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ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ 

 

Разработан для учебной дисциплины Б1.О.45 «МОДЕЛИРОВАНИЕ 

БИОЛОГИЧЕСКИХ ПРОЦЕССОВ»  специальности 06.05.01 «Биоинженерия и 

биоинформатика», специализация «Биоинженерия и биоинформатика». Фонд оценочных 

материалов (ФОМ) включает оценочные материалы для проведения текущего контроля, 

промежуточной аттестации в форме зачета. 

Оценочные материалы соотнесены с требуемыми результатами освоения 

образовательной программы 06.05.01 «Биоинженерия и биоинформатика», в соответствии 

с содержанием рабочей программы учебной дисциплины Б1.О.45 «Моделирование 

биологических процессов» с учетом ОПОП.  

Нормативные документы, регламентирующие разработку ФОМ: 

- статья 2, часть 9 Федерального закона «Об образовании в Российской 

Федерации», ФЗ-273, от 29.12.2012 г.; 

- ФГОС ВО по специальности 06.05.01 «Биоинженерия и биоинформатика», 

утвержденный приказом Министерства науки и высшего образования Российской 

Федерации 12 августа 2020 г. № 973. 

 

1. Компетенции, формируемые в процессе изучения дисциплины (4 курс, 8 семестр) 

 

ОПК-2: Способен использовать специализированные знания фундаментальных разделов 

математики, физики, химии и биологии для проведения исследований в области 

биоинженерии, биоинформатики и смежных дисциплин (модулей) 

ОПК-3: Способен проводить экспериментальную работу с организмами и клетками, 

использовать физико-химические методы исследования макромолекул, математические 

методы обработки результатов биологических исследований 

 

 

Компетенция Индикаторы 

компетенций 

Результаты обучения Формы и методы 

контроля и оценки 

ОПК-2 

Способен 

использовать 

специализированные 

знания 

фундаментальных 

разделов 

математики, физики, 

химии и биологии 

для проведения 

исследований в 

области 

биоинженерии, 

биоинформатики и 

смежных дисциплин 

(модулей) 

ИДК ОПК-2.1 

Демонстрирует 

специализированные 

знания в области 

фундаментальных 

разделов 

математики, физики, 

химии,  биологии и 

перспективы 

междисциплинарных 

исследований 

 

Знать: литературу по теме, 

владеть навыками анализа 

информации сети 

«интернет» для поиска и 

освоения новых методов 

анализа данных и 

информационных 

технологий, применимых 

при изучении физиологии, 

генетики и экологии 

биосистем. 

Уметь: выбирать 

оптимальные методы и 

программы для решения 

задач в области анализа 

биологической 

информации по разным 

разделам биологических 

дисциплин включающих 

физиологию, генетику и 

экологию на уровне 

организмов и биосистем. 

Владеть: методами 

построение сложных 

алгоритмов, принцип 

нисходящего 

Текущий контроль: 

- письменная работа 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 
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программирования для 

анализа сложных 

биологических моделей и 

биосистем в физиологии, 

биохимии (метаболизме), 

генетики и экологии. 

ИДК ОПК-2.2 

Умеет использовать 

навыки проведения 

исследований в 

области 

биоинженерии, 

биоинформатики с 

учетом 

специализированных 

фундаментальных 

знаний 

Знать: классификацию 

алгоритмов, основные 

типы алгоритмов, 

синтаксис базовых 

алгоритмов в языках 

программирования, 

процедуры и функции в 

языках программирования, 

базовые функции 

обработки и визуализации 

статистических данных и 

результатов моделирования 

научных экспериментов. 

Уметь: анализировать 

входные и выходные 

данные разрабатываемого 

алгоритма, производить 

отладку и тестирование 

разработанных алгоритмов 

описываемых 

биологических моделей и 

систем, научных 

экспериментов, 

обрабатывать и 

визуализировать 

статистические данные и 

результаты моделирования 

с помощью базовых 

средств языков 

программирования. 

Владеть: навыками анализа 

сложных данных в 

различных отраслях 

биологии и 

биоинформатики для 

планирования и 

проведения научных 

экспериментов. 

Текущий контроль: 

- письменная работа 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 

ИДК ОПК-2.3 

Владеет методами 

химии, физики и  

математического 

моделирования для 

проведения 

исследований в 

области 

биоинженерии, 

биоинформатики 

Знать: классификацию 

основных типов 

математических моделей и 

математических функций 

для описания и 

исследования 

биологических систем и 

биологических процессов. 

