

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Кафедра Физики

УТВЕРЖДАЮ

Директор ПИ ИГУ А.В. Семиров

"21" мая 2020 г.

Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): Б1.В.05 Электроника и схемотехника

Направление подготовки: 44.03.04 Профессиональное обучение (по отраслям)

Направленность (профиль) подготовки: Автоматика и компьютерная инженерия

Квалификация (степень) выпускника: Бакалавр

Форма обучения: очная

Согласована с УМС ПИ ИГУ

Рекомендовано кафедрой:

Протокол № $\underline{4}$ от « $\underline{29}$ » апреля 2020 г.

Протокол № 7

Прадословани М.С. По-

От « <u>27</u> » <u>апреля</u> 2020 г.

С. Павлова Зав. кафедрой _

А.В.Семиров

Содержание

	стр
1. Цели и задачи дисциплины (модуля)	3
2. Место дисциплины (модуля) в структуре ОПОП.	3
3. Требования к результатам освоения дисциплины (модуля)	3
4. Содержание и структура дисциплины дисциплины (модуля)	4
5. Учебно-методическое и информационное обеспечение дисциплины (модуля)	9
6. Материально-техническое обеспечение дисциплины	11
7. Образовательные технологии	11
8. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации	12

І. Цели и задачи дисциплины (модуля):

Целью освоения дисциплины Электроника и схемотехника является изучение теоретических основ функционирования, а также основ схемотехнической реализации аналоговых и цифровых электронных приборов и устройств, находящих свое применение в различных областях науки и техники в том числе устройствах автоматики.

Задачи дисциплины:

- сформировать представления об электронных приборах и устройствах их функционировании, теоретическом описании и схемотехнической реализации;
- познакомить с характеристиками и параметрами электронных приборов и устройств и методами их определения;
- сформировать практические навыки по анализу цепей электронных устройств по принципиальным схемам.

II. Место дисциплины в структуре ОПОП:

- 2.1 Дисциплина *Б1.В.05* «Электроника и схемотехника» относится к дисциплинам части, формируемой участниками образовательных отношений.
- 2.2 Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: Физика, Электротехника.
- 2.3 Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: Компьютерное моделирование электронных цепей, Цифровая обработка сигналов, Автоматика и микропроцессорная техника, Системы передачи информации.

III. Требования к результатам освоения дисциплины (модуля):

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы	Результаты обучения
ПК-1. Способен	ИДК ПК-1.1	Базовый уровень. В результате освоения
осуществлять	Разрабатывает	дисциплины студент должен
преподавание по	программно-	знать: обозначение, устройство,
программам	методического	принципы функционирования, основные
учебных	обеспечения учебных	характеристики и параметры
предметов, курсов,	предметов, курсов,	электронных приборов и созданных на
дисциплин	дисциплин (модулей)	их основе устройств со
(модулей),	программ	схемотехническими особенностями для
соответствующих	профессионального	разработки программно-методического
направленности	обучения, СПО и(или)	обеспечения учебных предметов и
(профилю)	ДПП	программ проф. обучения СПО и ДПП.
		уметь: анализировать принципиальные
		схемы электронных устройств для
		разработки программно-методического
		обеспечения учебных предметов.
		владеть: навыками экспериментального
		определения характеристик и
		параметров электронных приборов и
		устройств для разработки программно-
		методического обеспечения учебных

		предметов.
ПК-2	ИДК ПК-2.1	Базовый уровень. В результате освоения
Способен	Демонстрирует	дисциплины студент должен
осуществлять	владение	знать: обозначение, устройство,
учебно-	содержанием,	принципы функционирования, основные
производственный	методами и	характеристики и параметры
процесс,	инструментарием	электронных приборов и созданных на
соответствующий	преподаваемой	их основе устройств со
области	предметной области	схемотехническими особенностями.
профессиональной		уметь: анализировать принципиальные
деятельности,		схемы электронных устройств.
осваиваемой		владеть: навыками экспериментального
обучающимися		определения характеристик и
		параметров электронных приборов и
		устройств.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ 4.1 Объем дисциплины (модуля) и виды учебной работы (разделяется по формам обучения)

