

#### МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

# «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра общей и экспериментальной физики

УТВЕРЖДАЮ Іская физического факультета факультет Н.М. Буднев марта 2022 г.

# Рабочая программа дисциплины (модуля)

Наименование дисциплины (модуля): *Б1.В.03 Физическая химия материалов* 

Направление подготовки: 11.03.04 Электроника и наноэлектроника

Направленность (профиль) подготовки: Электроника и наноэлектроника

Квалификация выпускника: бакалавр

Форма обучения: очная.

Согласовано с УМК:

физического факультета

Протокол № <u>33</u>

от «31» марта 2022 г.

Зам. председателя, к.ф.-м.н, доцент

В.В. Чумак

Рекомендовано кафедрой:

общей и экспериментальной физики

Протокол № \_6\_

от «<u>24</u>» марта <u>2022 г.</u>

Зав. кафедрой, д.ф.-м.н., профессор

\_\_\_ A.A. Гаврилюк

Иркутск 2022 г.

# Оглавление

| Оглавление                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| I. Цели и задачи дисциплины (модуля)                                                                                                          |
| II. Место дисциплины в структуре ОПОП ВО                                                                                                      |
| III. Требования к результатам освоения дисциплины:                                                                                            |
| IV. Содержание и структура дисциплины (модуля)                                                                                                |
| 4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов |
| 4.1. План внеаудиторной самостоятельной работы обучающихся по дисциплине                                                                      |
| 4.3. Содержание учебного материала                                                                                                            |
| Содержание разделов и тем дисциплины.                                                                                                         |
| 6. Перечень практических занятий                                                                                                              |
| 4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)                        |
| 4.4. Методические указания по организации самостоятельной работы студентов                                                                    |
| 4.5 Примерная тематика курсовых работ (проектов) (при наличии):                                                                               |
| V. Учебно-методическое и информационное обеспечение дисциплины                                                                                |
| а) перечень литературы                                                                                                                        |
| б) периодические издания                                                                                                                      |
| в) список авторских методических разработок                                                                                                   |
| г) базы данных, информационно-справочные и поисковые системы                                                                                  |
| VI. Материально-техническое обеспечение дисциплины (модуля)                                                                                   |
|                                                                                                                                               |

### І. Цели и задачи дисциплины (модуля)

Программа разработана в соответствии с основной образовательной программой ФГОС по направлению **11.03.04** Электроника и наноэлектроника и предназначена для обеспечения курса «Физическая химия материалов», изучаемого студентами в течение шестого семестра.

**Целью** преподавания курса «Физическая химия материалов» является формирование фундаментальных знаний в области физико-химических процессов разработки материалов электронной техники и их применение для решения практических задач в области технологии получения материалов электронной техники.

Для достижения данной цели были поставлены задачи:

- обучение студентов по всем разделам физической химии;
- овладение фундаментальными понятиями, законами и их следствиями, применяемыми в физической химии;
  - овладение навыками в проведении физико-химических экспериментов;
- выработка у студентов навыков самостоятельной учебной деятельности, развитие у них интереса к дальнейшей познавательной деятельности;
- стремление студентов к изучению и применению новых компьютерных технологий. Кроме того, целью и задачами преподавания дисциплины являются ознакомление студентов с российскими национальными и международными стандартами в области физической химии материалов и процессов электронной техники.

### **II.** Место дисциплины в структуре ОПОП ВО.

Приоритетом современного образования является создание научно-образовательных центров (НОЦ), т.е. интеграция науки и образования. Такой подход обеспечивает будущему специалисту дополнительные знания и исследовательские навыки, необходимые для работы по междисциплинарным направлениям после получения базового образования. Организация учебного процесса при изучении курса «Физическая химия материалов» соотносится с целями образования на современном этапе, а изучение некоторых разделов тесно связано с тематикой научных исследований базового института кафедры – Института геохимии им. А.П. Виноградова СО РАН.

Курс относится к базовой части профессионального цикла Б1.В.07. Изучение дисциплины базируется на знаниях, полученных студентами при изучении курсов "Общая физика", "Высшая математика", «Математический анализ», "Физика полупроводников", "Квантовая механика", иностранного языка.

Знания, полученные студентами после изучения дисциплины используются далее при изучении дисциплин: «Физика конденсированного состояния», «Методы исследования материалов и структур», "Технология материалов электронной техники", "Процессы микро- и нанотехнологии", "Физика полупроводников".

