

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ИГУ»)

Институт математики и информационных технологий Кафедра информационных технологий

Рабочая программа дисциплины (модуля)

Б1.В.03 Проектирование информационных систем на основе семантических технологий

Направление подготовки 01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки Семантические технологии и многоагентные

системы

Квалификация выпускника магистр

Форма обучения очная

2 АННОТАЦИЯ ДИСЦИПЛИНЫ

«ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ НА ОСНОВЕ СЕМАНТИЧЕСКИХ ТЕХНОЛОГИЙ»

Дисциплина ориентирована на изучение методов, моделей и инструментов проектирования информационных систем на основе семантических технологий.

Содержание дисциплины включает в себя изучение: подхода к проектированию и разработке информационных систем на основе онтологий; методов и инструментов построения онтологий; методов наполнения данными графов знаний, способов их хранения и обращения к ним с использованием языков запросов; методов реализации бизнес-логики на основе графов знаний.

Лабораторный практикум ориентирован на освоение элементов методов проектирования и разработки информационных систем с использованием подходящего инструментария, начиная с построения онтологии предметной области и заканчивая ее использованием для решений бизнес-задач.

SUBJECT SUMMARY

«SEMANTIC-BASED INFORMATION SYSTEM DESIGN»

The discipline is about studying methods, models, and instruments for the design and development of semantic-based information systems.

The discipline includes studying ontology-based and ontology-driven information system design and development; methods of knowledge graph filling, storing, and querying; methods of business-logic implementation based on knowledge graphs.

Laboratory works are focused on the mastering of diverse elements of instrumentaided information system design and development starting from a domain ontology creation up to implementation of business logic using this ontology and appropriate knowledge graphs.

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Цели и задачи дисциплины

- 1. Целями дисциплины являются получение знаний, формирование умений и навыков исследования и разработки архитектуры систем искусственного интеллекта для различных предметных областей, включая знания и умения выбирать и применять комплексы методов и инструментальных средств инженерии знаний, знания и умения разрабатывать и проводить экспериментальные проверки работоспособности программных компонент полученной системы.
- 2. Задачами дисциплины являются получение знаний о моделях, методах и инструментах проектирования и разработки архитектуры информационной системы на основе семантических технологий с учетом передового опыта в данной области; приобретение способностей анализа практических проблем в области проектирования и разработки информационных систем; способностей сравнения и выбора альтернативных методов их решения; приобретение навыков построения и оценки отдельных компонент информационных систем на основе семантических технологий.
- 3. Знание методологических подходов и инструментов проектирования и разработки информационных систем на базе семантических технологий; особенностей, сильных и слабых сторон применяемых методологических подходов и инструментов проектирования и разработки; способов оценки полученного результата.
- 4. Умение применять методологические подходы и инструменты для проектирования и разработки информационных систем на базе семантических технологий; уметь обосновать выбор элементов методологических подходов и инструментов проектирования и разработки; уметь оценивать полученный результат.
- 5. В результате изучения дисциплины студент должен получить навык проек-

тирования и разработки информационных систем на базе семантических технологий; навык комбинирования методологических подходов и инструментов для проектирования и разработки информационных систем с учетом заданных ограничений и особенностей прикладной области; навык оценки полученного результата.

3.2 Место дисциплины в структуре ОПОП

Дисциплина изучается на основе ранее освоенных дисциплин учебного плана:

- 1. «Распределенные базы данных»
- 2. «Интеллектуальные системы»

и обеспечивает изучение последующих дисциплин:

- 1. «Производственная практика (преддипломная практика)»
- 2. «Производственная практика (научно-исследовательская работа)»

3.3 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения образовательной программы обучающийся должен достичь следующие результаты обучения по дисциплине:

Код компетенции/ индикатора компетенции	Наименование компетенции/индикатора компетенции
ПК-9	Способен исследовать и разрабатывать архитектуры систем искусственного интеллекта для различных предметных областей на основе комплексов методов и инструментальных средств систем искусственного интеллекта
ПК-9.1	Исследует и разрабатывает архитектуры систем искусственного интеллекта для различных предметных областей
ПК-9.2	Выбирает комплексы методов и инструментальных средств искусственного интеллекта для решения задач в зависимости от особенностей предметной области
ПК-10	Способен выбирать, разрабатывать и проводить экспериментальную проверку работоспособности программных компонентов систем искусственного интеллекта по обеспечению требуемых критериев эффективности и качества функционирования
ПК-10.1	Выбирает и разрабатывает программные компоненты систем искусственного интеллекта
ПК-10.2	Проводит экспериментальную проверку работоспособности систем искусственного интеллекта
ПК-11	Способен руководить проектами по созданию, внедрению и использованию одной или нескольких сквозных цифровых субтехнологий искусственного интеллекта в прикладных областях
ПК-11.1	Исследует и анализирует развитие новых направлений и перспективных методов и технологий в области искусственного интеллекта, участвует в исследовательских проектах по развитию перспективных направлений в области искусственного интеллекта (алгоритмическая имитация биологических систем принятия решений, автономное самообучение и развитие адаптивности алгоритмов к новым задачам, автономная декомпозиция сложных задач, поиск и синтез решений)
ПК-13	Способен руководить проектами по созданию комплексных систем искусственного интеллекта
ПК-13.1	Руководит разработкой архитектуры комплексных систем искусственного интеллекта
ПКО-3	Способен создавать и применять методы распределённого искусственного интеллекта для создания интеллектуальных сред и семантического веба.
ПКО-3.2	Применяет методы распределенного искусственного интеллекта для построения семантического веба (Web 3.0)

4 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Содержание разделов дисциплины

4.1.1 Наименование тем и часы на все виды нагрузки

No	Наименование темы дисциплины	Лек,	Пр,	ко,	CP,
п/п		ач	ач	ач	ач
1	Введение: обзор курса, мотивация, референсная архитектура	2			4
2	Проектирование и разработка ИС на основе онтологий и управляемая онтологиями	2	6		20
3	Проектирование и разработка графов знаний: обзор технологий семантического Web	2	6		20
4	Проектирование и разработка графов знаний: методологии разработки	2	6		24
5	Наполнение графов знаний и интеграция с унаследованными системами	2	6		22
6	Хранение графов знаний и языки запросов	2	6		18
7	Реализация бизнес-логики: походы	2	2		12
8	Реализация бизнес-логики: граф знаний, потоки данных и управления	2	4		6
9	Заключение	2			
	Итого, ач	18	36	10	116
	Из них ач на контроль	0	0	0	36
	Общая трудоемкость освоения, ач/зе	180/5			

4.1.2 Содержание

№	Наименование темы	Содержание
п/п	дисциплины	
1	Введение: обзор курса, мотивация, референсная архитектура	Предмет дисциплины, ее объем, содержание и связь с другими дисциплинами учебного плана. Обзор литературы по курсу. Общие понятия и принципы проектирования. Классы проектируемых информационных систем, обзор известных подходов и технологий проектирования и разработки. Роль моделей, графы знаний, семантические технологии. Связь структуры курса с обобщенной методикой проектирования и упрощенной архитектурой информационной системы на основе семантики. Референсная архитектура.