Уметь: осуществлять 

интерпретацию 

результатов 

математического 

моделирования и 

математических расчетов. 

Владеть: методами анализа 

комплексных 

биологических данных с 

использованием различных 

Текущий контроль: 

- письменная работа 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 
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вычислительных и 

численных методов 

ОПК-3 

Способен проводить 

экспериментальную 

работу с 

организмами и 

клетками, 

использовать 

физико-химические 

методы 

исследования 

макромолекул, 

математические 

методы обработки 

результатов 

биологических 

исследований 

ИДК ОПК-3.1 

Проводит 

экспериментальную 

работу с 

организмами и 

клетками с 

использованием 

физико-химических 

методов 

исследования 

макромолекул 

Знать: основные 

математические понятия 

и методы, применимые 

для анализа биологичких 

систем и биологических 

данных, полученных при 

исследовании 

биологических объектов. 

Уметь: адекватно 

выбрать математический 

метод для описания 

биологических объектов 

и биологических 

процессов с учетом 

возможности 

применение 

современных 

вычислительных систем. 

Владеть: основными 

принципами 

формализации сложных 

биологических систем в 

виде математических 

моделей, анализируемых 

с помощью 

современного 

вычислительного 

оборудования. 

Текущий контроль: 

- письменная работа 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 

ИДК ОПК-3.2 

Демонстрирует 

практические 

навыки 

математических 

методов обработки 

результатов 

экспериментальных 

исследований 

Знать: цель, основные 

задачи и области примене 

ния математических и 

статистических методов в 

рамках направления 

подготовки. 

Уметь: формализовать 

исследуемую 

биологическую систему и 

биологический процесс в 

виде математической 

модели, использовать 

биологические данные для 

проверки и тестирования 

математички моделей и 

анализа достоверностей 

результатов. 

Владеть: методами анализа 

и исследования 

разработанных 

математических моделей 

для описания различных 

биологических процессов и 

биосистем, методами 

тестирования 

достоверностей 

получаемых данных. 

Текущий контроль: 

- письменная работа 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 

ИДК ОПК-3.3 Знать: особенности и 

основные свойства 

Текущий контроль: 

- письменная работа 
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Владеет опытом 

применения методов 

для исследования 

макромолекул, 

обработки 

результатов 

биологических 

исследований,  

прогнозирования 

перспектив и 

социальных 

последствий своей 

профессиональной 

деятельности. 

биологических систем, 

описываемых с помощью 

математических методов, 

методов кластеризации и 

систематизации 

биологических объектов. 

Уметь: выбирать 

адекватные методы для 

анализа биологических 

данных систематизации и 

кластеризации 

биологических объектов. 

Владеть: навыками 

совершенствования своих 

профессиональных качеств 

в области построения 

математических моделей и 

анализа и систематизации 

биологических данных. 

(решение самостоятельных 

заданий) 

 

 

 

 

- Промежуточная 

аттестация: зачет 
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2. Оценочные материалы текущего контроля 

В рамках дисциплины «Моделирование биологических процессов» используются 

следующие формы текущего контроля - письменная работа по решению самостоятельных 

заданий (все формулировки заданий для самостоятельного решения с необходимыми 

сопроводительными материалами выложены на образовательном портале ИГУ в темах 

курса «Моделирование биологических процессов»); 

 

Перечень письменных работ для самостоятельного выполнения по разделам – темам 

дисциплины. 

 

Задание по теме 1: 
Цель: Разработать функцию на R, которая вычисляет координаты точки пересечения двух 
прямых на плоскости и визуализирует результат с помощью базовых графических 
возможностей R. 
Описание: 
В геометрии классическая задача - найти точку пересечения двух прямых. Зная уравнения 
прямых, можно математически определить координаты этой точки (если прямые не 
параллельны). В этом задании вам предстоит реализовать функцию на R, которая: 
1. Принимает коэффициенты уравнений двух прямых в канонической форме (Ax + By = C). 
2. Вычисляет координаты точки пересечения, если она существует. 
3. Визуализирует прямые и точку пересечения на графике. 
Задание: 
1. Разработка функции find_intersection(A1, B1, C1, A2, B2, C2): 

Разработайте функцию на языке R под названием find_intersection(A1, B1, C1, A2, 

B2, C2), которая принимает шесть числовых аргументов: 

o A1, B1, C1: Коэффициенты первой прямой (A1x + B1y = C1). 