# III. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и ОП ВО по направлению подготовки 11.03.04 Электроника и наноэлектроника:

Проводить анализ современного состояния методов и технологий модификации свойств наноматериалов и наноструктур (ПК-1)

Проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта (ПК-4):

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесен-

ных с индикаторами достижения компетенций

| Ком  | Индикаторы компетенций                                                                                                                                                                                                                        | Результаты обучения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| пе-  | -                                                                                                                                                                                                                                             | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| тен- |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ция  |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ΠK-1 | <ul> <li>1.1 Анализирует современное состояние методов измерений материалов электроники и наноэлектроники.</li> <li>1.2 Разрабатывает технологии модификации свойств наноматериалов и наноструктур</li> </ul>                                 | Знает: основные физико—химические закономерности, определяющие свойства материалов электронной техники; термодинамический и кинетический методы анализа и их применение при получении материалов и компонентов твердотельной электроники; основные положения физической химии фаз переменного состава и ее применение для управления составом и свойствами материалов электронной техники.  Умеет: проводить термодинамические и кинетические расчеты условий получения материалов электронной техники с заданными свойствами; проводить анализ фазовых равновесий на основе Т-х и Р-Т-х диаграмм состояния полупроводниковых систем для выбора условий проведения процессов получения, очистки и легирования полупроводниковых материалов.  Владеет: методами физико-химического анализа материалов и процессов электронной техники. Современными информационными технологиями с целью получения анализа и интерпретации необхо- |
| ПК-4 | 4.1 Проводит научные исследования в избранной области экспериментальных и (или) теоретических физических исследований 4.2. Владеет современной приборной базой (в том числе сложным физическим оборудованием) и информационными технологиями. | димой научной информации  Знает: категории (типы), виды стандартов и их особенности; виды измерений, средства измерений, погрешности; процедуры и нормативные акты для оценки характеристик модифицированных наноматериалов и наноструктур на каждом технологическом шаге.  Умеет:расчитывать параметры и характеристики, моделировать и проектировать, внедрять и осуществлять контроль приборов и устройств наноэлектроники.  Владеет:основными этапами сертификации систем обеспечения качества; порядком и правилами подтверждения соответствия продукции.                                                                                                                                                                                                                                                                                                                                                                    |

# IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 3 зачетных единицы, 108 часов, в том числе 64 часов контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. На практическую подготовку отводится 38 аудиторных часов (во время выполнения практических заданий). Форма промежуточной аттестации: зачёт

# 4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

| <b>№</b><br>п/н |                                                                                                                                    |   | Всего часов | практическая<br>ка обучающихся | практиче | Виды учебной рабо<br>постоятельную рабо<br>сскую подготовку и<br>(в часах)<br>абота преподавател<br>ющимися | ту обучающі<br>трудоемкост | ь                     | Формы текущего контроля успеваемости; Форма промежуточной аттестации (по семестрам) |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|---|-------------|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------------------|
|                 |                                                                                                                                    |   | ă<br>D      | Из них подготові               | Лекции   | Семинарские/<br>практические/<br>лабораторные<br>занятия                                                    | Кон-<br>сульта-<br>ции     | Самостоятел<br>работа |                                                                                     |
| 1               | 2                                                                                                                                  | 3 | 4           | 5                              | 6        | 7                                                                                                           | 8                          | 9                     | 10                                                                                  |
| 1               | <u>I. ВВЕДЕНИЕ</u>                                                                                                                 | 6 | 20          | 8                              | 8        | 8                                                                                                           | 0                          | 4                     | Опрос                                                                               |
| 2               | II. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ УПРАВЛЕНИЯ ТИПОМ И         КОНЦЕНТРАЦИЕЙ ДЕФЕКТОВ В КРИСТАЛЛИЧЕСКИХ ФАЗАХ         ПЕРЕМЕННОГО СОСТАВА | 6 | 36          | 14                             | 12       | 12                                                                                                          | 0                          | 12                    | Опрос                                                                               |
| 3               | III. ФАЗОВЫЕ РАВНОВЕСИЯ В ПОЛУПРОВОДНИКОВЫХ, ДИ-<br>ЭЛЕКТРИЧЕСКИХ И МЕТАЛЛИЧЕСКИХ СИСТЕМАХ                                         | 6 | 48          | 18                             | 18       | 18                                                                                                          | 0                          | 12                    | Опрос                                                                               |
|                 | Зачёт                                                                                                                              | 6 | 3           |                                |          |                                                                                                             |                            |                       | Тестирование                                                                        |
|                 | КСР                                                                                                                                | 6 | 1           |                                |          |                                                                                                             |                            |                       |                                                                                     |
|                 | <u>Итого часов</u>                                                                                                                 |   | 108         | 40                             | 38       | 38                                                                                                          | 0                          | 28                    |                                                                                     |