Вид учебной работы	Всего часов / зачетных	Семестры		
	единиц Очн/заочн	4	5	
Аудиторные занятия (всего)	128	80	48	
Лекции	56	40	16	
Лабораторные работы (ЛР)	72	40	32	
Самостоятельная работа (всего)*	88	64	24	
Вид промежуточной аттестации (зачёт 4, зачет с оценкой 5)	-	зачёт	зачет с оценкой	
Контактная работа (всего)**	137	86	51	
Общая трудоемкость часы	216	144	72	
зачетные единицы	6	4	2	

4.2. Содержание учебного материала дисциплины (модуля)

4.2. Содержание учебного матери	· • • • • • • • • • • • • • • • • • • •
Наименование разделов	Содержание
Разпан Т	1. Электронные приборы (20 ч)
Тема 1. Введение в электронику	Электроника и схемотехника их взаимосвязь и круг
и схемотехнику (2 ч).	решаемых вопросов. Электронные приборы, как
и сасмотехнику (2 ч).	элементная база электроники. Классификация
	1 1
Тема 2. Электровакуумные	электронных приборов. Физические основы функционирования
приборы (2 ч).	Физические основы функционирования электровакуумных приборов. Электровакуумный
приооры (2 ч).	диод и триод, принципы работы, характеристики и
	параметры. Типовые схемы включения.
Тема 3. Ионные приборы (2 ч).	
1 ема 3. Ионные приооры (2 ч).	Физические основы функционирования ионных приборов. Виды разрядов в газе. Тиратроны, виды,
	принципы работы, характеристики и параметры.
Тема 4. Физика	Типовые схемы включения.
	Физические основы функционирования
полупроводниковых приборов (2	полупроводниковых приборов. Зонная теория
ч).	полупроводников. Собственная и примесная
	проводимость полупроводников. Контактные
	явления в полупроводниках, виды контактов. p-n
Тома 5 Помужного мууучагуу	переход и его свойства.
Тема 5. Полупроводниковые	Определение, виды диодов, условное графическое
диоды (2 ч)	обозначение. Выпрямительный и универсальный
	диод, стабилитрон, стабистор, варикап, фотодиод,
	туннельный диод, другие виды диодов. Устройство,
Torse (Transcomers (2 vs)	основные характеристики и параметры, применение.
Тема 6. Тиристоры (2 ч)	Определение, виды тиристоров. Динисторы,
	тринисторы, симисторы, запираемые тиристоры.
	Устройство, обозначение, принципы работы,
Torra 7 Hawanya mayayamanya (2	типовые схемы включения.
Тема 7. Полевые транзисторы (2	Определение, классификация. Полевой транзистор с
ч)	управляющим р-п переходом, МДП (МОП) типа с
	изолированным затвором. Устройство, обозначения,
	принципы работы, характеристики и параметры,
	особенности применения. Транзисторы с плавающим
Томо & Енцондругуо	затвором для энергонезависимой памяти.
Тема 8. Биполярные транзисторы (4 ч)	Определение, обозначение, устройство, конструктивные особенности. Принципы работы,
транзисторы (4 ч)	основные характеристики и параметры, особенности
	1 1 1
	применения. Режимы работы биполярных
	транзисторов. Простейшие устройства автоматики на
Томо 0 Интаррамичи	биполярных транзисторах.
Тема 9. Интегральные микросхемы (2 ч)	Определение, классификация. Полупроводниковые и гибридные микросхемы, микросборки. Изготовление
микрослемы (2 ч)	интегральных микросхемы, микросоорки. изготовление интегральных микросхем.
Разпан 2 Аман	
Тема 1. Схемы включения	оговые электронные устройства (20 ч)
	Основные схемы включения биполярных и полевых транзисторов. Особенности каждой схемы,
транзисторов (2 ч)	± ±
Тема 2. Источники питания	применение в электронных устройствах. Выпрямители и стабилизаторы. Источники
	1
электронной аппаратуры (2 ч)	стабильного тока и напряжения.