o A2, B2, C2: Коэффициенты второй прямой (A2x + B2y = C2). 
Функция должна выполнять следующие действия: 
o Проверить, являются ли прямые параллельными. Если определитель матрицы 

коэффициентов равен нулю (A1*B2 - A2*B1 == 0), то прямые параллельны, и функция 
должна вернуть сообщение "Прямые параллельны, пересечения нет." 

o Если прямые не параллельны, вычислить координаты точки пересечения (x, y), 
используя формулы: 

o x = (C1*B2 - C2*B1) / (A1*B2 - A2*B1) 

o y = (A1*C2 - A2*C1) / (A1*B2 - A2*B1) 

o Создать график, на котором будут изображены обе прямые и точка пересечения. 

Используйте функции plot(), abline(), и points(). Ось Х и Y должны быть в 
диапазоне, который отображает точку пересечения и позволяет увидеть линии. 
Убедитесь, что график имеет понятные подписи осей и заголовок. Используйте 
цветные линии для различения прямых. Точка пересечения должна быть выделена 
другим цветом и формой. 

o Вернуть список, содержащий следующие элементы: 

 x: Координата x точки пересечения (если она существует). 

 y: Координата y точки пересечения (если она существует). 

 message: Строковое сообщение ("Прямые параллельны, пересечения нет." или 
"Точка пересечения найдена."). 

2. Тестирование функции: 
o Протестируйте функцию с различными наборами коэффициентов, чтобы убедиться, 

что она правильно определяет точку пересечения и обрабатывает случай 
параллельных прямых. 

o Убедитесь, что визуализация корректна и легко читаема. 

Ответ: 

find_intersection <- function(A1, B1, C1, A2, B2, C2) { 

  # Вычисление определителя 

  determinant <- A1 * B2 - A2 * B1 
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  # Проверка на параллельность 

  if (determinant == 0) { 

    message <- "Прямые параллельны, пересечения нет." 

    print(message) # Добавил для отображения в консоли 

    return(list(x = NULL, y = NULL, message = message)) 

  } else { 

    # Вычисление координат точки пересечения 

    x <- (C1 * B2 - C2 * B1) / determinant 

    y <- (A1 * C2 - A2 * C1) / determinant 

 

    # Создание графика 

    # Определение диапазонов графика (автоматическое масштабирование) 

    x_range <- c(x - 5, x + 5)  # Расширяем диапазон вокруг x 

    y_range <- c(y - 5, y + 5)  # Расширяем диапазон вокруг y 

 

    # Создание пустого графика с заданными диапазонами 

    plot(x = NULL, y = NULL, xlim = x_range, ylim = y_range, 

         xlab = "x", ylab = "y", 

         main = "Пересечение двух прямых") 

 

    # Добавление первой прямой 

    abline(C1/B1, -A1/B1, col = "blue", lwd = 2) # y = C1/B1 - (A1/B1)*x 

    # Добавление второй прямой 

    abline(C2/B2, -A2/B2, col = "red", lwd = 2)  # y = C2/B2 - (A2/B2)*x 

 

    # Добавление точки пересечения 

    points(x, y, pch = 19, col = "green", cex = 2) 

 

    message <- "Точка пересечения найдена." 

    return(list(x = x, y = y, message = message)) 

  } 

} 

 

 

# --- Пример использования и тестирования --- 

 

# Тест 1: Пересекающиеся прямые 

A1 <- 1 

B1 <- 1 

C1 <- 5 

A2 <- 2 

B2 <- -1 

C2 <- 4 

 

result1 <- find_intersection(A1, B1, C1, A2, B2, C2) 

print(result1) # Expected: x = 3, y = 2 

 

Задание по теме 2: 
Цель: Реализовать алгоритм градиентного спуска на языке R для нахождения минимума 
заданной функции одной переменной и визуализировать процесс сходимости алгоритма на 
графике. 
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Описание: 
Градиентный спуск - это итеративный алгоритм оптимизации первого порядка, используемый 
для нахождения локального минимума функции. Суть алгоритма заключается в том, чтобы 
двигаться в направлении, противоположном градиенту (наискорейшего спуска) функции в 
каждой точке, пока не будет достигнут минимум. В этом задании вы реализуете этот алгоритм 
для функции одной переменной и визуализируете шаги алгоритма на графике функции. 
Задание: 
1. Определение целевой функции: 

Определите функцию одной переменной, для которой будете искать минимум. В качестве 

примера можно использовать функцию f(x) = x^2 - 4*x + 3. 