# 4.1. План внеаудиторной самостоятельной работы обучающихся по дисциплине

|          |                                                 | Самостоятельная рабо                                                                                                                                                                   | Самостоятельная работа обучающихся         |                     |                       |                                                      |  |
|----------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|-----------------------|------------------------------------------------------|--|
| Семестр  | Название раздела, темы                          | Вид самостоятельной работы                                                                                                                                                             | Сроки вы-<br>полнения                      | Трудоемкость (час.) | Оценочное<br>средство | методическое обеспечение са-<br>мостоятельной работы |  |
| 6        | Разделы 1                                       | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | В течение семестра                         | 4                   | Опрос                 | [1-3]                                                |  |
| 6        | Раздел2                                         | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | После завершения лекций по данному разделу | 12                  | Опрос                 | [1-3]                                                |  |
| 6        | Раздел3                                         | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | В конце семестра                           | 12                  | Опрос                 | [1-3]                                                |  |
| 6        | Подготовка к зачёту                             | Работа с лекционным материалом и учебной литературой                                                                                                                                   | К концу<br>семестра                        |                     | Тест                  | [1-3]                                                |  |
| Общий об | бъем самостоятельной работы по дисциплине (час) |                                                                                                                                                                                        |                                            | 28                  |                       |                                                      |  |

### 4.3. Содержание учебного материала

Содержание разделов и тем дисциплины.

### І. ВВЕДЕНИЕ

### **Тема 1.** Кристаллографическая характеристика фаз.

Кристаллы и аморфные тела. Внутренняя структура кристаллов. Виды связей между частицами в кристаллах: ионная, ковалентная, металлическая, молекулярная. Прочность химических связей. Теплота сублимации. Длина связи. Энергия связи. Коэффициент сжимаемости и линейного расширения. Температура плавления. Механические параметры. Направленность и насыщаемость химических связей.

### **Тема 2.** Электронное строение атомов.

Уравнение Шредингера. Квантовые числа. Периодический закон и периодическая система элементов Д.И. Менделеева. Распределение электронов по орбиталям. Принцип Паули, правило Хунда. Координационное число и плотность упаковки. Образование энергетических зон в кристаллах. Зонные диаграммы металлов, полупроводников и диэлектриков. Энергетические зоны валентных электронов. Плотность состояний. Уровень Ферми. Зоны Бриллюэна.

# <u>II. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ УПРАВЛЕНИЯ ТИПОМ И КОНЦЕНТРАЦИЕЙ ДЕФЕКТОВ В</u> КРИСТАЛЛИЧЕСКИХ ФАЗАХ ПЕРЕМЕННОГО СОСТАВА

### Тема 3. Методы описания кристаллических структур.

Элементарная ячейка, кристаллографические плоскости и направления. Индексы Миллера. Идеальные и реальные кристаллы.

#### Тема 4. Дефекты кристаллической структуры:

Точечные дефекты: Дефекты Шотки, дефекты Френкеля. Миграция точечных дефектов. Антиструктурные дефекты. Ассоциации точечных дефектов (комплексы). Источники образования точечных дефектов. Влияние точечных дефектов на свойства материалов. Дислокации (Вектор Бюргерса. Типы дислокаций. Упругая энергия для дислокаций). Критерий Франка. Барьеры Пайерлса. Закон Шмидта. Взаимодействие дислокаций с точечными дефектами. Источники зарождения дислокаций. Двухмерные и трехмерные несовершенства: Внутрифазные и межфазные границы. Макро- и микронапряжения.

### **Тема 5.** Примеси в полупроводниках и диэлектриках

Неизовалентные и изовалентные легирующие примеси, фоновые примеси. Влияние дефектов структуры на физические, химические и электрические свойства монокристаллических полупроводников. Легирование полупроводников с использованием ядерных реакций и ионных пучков.

### Тема 6. Диффузия в материалах твердотельной электроники.

Движущие силы и разновидности процессов диффузии. Количественные закономерности диффузии (законы диффузии). Возможные атомные механизмы диффузии. Основные параметры диффузии и методы их определения (Уравнение Аррениуса, энергия активации диффузии). Влияние структурных несовершенств на скорость и параметры диффузии (граничная и поверхностная диффузия, самодиффузия и гетеродиффузия).