Tare 2 Drawmayyyya yayyyyayy	Ourseyeves System average various dynamics			
Тема 3. Электронные усилители	Определение, блок схема, классификация.			
(6 ч)	Характеристики и параметры усилителей.			
	Однокаскадный усилитель на биполярном			
	транзисторе. Схема, назначение элементов,			
	принципы работы. Типовые усилительные схемы.			
Тема 4. Обратные связи в	Определение, классификация, применение. Влияние			
усилителях (4 ч)	обратных связей на параметры усилителей.			
	Применение отрицательных обратных связей для			
	стабилизации режимов работы усилительных			
	каскадов.			
Тема 5. Операционные	Определение, устройство, принципы работы,			
усилители (2 ч)	основные характеристики. Операционные схемы.			
Тема 6. Электронные генераторы	Определение, классификация, структурная схема.			
(4 ч)	Условия функционирования генераторов, баланс			
	амплитуд и баланс фаз. Генераторы гармонических и			
	негармонических сигналов. Автогенераторы и			
	ждущие генераторы. Схемы генераторов на			
	биполярных транзисторах и операционных			
	усилителях.			
Раздел З. Пифро	овые электронные устройства (16 ч)			
Тема 1. Введение в цифровую	Представление информации в цифровом виде.			
электронику (4 ч).	Преимущества цифровых устройств по сравнению с			
электропику (+ 1).	аналоговыми. Структурная схема цифровых			
	устройств для обработки информации. Элементная			
	база цифровых устройств. Классификация цифровых			
	интегральных микросхем.			
Тема 2. Комбинационные				
*	Комбинационные микросхемы и их применение			
цифровые устройства (4 ч).	(логические элементы, шифраторы/дешифраторы,			
	преобразователи кодов). Схемотехника			
	комбинационных микросхем. Комбинационные			
	устройства. Цифровые автоматы. Анализ и синтез			
	цифровых автоматов.			
Тема 3. Последовательностные	Последовательностные микросхемы и их применение			
цифровые устройства (4 ч).	(триггеры, счетчики, регистры).			
	Последовательностные устройства.			
Тема 4. Цифровые	Виды цифровых запоминающих устройств. Внешняя			
запоминающие устройства (2 ч)	и внутренняя память. Общая структура и принципы			
	работы цифровых твердотельных запоминающих			
	устройств.			
Тема 5. Микропроцессорные и	Общие сведения о микропроцессорах и			
микроконтроллерные устройства	микроконтроллерах. Структура, состав и назначение			
(2 ч).	микропроцессоров и микроконтроллеров. Этапы			
	работы микропроцессора. Отличие			
	микроконтроллеров от микропроцессоров.			

4.3. Разделы и темы дисциплин (модулей) и виды занятий

№		Наименование		Виды	занятиі	і в часах	K
11/11	п/п раздела темы	ICIVIDI	Лекц.	Практ.	Лаб. зан.	CPC	Всего
1	Раздел 1.	Тема 1. Введение в	2		2	5	9

	Электронные	электронику и					
	приборы	схемотехнику.					
2		Тема 2.	2		2	3	7
		Электровакуумные					
		приборы.					
3		Тема 3. Ионные	2		2	3	7
		приборы.					
4		Тема 4. Физика	2		2	3	7
		полупроводниковых					
		приборов.					
5		Тема 5.	2		2	3	7
		Полупроводниковые					
		диоды.					
6		Тема 6. Тиристоры	2		2	3	7
7		Тема 7. Полевые	2		2	3	7
		транзисторы					
8		Тема 8. Биполярные	4		4	6	14
		транзисторы					
9		Тема 9.	2		2	3	7
		Интегральные					
		микросхемы					
10	Раздел 2.	Тема 1. Схемы	2		2	3	7
	Аналоговые	включения					
	электронные	транзисторов					
11	устройства	Тема 2. Источники	2		2	3	7
		питания					
		электронной					
		аппаратуры					
12		Тема 3.	6		6	9	21
		Электронные					
		усилители					
13		Тема 4. Обратные	4		4	6	14
		связи в усилителях.					
14		Тема 5.	2		2	3	7
		Операционные					
<u></u>		усилители.					
15		Тема 6.	4		4	8	16
		Электронные					
1.0	D 2	генераторы.	A		- 0		10
16	Раздел 3.	Тема 1. Введение в	4		8	6	18
	Цифровые	цифровую					
17	электронные	электронику.	A		0		10
17	устройства	Тема 2.	4		8	6	18
		Комбинационные					
		цифровые					
10		устройства.	<i>A</i>		0	-	10
18		Тема 3.	4		8	6	18
		Последовательностн					
		ые цифровые					
19	-	устройства.	2		4	3	9
19		Тема 4. Цифровые	2		4	3	9
		запоминающие					

	устройства				
20	Тема 5.	2	4	3	9
	Микропроцессорны				
	еи				
	микроконтроллерны				
	е устройства.				