2. Реализация функции градиентного спуска gradient_descent(f, df, x0, 

learning_rate, n_iter): 

Разработайте функцию на языке R под названием gradient_descent(f, df, x0, 

learning_rate, n_iter), которая принимает следующие аргументы: 

o f: Целевая функция (функция одной переменной). 

o df: Первая производная (градиент) целевой функции. 

o x0: Начальная точка (стартовое значение x). 

o learning_rate: Размер шага (learning rate). 

o n_iter: Количество итераций алгоритма. 
Функция должна выполнять следующие действия: 

o Инициализировать вектор x_history для хранения истории значений x на каждой 

итерации. Первый элемент вектора должен быть x0. 

o В цикле повторять n_iter раз: 

 Вычислить новую точку x_new как x - learning_rate * df(x), где x - текущее 
значение x. 

 Добавить x_new в вектор x_history. 

 Обновить значение x на x_new. 

o Вернуть вектор x_history. 
3. Визуализация процесса сходимости: 

o Создайте график функции f(x) в заданном диапазоне (например, от -2 до 6). 

o Нанесите на график точки, соответствующие значениям x_history, полученным в 

результате работы функции gradient_descent. Используйте разные цвета или 
размеры точек для отображения последовательности итераций. 

o Добавьте заголовок и подписи осей, чтобы график был понятным. 

Ответ: 

# Функция градиентного спуска 

gradient_descent <- function(f, df, x0, learning_rate, n_iter) { 

  x_history <- numeric(n_iter + 1) # Создание числового вектора 

  x_history[1] <- x0 

 

  x <- x0 

  for (i in 1:n_iter) { 

    x_new <- x - learning_rate * df(x) 

    x_history[i + 1] <- x_new 

    x <- x_new 

  } 

 

  return(x_history) 

} 

 

# Целевая функция 

f <- function(x) { 

  x^2 - 4*x + 3 

} 

 



9 

 

# Производная целевой функции 

df <- function(x) { 

  2*x - 4 

} 

 

# Параметры алгоритма 

x0 <- -1 

learning_rate <- 0.1 

n_iter <- 20 

 

# Запуск градиентного спуска 

x_history <- gradient_descent(f, df, x0, learning_rate, n_iter) 

 

# Визуализация процесса сходимости 

x_range <- seq(-2, 6, length.out = 100)  # Диапазон x для графика функции 

y_values <- f(x_range) # Значения функции в диапазоне x 

 

plot(x_range, y_values, type = "l", 

     xlab = "x", ylab = "f(x)", 

     main = "Градиентный спуск", 

     col = "blue") 

abline(v = 2, col = "gray", lty = 2) # Истинный минимум (x=2) 

 

# Добавление точек на график - изменяем цвет от начала к концу 

colors <- colorRampPalette(c("red", "green"))(n_iter + 1) # Создаем палитру цветов 

points(x_history, f(x_history), pch = 19, col = colors, cex = 1.5) 

text(x_history, f(x_history), labels = 1:(n_iter+1), pos = 3, cex = 0.7, col="black") # Adding 

labels for each point representing the iteration number 

 

# Вывод результатов 

print(x_history) 

print(paste("Минимум функции найден в точке x =", x_history[n_iter + 1])) 

 

Задание по теме 3: 
Цель: Научиться численно решать обыкновенные дифференциальные уравнения (ОДУ) с 

помощью библиотеки deSolve в R, применив это к модели голистического роста, включающей 
в себя эффект Алли. Также следует визуализировать полученные результаты. 
Описание: 
Модель голистического роста описывает изменение численности популяции во времени, 
учитывая ограничения ресурсов и эффект Алли, когда при низкой плотности популяции рост 
замедляется или становится отрицательным. Уравнение голистического роста с эффектом 
Алли имеет вид: 
dN/dt = r * N * ( (N/K) - a) * (1 - (N/K)) 

где: 

 N - численность популяции 

 t - время 

 r - максимальная скорость роста 

 K - ёмкость среды 

 a - параметр Алли (порог, ниже которого популяция не может расти) 

В этом задании ваша задача - численно решить это уравнение, визуализировать кривую роста 
популяции и проанализировать влияние параметра Алли на динамику популяции. 
Задание: 
1. Установка и загрузка библиотеки deSolve: Установите библиотеку deSolve, если она 

еще не установлена, и загрузите ее в среду R. 
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2. Определение функции, описывающей дифференциальное уравнение: Создайте 
функцию на R, которая описывает дифференциальное уравнение голистического роста с 

эффектом Алли. Функция должна принимать время t, состояние N (численность 

популяции), и параметры (r, K, a). 