# <u>III. ФАЗОВЫЕ РАВНОВЕСИЯ В ПОЛУПРОВОДНИКОВЫХ, ДИЭЛЕКТРИЧЕСКИХ И МЕТАЛЛИЧЕ-</u> <u>СКИХ СИСТЕМАХ</u>

#### Тема 7. Некоторые вопросы термодинамики фазовых равновесий.

Основные определения. Виды термодинамических систем, понятие фазы, соединения и твердые растворы, сплавы). Фазовые равновесия: гетерогенные равновесия, химический потенциал, вариантность системы, равновесный коэффициент распределения, правило фаз Гиббса.

### **Тема 8.** Фазовые диаграммы однокомпонентных систем.

Общие сведения. Диаграммы фазовых равновесий в однокомпонентных система, построенных в координатах Р-Т и Р-Т-Х. Графическое описание фазовых равновесий: фазовые диаграммы, фазовые превращения первого и второго рода, принцип непрерывности, принцип соответствия. Уравнение Клаузиуса-Клайперона. Энантиотропные и монотропные превращения.

# **Тема 9.** Т-Х диаграммы фазовых равновесий двойных систем с неограниченной растворимостью компонентов.

Правила построения фазовых диаграмм в координатах Т-X. Диаграмы с неограниченной растворимостью компонентов в жидком и твердом состояниях. Построен ие и анализ диаграмм с неограниченной растворимостью по данным об изменении термодинамического потенциала. Коэффициент распределения.

# **Тема 10.** Т-Х диаграммы фазовых равновесий двойных систем с ограниченной растворимостью.

Переход от неограниченной растворимости к ограниченной. Диаграммы фазовых равновесий с эвтектическим и перитектическим превращением. Диаграммы фазовых равновесий с химическими соединениями. Отклонения от равновесного состояния. Роль диаграмм фазовых равновесий при выборе условий кристаллизации и термической обработки.

### Тема 11. Т-Х диаграммы фазовых равновесий тройных систем

Основные представления, используемые при построении диаграмм фазовых равновесий тройных систем. Тройная диаграмма фазовых равновесий системы с неограниченной растворимостью компонентов. Тройная диаграмма фазовых равновесий системы с моновариантным (трехфазным)эвтектическим превращением. Тройная диаграмма фазовых равновесий системы, в которой реализуется нонвариантное (четырехфазное)эвтектическое превращение.

### Тема 12. Кристаллизация полупроводников и диэлектриков из расплавов и растворов

Образование и рост зародышей новой фазы. Представление о механизмах роста кристаллов из расплавов и растворов. Распределение примесей между расплавом (раствором) и растущим кристаллом. Методы выращивания монокристаллов. Выращивание монокристаллов с однородным или заданным распределением примесей. Выращивание совершенных монокристаллов. Эпитаксиальные слои, поликристаллические и аморфные пленки. Механизмы и кинетика формирования слоев пленок.

6. Перечень практических занятий

| №         | № раздела и  | Наименование, практических                    | Трудоем- | Оценоч-                       | Формиру-      |
|-----------|--------------|-----------------------------------------------|----------|-------------------------------|---------------|
| $\Pi/\Pi$ | темы дисци-  | работ                                         | кость    | ные                           | емые          |
|           | плины (моду- |                                               | (часы)   | средства                      | компе-        |
|           | ля)          |                                               |          |                               | тенции        |
| 1         | 2            | 3                                             | 4        | 5                             | 6             |
| 1.        | 1            | Кристаллографическая характеристика фаз       | 3        | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 2.        | 2            | Электронное строение атомов                   | 3        | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 3.        | 3            | Методы описания кристалличе-<br>ских структур | 3        | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 4.        | 4            | Дефекты кристаллической структуры             | 3        | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 5.        | 5            | Примеси в полупроводниках и диэлектриках      | 3        | Контроль-<br>ные вопро-       | ПК-1,<br>ПК-4 |