Перечень практических занятий и лабораторных работ

Наименование	Содержание	Формы				
разделов	разделов					
и тем						
	Раздел 1. Электронные приборы (20 ч)					
Тема 1. Введение в	ЛЗ. Техника безопасности при выполнении	Инструктаж				
электронику и	лабораторных работ, знакомство с оборудованием					
схемотехнику (2 ч).	(2 ч).					
Тема 2.	ЛР №1. Исследование электровакуумного триода	Лабораторная				
Электровакуумные	(2 ч)	работа				
приборы (2 ч).						
Тема 3. Ионные	ЛР №2. Исследование тиратрона (2 ч)	Лабораторная				
приборы (2 ч).		работа				
Тема 4. Физика	ЛР №3. Исследование свойств р-п перехода (2 ч)	Лабораторная				
полупроводниковых		работа				
приборов (2 ч).						
Тема 5.	ЛР №4. Исследование полупроводниковых	Лабораторная				
Полупроводниковые	диодов (2 ч)	работа				
диоды (2 ч)						
Тема 6. Тиристоры (2	ЛР №4. Исследование тиристора (2 ч)	Лабораторная				
ч)		работа				
Тема 7. Полевые	ЛР №5. Исследование полевого транзистора (2 ч)	Лабораторная				
транзисторы (2 ч)		работа				
Тема 8. Биполярные	ЛР №6. Исследование биполярного транзистора (2	Лабораторная				
транзисторы (4 ч)	ч)	работа				
	ЛР №7. Транзистор в практических схемах (2 ч)					
Тема 9. Интегральные	ЛР №8. Исследование интегральных микросхем	Лабораторная				
микросхемы (2 ч)	(2 ч)	работа				
	1 2. Аналоговые электронные устройства (20 ч)					
Тема 1. Схемы	ЛР №1 Исследование схем включения	Лабораторная				
включения	биполярных транзисторов (2 ч)	работа				
транзисторов (2 ч)						
Тема 2. Источники	ЛР №2 Исследование схем выпрямления	Лабораторная				
питания электронной	переменного тока (2 ч)	работа				
аппаратуры (2 ч)						
Тема 3. Электронные	ЛР №2 Исследование схем стабилизаторов	Лабораторные				
усилители (6 ч)	напряжения (2 ч)	работы.				
	ЛР №3 Исследование схем стабилизаторов тока (2					
	(Y)					
	ЛР №4 Исследование однокаскадного усилителя					
	(2 ч)					
Тема 4. Обратные	ЛР №5 Исследование выходных усилительных	Лабораторная				
связи в усилителях (4	каскадов (2 ч)	работа.				
ч)	ЛР №6 Исследование схем температурной					

	стабилизации усилителей (2 ч)	
Тема 5.	ЛР №7 Исследование операционных усилителей	Лабораторная
Операционные	(2 ч)	работа.
усилители (2 ч)		
Тема 6. Электронные	ЛР №8 Исследование LC автогенератора (2 ч)	Лабораторная
генераторы (4 ч)	ЛР №9 Исследование мультивибратора (2 ч)	работа.
Разде	л 3. Цифровые электронные устройства (32 ч)	
Тема 1. Введение в	ЛЗ Вводное занятие (2 ч)	Лабораторные
цифровую	ЛР №1. Изучение схемотехнической реализации	работы.
электронику (4 ч).	цифровых микросхем (6 ч)	
Тема 2.	ЛР №2. Изучение комбинационных микросхем (2	Лабораторные
Комбинационные	ч)	работы.
цифровые устройства	ЛР №3. Изучение устройств на комбинационных	
(4 ч).	микросхемах (6 ч)	
Тема 3.	ЛР №4. Изучение последовательностных	Лабораторные
Последовательностные	микросхем (2 ч)	работы.
цифровые устройства	ЛР №5. Изучение устройств на	
(4 ч).	последовательностных микросхемах (6 ч)	
Тема 4. Цифровые	ЛР №6. Изучение функционирования цифровых	Лабораторная
запоминающие	запоминающих устройств (4 ч)	работа.
устройства (2 ч)		
Тема 5.	ЛР №7. Изучение функционирования	Лабораторная
Микропроцессорные и	микропроцессора (4 ч)	работа.
микроконтроллерные		
устройства (2 ч).		