3. Настройка параметров и начальных условий: Задайте значения параметров r, K, a и 

начальную численность популяции N0. Рассмотрите несколько значений параметра a 

(например, a = 0.1, a = 0.3, a = 0.5) для исследования его влияния. 

4. Численное решение ОДУ с использованием ode(): Используйте функцию ode() из 

библиотеки deSolve для численного решения дифференциального уравнения. Задайте 
временной интервал, начальные условия, и параметры, определенные ранее. 

5. Визуализация результатов: Создайте график, на котором по оси X будет время, а по оси 

Y - численность популяции N. Отобразите на графике кривые роста популяции для разных 

значений параметра a, используя разные цвета или типы линий. Пометьте оси и добавьте 
заголовок к графику. Добавьте легенду, указывающую, какая кривая соответствует какому 

значению a. 

6. Анализ результатов: Проанализируйте полученные графики. Как влияет параметр Алли 

a на динамику популяции? При каких значениях a популяция вымирает, а при каких 
выживает и достигает равновесия? 

Ответ: 

# 1. Установка и загрузка библиотеки deSolve 

# install.packages("deSolve") # Раскомментировать, если deSolve не установлена. 

library(deSolve) 

 

# 2. Функция, описывающая дифференциальное уравнение 

holistic_growth <- function(t, state, parameters) { 

  with(as.list(c(state, parameters)), { 

    dN <- r * N * ((N/K) - a) * (1 - (N/K)) 

    list(dN) 

  }) 

} 

 

# 3. Настройка параметров и начальных условий 

parameters <- c( 

  r = 1,   # Максимальная скорость роста 

  K = 100  # Ёмкость среды 

) 

 

N0 <- 10  # Начальная численность популяции 

state <- c(N = N0) 

times <- seq(0, 200, by = 1)  # Временной интервал 

 

# Параметры Алли для анализа 

a_values <- c(0.1, 0.3, 0.5) 

 

# 4. Численное решение ОДУ с использованием ode() и сохранение результатов 

results <- list()  # Список для хранения результатов для каждого значения 'a' 

 

for (i in 1:length(a_values)) { 

  parameters_with_a <- c(parameters, a = a_values[i]) # adding 'a' 

  out <- ode(y = state, times = times, func = holistic_growth, parms = parameters_with_a) 

  results[[i]] <- as.data.frame(out) 

  results[[i]]$a <- a_values[i] # Store the 'a' value for plotting 

} 
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# 5. Визуализация результатов 

colors <- c("blue", "red", "green") 

linetypes <- c(1, 2, 3) 

 

plot(times, results[[1]]$N, type = "l", col = colors[1], lty = linetypes[1], 

     xlab = "Время", ylab = "Численность популяции (N)", 

     main = "Голостический рост с эффектом Алли", 

     ylim = c(0, K), # set limits for clearer visualization 

     xlim = c(0, max(times))) # Adjust xlim for proper display 

 

for (i in 2:length(a_values)) { 

  lines(times, results[[i]]$N, col = colors[i], lty = linetypes[i]) 

} 

 

legend("topright", legend = paste("a =", a_values), 

       col = colors, lty = linetypes, title = "Параметр Алли") 

 

Задание по теме 4: 
Цель: Научиться численно решать системы обыкновенных дифференциальных уравнений 

(ОДУ) с помощью библиотеки deSolve в R, применив это к классической модели "хищник-
жертва" Лотки-Вольтерры. Также требуется визуализировать полученные результаты и 
проанализировать поведение системы. 
Описание: 
Модель Лотки-Вольтерры описывает динамику двух популяций: жертвы (например, зайцы) и 
хищника (например, лисы). Система уравнений имеет вид: 
dX/dt = a*X - b*X*Y 

dY/dt = c*X*Y - d*Y 

где: 