|     |       |                                                                                             |    | СЫ                            |               |
|-----|-------|---------------------------------------------------------------------------------------------|----|-------------------------------|---------------|
| 6.  | 6.    | Диффузия в материалах твердо-<br>тельной электроники                                        | 3  | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 7.  | 7.    | Некоторые вопросы термодина-<br>мики фазовых равновесий                                     | 3  | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 8.  | 8.    | Фазовые диаграммы однокомпо-<br>нентных систем                                              | 3  | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 9.  | 9     | T-X диаграммы фазовых равновесий двойных систем с неограниченной растворимостью компонентов | 3  | Контрольные вопросы           | ПК-1,<br>ПК-4 |
| 10. | 10    | T-X диаграммы фазовых равновесий двойных систем с ограниченной растворимостью.              | 3  | Контрольные вопросы           | ПК-1,<br>ПК-4 |
| 11. | 11.   | T-X диаграммы фазовых равновесий тройных систем                                             | 3  | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 12. | 12.   | Кристаллизация полупроводни-<br>ков и диэлектриков из расплавов<br>и растворов              | 3  | Контроль-<br>ные вопро-<br>сы | ПК-1,<br>ПК-4 |
| 13. |       | Зачет                                                                                       | 2  |                               |               |
|     | Всего |                                                                                             | 38 |                               |               |

# 4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

| <b>№</b><br>нед. | Тема                                    | Вид самостоя-<br>тельной рабо-<br>ты | Задание                                                                                                                                                                                              | Рекомендуемая литература                                              | Количе-<br>ство ча-<br>сов |
|------------------|-----------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|
| 1.               | Кристаллографическая характеристика фаз | Внеаудитор-<br>ная работа            | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2                          |
| 2.               | Электронное строение атомов             | Внеаудитор-<br>ная работа            | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на                                                                           | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2                          |

| 3. | Методы описания кристаллических структур        | Внеаудитор-<br>ная работа | самостоятельное изучение, кон-<br>спектирование ответов на кон-<br>трольные вопро-<br>сы Изучение науч-<br>ной и специаль-<br>ной литературы, подготовка к<br>занятиям, вы-<br>полнение зада-<br>ний по темам,<br>вынесенным на<br>самостоятельное<br>изучение, кон-<br>спектирование | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |
|----|-------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
|    |                                                 |                           | ответов на контрольные вопросы                                                                                                                                                                                                                                                        |                                                                       |   |
| 4. | Дефекты кристал-<br>лической структу-<br>ры     | Внеаудитор-<br>ная работа | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы                                                                                  | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |
| 5. | Примеси в полупроводниках и диэлектриках        | Внеаудиторная работа      | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы                                                                                                | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |
| 6. | Диффузия в материалах твердотельной электроники | Внеаудитор-<br>ная работа | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы                                                                                  | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |

| 7.  | Некоторые вопро-<br>сы термодинами-<br>ки фазовых рав-<br>новесий                           | Внеаудитор- ная работа    | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |
|-----|---------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
| 8.  | Фазовые диа-граммы однокомпонентных систем                                                  | Внеаудитор-<br>ная работа | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы               | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 2 |
| 9.  | Т-Х диаграммы фазовых равновесий двойных систем с неограниченной растворимостью компонентов | Внеаудитор-<br>ная работа | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы               | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 3 |
| 10. | Т-Х диаграммы фазовых равновесий двойных систем с ограниченной растворимостью               | Внеаудитор-<br>ная работа | Изучение научной и специальной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 3 |
| 11. | Т-Х диаграммы фазовых равновесий тройных систем                                             | Внеаудитор-<br>ная работа | Изучение научной и специальной литературы, подготовка к занятиям, выполнение зада-                                                                                                                   | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 3 |

|     |                                                                        |                        | ний по темам,<br>вынесенным на<br>самостоятельное<br>изучение, кон-                                                                                                                    |                                                                       |   |
|-----|------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|
|     |                                                                        |                        | спектирование ответов на кон-                                                                                                                                                          |                                                                       |   |
|     |                                                                        |                        | трольные вопро-                                                                                                                                                                        |                                                                       |   |
| 1.  |                                                                        | _                      | СЫ                                                                                                                                                                                     |                                                                       |   |
| 12. | Кристаллизация полупроводников и диэлектриков из расплавов и растворов | Внеаудитор- ная работа | Изучение научной и специальной литературы, подготовка к занятиям, выполнение заданий по темам, вынесенным на самостоятельное изучение, конспектирование ответов на контрольные вопросы | Шалаев, А. А. Основы физического материаловедения в 2х частях (1, 2). | 3 |

# 4.4. Методические указания по организации самостоятельной работы студентов

Цель самостоятельной работы студента — осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы привить умение в дальнейшем непрерывно повышать свою профессиональную квалификацию.