^{*} ЛЗ – лабораторное занятие; ПрЗ – практическое занятие; Отч. – отчеты по лабораторным работам;

4.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов заключается в изучении теоретического материала дисциплины, в том числе предлагаемого для самостоятельного изучения, предварительной подготовке к выполнению лабораторных работ и написанию отчётов по лабораторным работам. В процессе самостоятельной работы студенты могут пользоваться материалами лекций и лабораторных работ, размещенными в электронной образовательной среде ИГУ (educa.isu.ru \rightarrow Педагогический институт \rightarrow Отделение физико-математического, естественно-научного и технологического образования \rightarrow Электроника и схемотехника), а также основной и дополнительной литературой, указанной в разделе V настоящей программы.

V. Учебно-методическое и информационное обеспечение дисциплины (модуля)

- а) основная литература:
- 1. Старосельский В.И. Физика полупроводниковых приборов микроэлектроники [Электронный ресурс]: уч. пособие/ В.И. Старосельский М.: Юрайт, 2011. 464 с. Режим доступа: ЭЧЗ «Библиотех».
- 2. Щука А.А. Наноэлектроника [Электронный ресурс]: уч. пособие/ А.С. Сегов. М.: Бином, 2012. 349 с. Режим доступа: ЭЧЗ «БиблиоТех»
- 3. Опадчий Ю.Ф. Аналоговая и цифровая электроника: полный курс: Учеб. для студ. вузов, обуч. по спец. "Проектирование и технология радиоэлектронных средств" / Ю. Ф. Опадчий, О. П. Глудкин, А. И. Гуров; Под ред. О. П. Глудкина. М.: Горячая линия-Телеком, 2005. 768 с. (11 Экз).
- 4. Лаврентьев Б.Ф. Схемотехника электронных средств [Электронный ресурс]. 2010. –

- Режим доступа: ЭБС «Академия»
- 5. Новожилов О.П. Электроника и схемотехника в 2-х томах. T1./Учебник для академического бакалавриата. М.: Юрайт, 2015.(5 экз.)
 - б) дополнительная литература:
- 1. Сиренький И.В. Электронная техника/ И. В. Сиренький, В. В. Рябинин, С. Н. Голощапов. СПб.: Питер. 2006. (5 Экз)
- 2. Лебедев А.И. Физика полупроводниковых приборов [Электронный ресурс]: уч. пособие/ А.И. Лебедев. М.: ФИЗМАТЛИТ, 2008. 488 с. Режим доступа: ЭБС «РУКОНТ».
- 3. Лозовский В.Н. Нанотехнологии в электронике. Введение в специальность: уч. пособие/ В. Н. Лозовский, Г. С. Константинова, С. В. Лозовский. СПб.: Лань, 2008. 336 с. (5 Экз)
- 4. Лачин В.И. Электроника: уч. пособие/ В.И. Лачин, Н.С. Савелов. Ростов н/Д: Феникс, 2001. 448 с. (13 экз.)
- 5. Бурбаева Н.В. Основы полупроводниковой электроники [Текст]: научное издание / Н. В. Бурбаева, Т. С. Днепровская. М.: Физматлит, 2012. 310 с.: ил.; 22 см. Библиогр.: с. 309-310. (1 экз).
- 6. Белоусов А.И. Основы схемотехники микроэлектронных устройств. М.: Техносфера, 2012 (1 экз.)
- 7. Хоровиц П. Искусство схемотехники: научное издание / П. Хоровиц, У. Хилл; пер. с англ. Б. Н. Бронина [и др.]. 7-е изд. М. : Бином, 2014. 704 с. (5 экз.)
- 8. Кучумов А.И. Электроника и схемотехника: уч. пособие. М.: Гелиос, APB, 2011 (1 экз.)
- 9. Новиков Ю.В. Введение в цифровую схемотехнику: уч. пособие. М.: Интернет Университет информ. технологий: Бином, 2007 (1 экз.)
- 10. Пухальский Г.И. Проектирование цифровых устройств: уч. пособие/ Г.И. Пухальский. СПб: Лань, 2012. 896 с. (1 экз.)
- 11. Сиренький И.В. Электронная техника: учебное пособие/ И.В. Сиренький, В.В. Рябинин, С.Н. Голощапов. СПб.: Питер, 2006. 414 с. (5 экз.)
- 12. Павлов В.Н. Схемотехника аналоговых электронных устройств: учеб. для студ. вузов, обуч. по напр. "Радиотехника", "Электроника и микроэлектроника" / В.Н. Павлов, В.Н. Ногин. 3-е изд. М.: Горячая линия-Телеком, 2005. 320 с. (2 экз)
 - в) периодические издания
 - г) список авторских методических разработок:
- 1. Кудрявцев В.О. Анашко А.А. Основы твердотельной и вакуумной электроники. Лабораторный практикум: учебное пособие Иркутск: ПИ ИГУ, 2015. 65 с. (13 Экз)
- 2. Лекции и лабораторные работы по дисциплине на портале Educa.isu.ru
 - д) базы данных, информационно-справочные и поисковые системы
 - 1. Окно доступа к образовательным ресурсам. Edu.Ru Раздел «Электроника и радиотехника» http://window.edu.ru/library?p_rubr=2.2.75.26
 - 2. Обучающие видеоролики компании Chip-Dip. http://www.chipdip.ru/video.aspx
 - 3. ЭЧЗ «Библиотех». https://isu.bibliotech.ru/
 - 4. ЭБС «Академия». http://www.academia-moscow.ru/
 - 5. ЭБС «Руконт» http://rucont.ru