No ,	Наименование темы	Содержание
п/п	дисциплины	
2	Проектирование и разработка ИС на основе онтологий и управляемая онтологиями	Общие вопросы методологии архитектурного проектирования, направляющие вопросы. Использование моделей при проектировании и разработке, стандарты и их реализации. Технологии семантического Web как основа для формализации моделей и построения графов знаний, онтологии. Онтология как неотъемлемая часть информационной системы на протяжении всего жизненного цикла. Роль онтологий в построении потоков данных.
3	Проектирование и разработка графов знаний: обзор технологий семантического Web	Общие понятия из области представления знаний. Гиперграфы, графы свойств и графы на основе троек. Стандарты языков для построения графов знаний: RDF, RDFS, SKOS, OWL2. ТВох -множество теорем как разделяемое понимание предметной области. Специальные вопросы: представление временных данных, знаний о знаниях, знаний о свойствах, знаний о происхождении данных.
4	Проектирование и разработка графов знаний: методологии разработки	Концепция раннего обнаружения ошибок и привлечения экспертов к их поиску. Методологии разработки и подходы разработки. Примеры графов знаний и инструментария для их разработки. Методика разработки онтологии от постановочных вопросов к регулярному обновлению онтологии на примерах.
5	Наполнение графов знаний и интеграция с унаследованными системами	Виртуализация и интеграция: задачи, подходы, инструменты. Вопросы поддержания качества данных и способы его обеспечения: удовлетворение ограничениям, заданных шаблонами; непротиворечивость и логический вывод.
6	Хранение графов знаний и языки запросов	Хранилища гиперграфов, графов свойств, триплетов, мультимодельные хранилища. Языки запросов.
7	Реализация бизнес-логики: по- ходы	Монолитные и микросервисные архитектуры. Роль декларативного программирования: интерпретация и компиляция на основе онтологий; программный доступ к онтологиям; фреймворки для программного доступа -перечисление, описание и сравнение. Базовые подходов к реализации бизнес логики: экспертные системы и потоки данных.
8	Реализация бизнес-логики: граф знаний, потоки данных и управления	Варианты реализации правил и базы знаний: нативные движки правил и интеграция с другими решениями, пример. Поток данных на основе графов запросов и форм. Генерация потоков данных по полному описанию процессов, их входов, выходов, свойств; на примере DMOP и data mining. Преимущества использования единого языка; проверка валидности цепочек вычисления.
9	Заключение	Перспективы развития информационных систем на основе семантических технологий. Проблемы российского рынка в части создания и использования систем рассматриваемого класса.

4.2 Перечень лабораторных работ

Лабораторные работы не предусмотрены.

4.3 Перечень практических занятий

Наименование практических занятий	Количество ауд. часов
1. Проектирование и разработка онтологии по выбранной теме	6
2. Наполнение онтологии данными	6
3. Обогащение графов	8
4. Валидация и вывод над графами	8
5. Сохранение графов	8
Итого	36

4.4 Курсовое проектирование

Цель работы (проекта): Формирование практико-ориентированных компетенций в области проектирования информационных систем, основанных на семантических технологиях...

Содержание работы (проекта): Содержанием курсовой работы (КР) является анализ, проектирование и разработка прототипа информационной системы (подсистемы, программного компонента) на основе семантических технологий. Варианты заданий предусматривают как проектирование систем на основе онтологий, так и проектирование, управляемое онтологиями. Курсовая работа выполняется в тесной взаимосвязи с темами лабораторного практикума и базируется на их результатах.

Исходные данные к курсовой работе:

- 1. Постановка задачи, включающая предметную область и функциональное назначение разрабатываемой системы (подсистемы);
- 2. Требования к составу, объему и форме представления разрабатываемых баз знаний (OWL-онтологии, графа знаний);
- 3. Рекомендации по выбору инструментов и платформ, используемых при выполнении КР.

4. Требования к объему и содержанию контрольных примеров для тестирования работы системы.

Основные этапы выполнения работы:

- 1. Выбор и/или проектирование онтологии (графа знаний) согласованного объема для заданной предметной области;
- 2. Выбор/проектирование архитектуры информационной системы (подсистемы) на основе семантических технологий;
- 3. Выбор и обоснование платформ и инструментов, используемых при создании ИС;
- 4. Интеграция и настройка программных компонентов, разработка программного кода в согласованном объеме.

Требования к структуре Отчета.

Отчет о КР оформляется в виде пояснительной записки (ПЗ), включающей следующие разделы:

- 1. Постановка задачи, включающая предметную область и функциональное назначение разрабатываемой системы (подсистемы);.
- 2. Описание выбранного/спроектированного информационного обеспечения системы (онтологии, графа знаний).
- 3. Анализ технологий (платформ, инструментов), используемых при выполнении КР
- 4. Описание архитектуры и алгоритмов работы разрабатываемой ИС (подсистемы).
- 5. Описание реализованного программного кода и оттестированных контрольных примеров.
- 6. Выводы о возможностях и перспективах практического использования результатов КР.
- 7. Список использованных источников.
- 8. Приложение, содержащее листинг программного кода.

Объем ПЗ должен составлять не менее 35 стр., без учета Приложения. Макси-

мальный объем ПЗ зависит от заданной темы и определяется по согласованию с преподавателем.