В учебном процессе выделяют два вида самостоятельной работы:

- аудиторная самостоятельная работа выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию;
- внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Самостоятельная работа помогает студентам:

### 1) овладеть знаниями:

- чтение текста (учебника, первоисточника, дополнительной литературы и т.д.);
- составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста и т.д.;
- работа со справочниками и др. справочной литературой;
- ознакомление с нормативными и правовыми документами;
- учебно-методическая и научно-исследовательская работа;
- использование компьютерной техники и Интернета и др.;

### 2) закреплять и систематизировать знания:

- работа с конспектом лекции;
- обработка текста, повторная работа над учебным материалом учебника, первоисточника, дополнительной литературы, аудио и видеозаписей;
- подготовка плана:
- составление таблиц для систематизации учебного материала;
- подготовка ответов на контрольные вопросы;
- заполнение рабочей тетради;
- аналитическая обработка текста;
- подготовка мультимедиа презентации и докладов к выступлению на семинаре (конференции, круглом столе и т.п.);

- подготовка реферата;
- составление библиографии использованных литературных источников;
- тестирование и др.;

### 3.формировать умения:

- решение ситуационных задач и упражнений по образцу;
- выполнение расчетов (графические и расчетные работы);
- подготовка к контрольным работам;
- подготовка к тестированию;
- опытно-экспериментальная работа;
- подготовка к курсовым работам.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Проводить анализ современного состояния методов и технологий модификации свойств наноматериалов и наноструктур (ПК-1):

- Анализирует современное состояние методов измерений материалов электроники и наноэлектроники.
- Разрабатывает технологии модификации свойств наноматериалов и наноструктур Проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта (ПК-4):
  - Проводит научные исследования в избранной области экспериментальных и (или) теоретических физических исследований
  - Владеет современной приборной базой (в том числе сложным физическим оборудованием) и информационными технологиями.

### 4.5 Примерная тематика курсовых работ (проектов) (при наличии):

#### не предусматривается

### V. Учебно-методическое и информационное обеспечение дисциплины

а) перечень литературы

### Основная литература:

- 1. Шалаев, А. А. Основы физического материаловедения [Текст]: учеб. пособие: в 2 ч. / А. А. Шалаев; рец.: В. В. Акимов, А. А. Гаврилюк; Иркут. гос. ун-т, Рос. акад. наук, Сиб. отд-ние, Ин-т геохимии им. А. П. Виноградова. Иркутск: Изд-во Иркут. гос. унта, 2013 . (Методы экспериментальной физики конденсированного состояния). Ч. 1. 2013. 159 с. (10 экз.)
- 2. Шалаев, Алексей Александрович (канд. физ.-мат. наук, снс) Основы физического материаловедения [Текст]: учеб. пособие: в 2 ч. / А. А. Шалаев; рец.: В. В. Акимов, А. А. Гаврилюк. Иркутск: Изд-во Иркут. гос. ун-та, 2013. Ч. 2. 2014. 175 с. (10 экз.)
- 3. Епифанов, Г. И. Физика твердого тела [Электронный ресурс] : учеб. пособие / Г. И. Епифанов. Москва: Лань, 2011. 288 с.: ил. (Учебники для вузов. Специальная литература). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. Библиогр.: с. 282-283. ISBN 978-5-8114-1001-9 :.ББК В37я73
- 4. Методы выращивания и исследования кристаллических материалов [Текст] : лаб. практикум / Иркут. гос. ун-т, Физ. фак. ; ред. Е. А. Раджабов ; рец. В. В. Акимов. Иркутск : Изд-во ИГУ, 2012. 82 с. (10 экз.)