VI. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ 6.1 Помещение и оборудование

Помещения — учебные аудитории для проведения учебных занятий, предусмотренных учебным планом ОПОП ВО бакалавриата, оснащены оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ФГБОУ ВО «ИГУ».

Аудиовизуальные средства:

- 1. Мультимедиа-проектор
- 2. Ноутбук

Лабораторное и демонстрационное оборудование:

- 1. Комплекты типового лабораторного оборудования «Теоретические основы электротехники» ТОЭ1 С- К (компьютеризированная версия на базе ПК).
- 2. Комплект лабораторных работ и лабораторно измерительных комплексов (включающие персональные ЭВМ), позволяющие проводить работы с группой студентов до 12 15 студентов.

6.2 Лицензионное и программное обеспечение

1. «ВП ТОЭ» (Учебная техника, г. Челябинск, в составе стенда ТОЭ1 – С- К.) – лицензионное программное обеспечение для стендов ТОЭ1 – С- К.

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В образовательном процессе используются активные и интерактивные формы проведения занятий, развивающие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств и формирующие компетенции.

№ п/п	Виды учебной работы	Образовательные технологии
1.	Лекция	Вводная лекция, информация лекция, лекция с элементами дискуссии, интерактивная лекция (лекция диалог), лекция визуализация, информационная лекция с элементами обратной связи, проблемная лекция.
2.	Лабораторное занятие	Занятие — практикум с использованием автоматизированного учебного и лабораторного эксперимента. Занятие — практикум с элементами дискуссии, диагностики и проектирования; диагностический семинар.
3.	Консультация	Внеаудиторные групповые и индивидуальные занятия-консультации

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1. Оценочные средства для проведения текущего контроля успеваемости Исследование свойств вакуумного диода и триода.

- 1. Из каких конструктивных элементов состоит вакуумный диод и триод?
- 2. Чем руководствуются при выборе материалов для изготовления электронных ламп?
 - 3. В чем заключаются достоинства и недостатки электронных ламп?
 - 4. Назовите основные характеристики и параметры диода и триода.
 - 5. Каким образом осуществляется регулирование тока в триоде?
 - 6. В чем заключаются особенности расчетов цепей с электронными лампами? Исследование свойств тиратрона.
 - 1. Поясните устройство и принципы работы тиратрона?
 - 2. Назовите основные характеристики и параметры тиратронов?
 - 3. Назовите современные сферы применения тиратронов?
 - 4. В чем заключаются преимущества и недостатки тиратронов?
 - 5. Назовите особенности практического использования ионных приборов?