ПЗ для предварительной проверки загружается в виде электронного документа в среду moodle. На защиту представляется печатный вариант ПЗ (по согласованию с преподавателем возможно без Приложения).

Защиты КР проводятся на двух последних неделях семестра и на зачетной неделе по согласованному графику (с учетом численности группы). Защиты проводятся в форме собеседования с демонстрацией работы разработанного кода. Результат выполнения КР оценивается по пятибальной шкале..

Примерные темы:

No	Название темы	Перевод темы
п/п		
1	Интеграция источников данных на основе онтологий	Ontology-Based Integration of Data Sources
2	Проектирование систем оценки обстановки управляемое онтологиями	Ontology-Driven Design of Situation Assessment System

4.5 Реферат

Реферат не предусмотрен.

4.6 Индивидуальное домашнее задание

Индивидуальное домашнее задание не предусмотрено.

4.7 Доклад

Доклад не предусмотрен.

4.8 Кейс

Кейс не предусмотрен.

4.9 Организация и учебно-методическое обеспечение самостоятельной работы

Основным истоником для выполнения самостоятельно работы служат учебнометодические материалы по дисциплине и информационные ресурсы сети Интернет.

Текущая СРС	Примерная
	трудоемкость, ач
Работа с лекционным материалом, с учебной литературой	30
Опережающая самостоятельная работа (изучение нового материала до его изложения на занятиях)	0
Самостоятельное изучение разделов дисциплины	20
Выполнение домашних заданий, домашних контрольных работ	0
Подготовка к лабораторным работам, к практическим и семинарским занятиям	0
Подготовка к контрольным работам, коллоквиумам	20
Выполнение расчетно-графических работ	0
Выполнение курсового проекта или курсовой работы	23
Поиск, изучение и презентация информации по заданной проблеме, анализ научных публикаций по заданной теме	0
Работа над междисциплинарным проектом	0
Анализ данных по заданной теме, выполнение расчетов, состав-	
ление схем и моделей, на основе собранных данных	0
Подготовка к зачету, дифференцированному зачету, экзамену	35
ИТОГО СРС	128

5 Учебно-методическое обеспечение дисциплины

5.1 Перечень основной и дополнительной литературы, необходимой для освоения дисциплины

№ п/п	Название, библиографическое описание	К-во	
		экз. в	
		библ.	
	Основная литература		
1	Белов, Владимир Викторович. Проектирование информационных систем	10	
	[Текст] : учеб. по направлению "Прикладная информатика" и др. экон.		
	специальностям / В. В. Белов, В. И. Чистякова, 2015351, [1] с.		
	Дополнительная литература		
1	Советов, Борис Яковлевич. Представление знаний в информационных си-	30	
	стемах [Текст]: учеб. для вузов по направлению подгот. "Информацион-		
	ные системы и технологии" / Б.Я. Советов, В.В. Цехановский, В.Д. Чер-		
	товской, 2011141, [2] с.		

5.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», используемых при освоении дисциплины

№ п/п	Электронный адрес						
1	Официальный https://spec.edmc	Официальный сайт Financial Industry Business Ontology (FIBO). https://spec.edmcouncil.org/fibo/					
2	Официальный сайт проекта D3FEND Knowledge Graph. https://d3fend.mitre.org/						

6 Критерии оценивания и оценочные материалы

6.1 Критерии оценивания

Для дисциплины «Проектирование информационных систем на основе семантических технологий» формой промежуточной аттестации является экзамен. Оценивание качества освоения дисциплины производится с использованием рейтинговой системы.

Экзамен

Оценка	Количество	Описание
	баллов	

Неудовлетворительно	0-51	теоретическое содержание курса не освоено, необходимые практически навыки и умения не сформированы, выполненные учебные задания содержат грубые ошибки, дополнительная самостоятельная работа над курсом не приведет к существенному повышению качества выполнения учебных заданий
Удовлетворительно	52 – 67	теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки и умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки
Хорошо	68 – 84	теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки и умения сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками
Отлично	85 – 100	теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки и умения сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено количеством баллов, близким к максимальному

Особенности допуска

Для допуска к экзамену студент должен: успешно пройти 2 тестирования по темам дисциплины, успешно выполнить и защитить практические работы на коллоквиуме, выполнить и защитить курсовую работу.