### Дополнительная:

- 1. Технологии материалов для микро- и наноэлектроники [Электронный ресурс] : учеб. пособие. Скоробогатова, Зубрицкий, Петров, Семёнов ЭВК. Иркутск : Изд-во ИГУ, 2009. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
- 2. Егранов А. В. Взаимодействие ионизирующих излучений с веществом [Электронный ресурс]: учеб. пособие / А. В. Егранов. ЭВК. Иркутск: Изд-во ИГУ, 2013. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. ISBN 978-5-9624-0884
- 3. Шендрик, Р. Ю. Введение в физику сцинтилляторов 1 [Электронный ресурс] : учеб. пособие / Р. Ю. Шендрик. ЭВК. Иркутск : Изд-во ИГУ, 2013. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. ISBN 978-5-9624-0884-2
- 4. Шаскольская, М. П. Кристаллы [Текст] : научное издание / М. П. Шаскольская. Перераб. изд. М. : Наука, 1978. 207 с.
- 5. Мюллер, Георг. Выращивание кристаллов из расплава [Текст]: конвекция и неоднородности / Г. Мюллер; Пер.с англ.А.В.Бунэ;Под ред.В.И.Полежаева. М.: Мир, 1991. 149 с.: ил.; 24см. ISBN 5030021019: (в пер.):2.50 р. библиогр.:с.140-144 (206 назв.).-Предм.-имен.указ.:с.145-146.-Перевод изд.:Convection and inhomogeneities in crystal growth from the melt/G.Muller (Berlin etc.).
- 6. Бутягин, Павел Юрьевич. Химическая физика твердого тела [Электронный ресурс]: учеб. для студ., обуч. по напр. 511700 "Химия, физика и механика материалов" / П. Ю. Бутягин. ЭВК. М.: Изд-во МГУ, 2006. 273 с. Режим доступа: Электронный читальный зал "Библиотех". 2 доступа. ISBN 5-211-04970-5
- 7. Щука, Александр Александрович. Наноэлектроника [Электронный ресурс] : учеб. пособие для студ. вузов, обуч. по направл. подготовки "Прикл. математика и физика" / А. А. Щука. 2-е изд. ЭВК. М.: Бином. Лаборатория знаний, 2012. (Нанотехнологии). Режим доступа: ЭЧЗ "Библиотех". 15 доступ. ISBN 978-5-9963-1055-5

### б) периодические издания

http://perst.issp.ras.ru/Control/Inform/perst.htm

- в) список авторских методических разработок
- 1. Шалаев, А. А. Основы физического материаловедения [Текст]: учеб. пособие: в 2 ч. / А. А. Шалаев; рец.: В. В. Акимов, А. А. Гаврилюк; Иркут. гос. ун-т, Рос. акад. наук, Сиб. отд-ние, Ин-т геохимии им. А. П. Виноградова. Иркутск: Изд-во Иркут. гос. унта, 2013 . (Методы экспериментальной физики конденсированного состояния). Ч. 1. 2013. 159 с. (10 экз.)
- 2. Шалаев, Алексей Александрович (канд. физ.-мат. наук, снс) Основы физического материаловедения [Текст]: учеб. пособие: в 2 ч. / А. А. Шалаев; рец.: В. В. Акимов, А. А. Гаврилюк. Иркутск: Изд-во Иркут. гос. ун-та, 2013. Ч. 2. 2014. 175 с. (10 экз.)
- 3. Методы выращивания и исследования кристаллических материалов [Текст] : лаб. практикум / Иркут. гос. ун-т, Физ. фак. ; ред. Е. А. Раджабов ; рец. В. В. Акимов. Иркутск : Изд-во ИГУ, 2012. 82 с. (10 экз.)
- г) базы данных, информационно-справочные и поисковые системы
  - Книгафонд библиотека онлайн чтения. www.knigafund.ru
  - ЭЧЗ «БИБЛИОТЕХ» https://isu.bibliotech.ru/
  - ЭБС «ЛАНЬ» http://e.lanbook.com/
  - ЭБС «РУКОНТ» http://rucont.ru Архив научных журналов
  - JSTOR <a href="http://www.jstor.org">http://www.jstor.org</a>
  - Сайт кафедры экспериментальной физики http://medphysics-irk.ru

# VI. Материально-техническое обеспечение дисциплины (модуля)

### 6.1. Учебно-лабораторное оборудование:

Практические занятия по данной дисциплине проводятся в учебной аудитории по расписанию. Лабораторное оборудование не предусмотрено.

На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет, стандартные средствами просмотра презентаций и других материалов по курсу.

Имеются списки заданий и методическое руководство в электронном и печатном виде, в том числе в авторском учебном пособии.

### 6.2. Программное обеспечение:

Стандартные сервисы сети Интернет, стандартные средствами просмотра презентаций и других материалов по курсу

### 6.3. Технические и электронные средства:

Для проведения практических и лекционных занятий в качестве демонстрационного оборудования используются проектор, экран и меловая доска. Используются современные образовательные технологии: информационные (лекции и презентации в Power Point), проектные (мультимедиа, видео, документальные фильмы). Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов, в ходе которой они могут вычитывать научные статьи по темам курса. На лекциях могут использоваться мультимедийные средства: проектор (CASIO XJ-A241), переносной экран (Classic Solution, T195x195/1MW-LU/B), ноутбук Lenovo B590. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

Материалы: научные статьи и монографии из рецензируемых журналов, рассматривающие современные походы и исследования в области астрономии.

