компаратора цифровых сигналов? Каково их назначение?
- 21) Что такое триггер? Почему триггеры называются устройствами последовательного типа?
- 22) Может ли Ј-триггер оказаться в запрещённом состоянии?
- 23) На основе каких цифровых устройств можно построить параллельный регистр?
- 24) Какой регистр называется реверсивным?
- 25) Что такое коэффициент пересчета счетчика?
- 26) Какие отличия в структуре имеют суммирующие и вычитающие счетчики?
- 27) Какое устройство называется арифметико-логическим?
- 28) Какое запоминающее устройство называется оперативным?
- 29) В каких пределах находятся значения входного сопротивления реальных операционных усилителей?
- 30) В какой зависимости находится значение фазового сдвига реальных ОУ от сопротивления и от частоты?
- 31) Как вычисляется частота формируемых треугольного и прямоугольного сигналов?
- 32) Как можно определить порог срабатывания триггера Шмидта?
- 33) Как влияет измерение сопротивление на выходной сигнал дифференцирующего усилителя?
- 34) Что такое переходный процесс?
- 35) Чем определяется постоянная времени цепи?
- 36) За счет чего ограничитель «исправляет» сигнал?
- 37) Что такое линейная система?
- 38) На чём основано выпрямление сигнала?
- 39) Что является автокорреляционной функцией белого шума?
- 40) Что такое спектр сигнала?
- 41) Что такое частота Найквиста?
- 42) Что такое кадр в системе ИКМ-кодирования?

Пример заданий к практическим занятиям:

1) При переходном процессе в дифференцирующей RC-цепочке экспоненциальное напряжение на выходе падает в два раза за 2 мс. Получите формулу для вычисления

- постоянной времени τ по времени 50%-го падения. Чему равна постоянная времени в данном случае.
- 2) Для 31-битной длины псевдослучайной двоичной последовательности (ПСДП) вычислите значение автокорреляционной функции (АК Φ) (для задержек на 0, 1, 2 и 3 бит).
- 3) Рассчитайте полосу пропускания интегрирующей RC-цепочки, установленной на плате SIGEх. Параметры схемы даны в приложении. Полосу пропускания определите как границу частот, для которой амплитуда уменьшается в √2 раз относительно максимальной.
- 4) Запишите математическое выражение, описывающее результат перемножения синусоидального сигнала и последовательности прямоугольных импульсов (т.е. формулу для амплитудно-модулированного сигнала с огибающей в виде прямоугольных импульсов). Рассчитайте его спектр.
- 5) Выведите формулу для разложения в ряд Фурье прямоугольного сигнала с двумя коэффициентами заполнения, отличными от 50% (например, 25 % и 1 %). Покажите, что огибающая спектра является функцией Sinc(t)=sin(t)/t. Определите частоту первого нуля этой огибающей и свяжите её соответствующим выражением с шириной импульса.

Примерный тест для текущего контроля по разделам 1 и 2 представлен в приложении (в фонде оценочных средств): Количество заданий $\underline{12}$, время тестирования $\underline{25}$ (все задания имеют четыре варианта ответа, из которых один или несколько правильных ответов)

8.1.3. Оценочные средства для промежуточной аттестации

Материалы для проведения текущего и промежуточного контроля знаний студентов:

No			Компетенции,
$\Pi \Pi$	Вид контроля	Контролируемые темы (разделы)	компоненты которых
11/11			контролируются
1.	Собеседование при	Все темы	ОПК-3
1.	защите отчета		Offic 5

Критерии оценок знаний итогового контроля магистров

Оценка степени сформированности компетенций будущего магистра основывается конкретностью и полнотой ответов магистранта при выполнении заданий и упражнений итогового контроля знаний. Дополнительные вопросы и их число определяется необходимостью объективной оценкой уровня освоения магистранта изучаемой дисциплины.

Зачет проводится в устной форме. В билете содержатся 2 теоретических вопроса. Оценка знаний осуществляется по четырехбалльной системе следующим образом:

Оценка "ЗАЧТЕНО" выставляется магистранту, который твердо знает программный материал, грамотно и по существу его излагает, не допуская существенных неточностей в ответах на вопросы, умело применяет теоретические положения при решении практических вопросов и заданий, владеет необходимыми навыками и приемами их выполнения.

Оценка "НЕ ЗАЧТЕНО " выставляется магистранту, который не может ответить на ключевые вопросы программного материала, допускает существенные ошибки, с большими затруднениями и ошибками выполняет практические задания.

Студент допускается к зачету после выполнения и защиты всех лабораторных работ, предусмотренных по дисциплине «Компьютерные технологии в физическом эксперименте». Примерный список вопросов к зачету

- Влияние измерительных приборов на результаты эксперимента.
- Современные системы комплексирования научного оборудования с компьютером.
- Согласование сопротивления.
- Коэффициент пульсации.
- Переходные процессы.
- Основные цифровые устройства.
- Аналоговая реализация цифровых элементов.
- Цифро-аналоговое преобразование.
- Аналого-цифровое преобразование.
- Физические ограничения и ошибки при ЦАП и АЦП.
- Теорема Найквиста.
- Двоичная логика. Реализация вычислений в цифровых устройствах.
- Основы работы АЛУ.
- Операционные усилители: основные параметры.
- Операционные усилители: применение.
- Переходный процесс.
- Корреляционная и автокорреляционная функция.
- Реализация систем измерения дальности с использованием корреляционной функций.
- Корреляционный прием.

Разработчики:

доцент, к.ф.-м.н. А.А., Черных (подпись) (занимаемая должность) (инициалы, фамилия)

профессор, д.ф.-м.н. Ю.В., Ясюкевич (инициалы, фамилия)

Программа рассмотрена на заседании кафедры общей и экспериментальной физики

Протокол № 5 от 21. 02.2025 г.

Зав. Кафедрой Лаврилюк А.А.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.