6.2 Оценочные материалы для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине

Примерные вопросы к экзамену

№ п/п	Описание
1	Описание референсной архитектуры
2	Язык запросов SPARQL: SELECT, CONSTRUCT, ASK, DESCRIBE запросы, федеративные запросы
3	Использование SHACL для валидация графов
4	Использование Drools в качестве движка правил в составе информационной системы
5	Jena API. Программный доступ к модели. Выполнение запросов
6	Виртуализация данных на примере Ontop. Описание соответствий на RML
7	Использование Prolog в качестве движка правил в составе информацинонной си- стемы

6.3 График текущего контроля успеваемости

Неделя	Темы занятий	Вид контроля
1	Введение: обзор курса, мотивация, референсная архитекту-	
2	pa	
3	Проектирование и разработка ИС на основе онтологий и	
4	управляемая онтологиями	
5	Проектирование и разработка графов знаний: обзор технологий семантического Web	
6	Проектирование и разработка графов знаний: методологии	
7	разработки	
8		Тест
9	Наполнение графов знаний и интеграция с унаследованны-	
10	ми системами	
11	Хранение графов знаний и языки запросов	
12	Реализация бизнес-логики: походы	
13		
14		
15		Тест

16	Реализация бизнес-логики: граф знаний, потоки данных и	Коллоквиум
	управления	
17	Заключение	Защита КР / КП

6.4 Методика текущего контроля

На лекционных занятиях: включает в себя контроль посещаемости (не менее 80% занятий).

На практических занятиях:

Обучающийся должен выполнить **5 практических работ** в соответствие с перечнем практических занятий (п. 4.3) и защитить их на коллоквиуме. Работа считается выполненной, если студент получил оценку "зачтено" при защите.

Критерии оценивания: «не зачтено» - ставится, если основное содержание материала работы не раскрыто, не даны ответы на вопросы преподавателя, допущены грубые ошибки в определении понятий и в использовании терминологии;

«зачтено» ставится, если продемонстрировано усвоение основного содержания материала, работа выполнена полностью, даны правильные ответы на вопросы преподавателя на защите.

Обучающийся проходит 2 тестирование по темам дисциплины (п. 6.3). В каждом тесте по 20 вопросов. Критерии оценивания: тест считается пройденным - оценка "зачтено", если количество правильных ответов более 50 %, если правильных ответов менее 50 %, то оценка "не зачтено".

Контроль самостоятельной работы студент: включает контроль самостоятельной работы студентов осуществляется на лекционных и практических занятиях сту- дентов по методикам, описанным выше.

Курсовая работа: обучающийся выполняет курсовую работу, сдает на проверку преподавателю, при наличие ошибок исправляет, при отсутствие - по-

лучает допуск к защите. Курсовая работа оценивается за выполнение и защиту по критериям оценивания экзамена. Описание информационных технологий и материально-технической базы

Тип занятий	Тип помещения	Требования к помещению	Требования к программному обеспечению
Лекция	Лекционная аудито- рия	Количество посадочных мест — в соответствии с контингентом, рабочее место преподавателя, компьютер или ноутбук, проектор, экран, маркерная доска.	1) Windows XP и выше; 2) Microsoft Office 2007 и выше
Практические занятия	Компьютерный класс	Количество посадочных мест — в соответствии с контингентом, компьютеры или ноутбуки, рабочее место преподавателя, компьютер или ноутбук, проектор, экран, маркерная доска.	Ubuntu 20.04 и выше
Самостоятельная работа	Помещение для самостоятельной работа	Оснащено компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду университета.	1) Windows XP и выше; 2) Microsoft Office 2007 и выше

7 Адаптация рабочей программы для лиц с ОВЗ

Адаптированная программа разрабатывается при наличии заявления со стороны обучающегося (родителей, законных представителей) и медицинских показаний (рекомендациями психолого-медико-педагогической комиссии). Для инвалидов адаптированная образовательная программа разрабатывается в соответствии с индивидуальной программой реабилитации.