### VII. Образовательные технологии

В соответствии с требованиями  $\Phi \Gamma OC$  ВО по реализации компетентностного подхода, в учебном процессе используются активные и интерактивные формы проведения занятий. Интерактивные формы работы на учебных занятиях предусматривают активную позицию студентов при изучении материала, например, самостоятельно подготовить дополнение к теме и вынести его на обсуждение, провести дискуссию, включить элементы собственных научных исследований и сделать краткую презентацию своих выступлений на научных конференциях. Все это формирует способности применять знания, умения и личностные качества для успешной деятельности в области исследований космоса.

На практических занятиях студенты используют авторские задачи. По материалам наблюдений они приобретают исследовательские навыки, необходимые для работы по междис-

циплинарным направлениям, после получения базового образования и формируют компетенцию готовности выявить естественнонаучную сущность проблем, компетенцию готовности использовать методы теоретической и экспериментальной физики в профессиональной деятельности по изучению космического пространства и компетенцию способности самостоятельно работать на астрофизических приборах.

Программа основана на использовании современных образовательных технологий: информационных (лекции и презентации в Power Point), проектных (мультимедиа, видео), дистанционные, научно-исследовательской направленности и т. п.

# VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

Фонд оценочных средств (ФОС) представлен в приложении.

### 8.1.1. Оценочные средства для входного контроля

Проводится опрос на первом занятии.

### 8.1.2. Оценочные средства текущего контроля

Типы контроля успешности освоения программы студентом:

- текущий контроль успеваемости;
- промежуточная аттестация (зачет);

Текущий контроль успеваемости – это проверка усвоения учебного материала, регулярно осуществляемая на протяжении семестра.

Промежуточная аттестация (зачет) - это оценка совокупности знаний, умений, навыков по дисциплине в целом или по ее разделам.

К видам контроля относятся:

- устные формы контроля;
- письменные формы контроля;
- контроль с помощью технических средств и информационных систем.

К традиционным формам контроля относятся:

- проверка выполнения домашнего задания
- коллоквиум
- зачет
- тест
- контрольная работа

### 8.1.3. Оценочные средства для промежуточной аттестации

Промежуточная аттестация проводится в форме зачёта.

**Текущая аттестация** проводится еженедельно. Критерий формирования оценки – посещаемость аудиторных занятий, активность студентов на занятиях, уровень подготовки к семинарам, выполнение домашних работ.

**Промежуточная аттестация (зачет)** проводится в устной форме по билетам, которые содержат одно задание с теоретическими и практическими элементами.

### При оценке знаний и умений учитывается:

понимание изученного содержания, самостоятельность суждений, степень систематизации и глубины знаний;

содержание умения и возможность его применения в практической деятельности; наличие ошибок, их количество, характер и влияние на качество выполненной работы, временной норматив.

В процессе контроля проверяется сформированность следующих профессиональных компетенций:

Способен анализировать современное состояние методов и технологий модификации свойств наноматериалов и наноструктур;

Способен проводить научные исследования как самостоятельно, так и в коллективе.

Владеет современными технологиями проведения экспериментальных и теоретических научных исследований с использованием, в том числе, сложного физического оборудования. Умеет пользоваться при проведении научных исследований современными информациоными технологиями. Обобщает отечественный и зарубежный опыт проведения научных исследований в своей области исследований.

#### Должен знать:

основные физико-химические закономерности, определяющие свойства материалов электронной техники;

термодинамический и кинетический методы анализа и их применение при получении материалов и компонентов твердотельной электроники;

основные положения физической химии фаз переменного состава и ее применение для управления составом и свойствами материалов электронной техники.

#### уметь:

проводить термодинамические и кинетические расчеты условий получения материалов электронной техники с заданными свойствами;

проводить анализ фазовых равновесий на основе Т-х и Р-Т-х диаграмм состояния полупроводниковых систем для выбора условий проведения процессов получения, очистки и легирования полупроводниковых материалов.

### владеть:

методами физико-химического анализа материалов и процессов электронной техники.

| Pa <sub>3</sub> | работчики |  |
|-----------------|-----------|--|
|                 |           |  |



Программа рассмотрена на заседании кафедры Общей и экспериментальной физики «24» марта 2022г.

Протокол № 6

Зав.кафедрой д.ф.-м.н. А.А. Гаврилюк

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.