Исследование полупроводникового диода.

- 1. Какова природа электропроводности полупроводников?
- 2. Каким образом создается примесная электронная или дырочная электропроводность?
 - 3. На чем основан принцип работы полупроводникового диода?
- 4. В чем причина сильной зависимости обратной ветви вольтамперной характеристики полупроводникового диода от температуры?

Исследование биполярного транзистора.

- 1. Опишите устройство биполярного транзистора.
- 2. Назовите конструктивные особенности биполярного транзистора.
- 3. Какие основные отличия вы можете назвать в принципах работы биполярного и полевого транзистора?
 - 4. Приведите пример входных и выходных характеристик биполярного транзистора.
- 5. Какие параметры биполярного транзистора определяются по входным и выходным характеристикам?
- 6. В чем заключаются особенности практического использования биполярного транзистора.

Исследование схем включения биполярных транзисторов

- 1. Назовите основные схемы включения биполярного транзистора.
- 2. Каковы основные параметры схем включения биполярных транзисторов?
- 3. Как схемотехнически реализуются схемы включения биполярного транзистора при усилении переменного сигнала.
- 4. Назовите особенности применения различных схем включения биполярных транзисторов.

Исследование источников стабильного тока

- 1. Что такое источник стабильного тока и чем он отличается от идеального источника тока?
- 2. На каких свойствах полупроводниковых приборов основано функционирование источников стабильного тока?
 - 3. Приведите типовые схемы источников стабильного тока.

Исследование источников стабильного напряжения

1. Что такое источник стабильного напряжения и чем он отличается от идеального источника напряжения?

- 2. Какие электронные приборы используются для реализации источников стабильного напряжения?
 - 3. Приведите типовые схемы источников стабильного напряжения.

Исследование типовых операционных схем

- 1. Что такое операционный усилитель?
- 2. Каковы свойства операционного усилителя?
- 3. Приведите примеры типовых схем включения операционных усилителей?
- 4. С какой целью в операционных схемах используется глубокая отрицательная обратная связь?

Исследование компаратора

- 1. Что такое компаратор?
- 2. Где применяются компараторы?
- 3. В чем отличие компаратора от операционного усилителя?

Исследование логических элементов диодно-транзисторной логики

- 1. Дайте определение логическим элементам.
- 2. Что такое диодно-транзисторная логика?
- 3. В чем заключается особенность использования логических элементов диоднотранзисторной логики?

Исследование схем генераторов на логических элементах

- 1. Приведите примеры схем генераторов на логически элементах.
- 2. Какими элементами схемы задаются основные параметры генераторов (частота, скважность)?
 - 3. Приведите примеры использования генераторов на логических элементах.

Исследование схем формирования импульсов

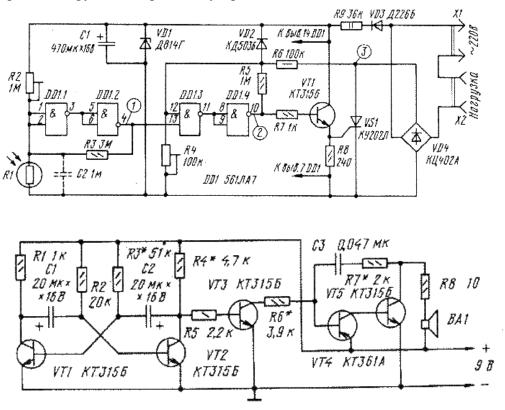
- 1. Где используются схемы формирования импульсов?
- 2. Приведите примеры схем формирования импульсов.

Исследование схем устранения дребезга контактов

- 1. Что такое дребезг контактов?
- 2. Приведите примеры схем устранения дребезга контактов.
- 3. Что случится если не использовать схему устранения дребезга в комбинационных и последовательностных устройствах?

8.2. Оценочные средства для промежуточной аттестации (в форме экзамена или зачета).

Примерный перечень вопросов к зачету


- 1. Электронные приборы: определение и классификация. Требования к электронным приборам.
- 2. Электронные лампы: определение, классификация, особенности и перспективы применения.
- 3. Электровакуумный триод: устройство, принцип работы, характеристики и параметры.
- 4. Тиратроны: устройство, принципы работы, характеристики, параметры, особенности применения.
- 5. Зонная теория полупроводников. Образование p-n перехода, его основные свойства, примеры использования в полупроводниковых приборах.
- 6. Полупроводниковые диоды: определение, устройство, классификация.
- 7. Выпрямительный диод: устройство, принципы работы, основные характеристики и параметры.