 X - численность жертвы 

 Y - численность хищника 

 t - время 

 a - скорость роста жертвы в отсутствие хищника 

 b - коэффициент влияния хищника на жертву (вероятность нападения) 

 c - коэффициент эффективности превращения жертвы в хищника (увеличение популяции 
хищников за счёт жертв) 

 d - скорость смертности хищника в отсутствие жертвы 

В этом задании вам предстоит численно решить эту систему уравнений, визуализировать 
динамику популяций и проанализировать влияние параметров на поведение системы. 
Задание: 
1. Установка и загрузка библиотеки deSolve: Установите библиотеку deSolve, если она 

еще не установлена, и загрузите ее в среду R. 
2. Определение функции, описывающей систему дифференциальных уравнений: 

Создайте функцию на R, которая описывает систему дифференциальных уравнений 

Лотки-Вольтерры. Функция должна принимать время t, вектор состояний state 

(содержащий численности жертвы X и хищника Y), и параметры (a, b, c, d). 

3. Настройка параметров и начальных условий: Задайте значения параметров a, b, c, d и 

начальные численности популяций X0 и Y0. Необходимо продумать логичные значения 
параметров, основываясь на их биологическом смысле. 

4. Численное решение ОДУ с использованием ode(): Используйте функцию ode() из 

библиотеки deSolve для численного решения системы дифференциальных уравнений. 
Задайте временной интервал, начальные условия, и параметры, определенные ранее. 

5. Визуализация результатов: Создайте два отдельных графика или один график с двумя 

линиями, отображающими динамику численности жертвы X и хищника Y во времени. 
Пометьте оси, добавьте заголовок к графику и легенду, указывающую, какая линия 
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соответствует какой популяции. Отобразите также фазовую плоскость (X vs. Y). Это 
позволит выявить характер движения системы. 

6. Анализ результатов: Проанализируйте полученные графики. Опишите характерные 
особенности динамики популяций. Какие соотношения между параметрами приводят к 
устойчивым колебаниям, а какие - к вымиранию одной из популяций или всей системы? 
Проведите эксперименты с разными наборами параметров. 

Ответ: 

# 1. Установка и загрузка библиотеки deSolve 

# install.packages("deSolve") # Раскомментировать, если deSolve не установлена. 

library(deSolve) 

 

# 2. Функция, описывающая систему дифференциальных уравнений Лотки-Вольтерры 

lotka_volterra <- function(t, state, parameters) { 

  with(as.list(c(state, parameters)), { 

    dX <- a*X - b*X*Y 

    dY <- c*X*Y - d*Y 

    list(c(dX, dY)) 

  }) 

} 

 

# 3. Настройка параметров и начальных условий 

parameters <- c( 

  a = 0.5,  # Скорость роста жертвы 

  b = 0.01, # Влияние хищника на жертву 

  c = 0.01, # Эффективность превращения жертвы в хищника 

  d = 0.3   # Скорость смертности хищника 

) 

 

state <- c(X = 100, Y = 20) # Начальные численности жертвы и хищника 

times <- seq(0, 100, by = 0.1) # Временной интервал 

 

# 4. Численное решение ОДУ с использованием ode() 

out <- ode(y = state, times = times, func = lotka_volterra, parms = parameters) 

out_df <- as.data.frame(out) # Convert to data frame for easier plotting 

 

# 5. Визуализация результатов 

par(mfrow = c(1,2)) # Устанавливаем layout для двух графиков в одной строке 

 

# График динамики популяций во времени 

plot(out_df$time, out_df$X, type = "l", col = "blue", 

     xlab = "Время", ylab = "Численность", 

     main = "Динамика хищник-жертва", 

     ylim = c(0, max(out_df$X, out_df$Y))) # Adjust ylim for better display 

lines(out_df$time, out_df$Y, type = "l", col = "red") 

legend("topright", legend = c("Жертва", "Хищник"), col = c("blue", "red"), lty = 1) 

 

# Фазовая плоскость 

plot(out_df$X, out_df$Y, type = "l", 

     xlab = "Численность жертвы", ylab = "Численность хищника", 

     main = "Фазовая плоскость (X vs. Y)", 

     col = "darkgreen") 

points(out_df$X[1], out_df$Y[1], pch=16, col="blue") # Начальная точка 
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text(out_df$X[1], out_df$Y[1], "Начало", pos=4, col="blue") # Text for clarity 

 