- 8. Стабилитрон и стабистор: устройство, принципы работы, основные характеристики и параметры.
- 9. Варикап: устройство, принципы работы, основные характеристики и параметры.
- 10. Динисторы: устройство, принципы работы, основные характеристики и параметры.
- 11. Тринисторы и симмисторы: устройство, принципы работы, основные характеристики и параметры.
- 12. Полевые транзисторы: определение, классификация, особенности и перспективы использования.
- 13. Полевой транзистор с управляющим p-n переходом: устройство, принципы работы, основные характеристики и параметры.
- 14. Полевой МДП-транзистор со встроенным каналом: устройство, принципы работы, основные характеристики и параметры.
- 15. Полевой МДП-транзистор с индуцированным каналом: устройство, принципы работы, основные характеристики и параметры.
- 16. Полевой транзистор с индуцированным каналом: устройство, принципы работы, применение.
- 17. Биполярный транзистор: устройство, конструктивные особенности, принципы работы, основные характеристики и параметры.
- 18. Устройства автоматики на биполярном транзисторе. Фотоэлектронный ключ. Реле времени. Регулятор напряжения.
- 19. Микросхемы: определение, классификация. Технология производства полупроводниковых микросхем.
- 20. Схемы включения биполярных транзисторов. Параметры схем включения.
- 21. Выпрямительные схемы. Однополупериодные и двухполупериодные схемы.
- 22. Стабилизаторы напряжения и тока. Схемы, принципы работы.
- 23. Электронные усилители. Определение, классификация.
- 24. Однокаскадный усилитель на биполярном транзисторе.
- 25. Характеристики и параметры усилителей.
- 26. Обратные связи в усилителях. Определение, классификация.
- 27. Влияние обратных связей на коэффициент усиления усилителей и нестабильность параметров усилителей.
- 28. Реализация обратных связей для стабилизации рабочей точки усилителя. Эмиттерная и коллекторная стабилизация. Схемы, принципы работы.
- 29. Операционные усилители. Определение, обозначение, приципы работы, характеристики.
- 30. Операционные схемы. Инвертирующий и неинвертирующий усилитель.
- 31. Генераторы электрических сигналов. Определение, классификация.
- 32. Блок-схема автогенератора. Назначение элементов, принципы работы.
- 33. Условия функционирования генераторов. Баланс амплитуд, баланс фаз.
- 34. Мультивибраторы. Определение, основные схемы, применение.
- 35. Цифровой и аналоговый способ представления информации. Преимущества цифрового способа.
- 36. Цифровые микросхемы: определение, классификация, примеры.
- 37. Классификация цифровых интегральных микросхем. Схемотехническая реализация. Виды логик (ДТЛ, ТТЛ, КМОП, ИСЛ, $И^2$ Л)
- 38. Комбинационные цифровые устройства. Определение, элементная база, особенности функционирования.
- 39. Логические элементы, шифраторы/дешифраторы, преобразователи кодов, мультиплексоры/демультиплексоры.
- 40. Последовательностные цифровые устройства. Определение, элементная база, особенности функционирования.
- 41. Триггеры (RS, D, T, JK). Определение, классификация, принципы работы.

- 42. Счетчики. Определение, классификация, принципы работы.
- 43. Регистры. Определение, назначение, принципы работы.
- 44. Полупроводниковые запоминающие устройства. Виды, принципы работы.
- 45. Микропроцессоры и микроконтроллеры. Определение, назначение, особенности применения.

Примеры практических заданий для зачета

Проанализируйте схему устройства. Найдите в схеме типовые схемотехнические узлы. Опишите принципы функционирования устройства.

Документ составлен в соответствии с требованиями ФГОС по направлению 44.03.04 «Профессиональное обучение (по отраслям)» утвержденного приказом Минобрнауки РФ №124 от 22.02.2018 г.

Автор программы: Кудрявцев I

Кудрявцев В.О., доцент кафедры Физики ПИ ИГУ

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.