Задание по теме 5: 
Цель: Изучить применение критерия Колмогорова-Смирнова для проверки гипотезы о том, 
что заданная выборка данных подчиняется биномиальному распределению. Развить навыки 
работы с функциями распределения, статистическими тестами и визуализацией данных в R. 
Описание: 
Критерий Колмогорова-Смирнова (K-S тест) – это непараметрический критерий для проверки 
согласия эмпирического распределения выборки с заданным теоретическим распределением. 
В данном задании вам предстоит: 
1. Сгенерировать выборку случайных чисел. 
2. Проверить, соответствует ли эта выборка биномиальному распределению с заданными 

параметрами, используя K-S тест. 
3. Визуализировать результаты теста и обосновать вывод. 
Задание: 
1. Генерация выборки: 

o Сгенерируйте выборку из n = 100 случайных чисел, представляющих собой 

результаты k успехов в m = 10 независимых испытаниях по схеме Бернулли с 

вероятностью успеха p = 0.4. Используйте функцию rbinom() в R. Таким образом, 
каждое число в вашей выборке будет целым числом от 0 до 10. 

2. Функция для критерия K-S: 

o Используйте функцию ks.test() в R. В качестве первого аргумента передайте вашу 

выборку. В качестве второго аргумента - pbinom, а также задайте параметры size = 

m и prob = p. Например: ks.test(your_sample, "pbinom", size = m, prob = p). 
3. Интерпретация результатов: 

o Проанализируйте результаты, возвращенные функцией ks.test(). Обратите 

внимание на p-value. Сформулируйте нулевую гипотезу (H0) и альтернативную 

гипотезу (H1) для этого теста. Какой вывод вы можете сделать на основе полученного 

p-value при уровне значимости alpha = 0.05? 
4. Визуализация (Дополнительно): 

o Постройте гистограмму вашей выборки. 
o Поверх гистограммы постройте график функции вероятности биномиального 

распределения с параметрами m и p. Для этого можно использовать функцию 

dbinom(). 

Ответ: 

# 1. Генерация выборки 

n <- 100        # Размер выборки 

m <- 10         # Количество испытаний Бернулли 

p <- 0.4         # Вероятность успеха в одном испытании 

set.seed(123)    # Для воспроизводимости результатов 

sample_data <- rbinom(n, size = m, prob = p) 

 

# 2. Критерий K-S 

ks_result <- ks.test(sample_data, "pbinom", size = m, prob = p) 

 

# 3. Интерпретация результатов 

print(ks_result) 

 

# Нулевая гипотеза (H0):  Выборка происходит из биномиального распределения с 

параметрами size = m, prob = p. 

# Альтернативная гипотеза (H1): Выборка не происходит из биномиального 

распределения с параметрами size = m, prob = p. 

 

alpha <- 0.05 
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if (ks_result$p.value > alpha) { 

  cat("P-value =", ks_result$p.value, "> alpha =", alpha, "\n") 

  cat("Не отклоняем нулевую гипотезу.  Выборка, вероятно, происходит из биномиального 

распределения.\n") 

} else { 

  cat("P-value =", ks_result$p.value, "<= alpha =", alpha, "\n") 

  cat("Отклоняем нулевую гипотезу.  Выборка, вероятно, не происходит из биномиального 

распределения.\n") 

} 

# 4. Визуализация (Дополнительно) 

# Гистограмма выборки 

hist(sample_data, breaks = seq(-0.5, m + 0.5, by = 1),  # центрируем столбцы по 

целочисленным значениям 

     main = "Гистограмма выборки и биномиальное распределение", 

     xlab = "Количество успехов", ylab = "Частота", 

     freq = FALSE,  # Нормализуем для отображения плотности вероятности 

     col = "lightblue") 

 

# График функции вероятности биномиального распределения 

x_values <- 0:m 

binom_probs <- dbinom(x_values, size = m, prob = p) 

 

lines(x_values, binom_probs, type = "h", lwd = 2, col = "red") 

points(x_values, binom_probs, pch = 16, col = "red") 

legend("topright", legend = c("Выборка", "Биномиальное распределение"), 

       col = c("lightblue", "red"), lty = 1, lwd = 2) 

 

Задание по теме 6: 
Цель: Научиться применять критерий Колмогорова-Смирнова для проверки гипотезы о том, 
что выборка данных следует логнормальному распределению. Студенты должны 
продемонстрировать понимание логнормального распределения, умение оценивать его 
параметры, и навыки работы с функциями распределения, статистическими тестами и 
визуализацией в R. 
Описание: 
Логнормальное распределение широко используется для моделирования данных, которые 
неотрицательны и могут иметь асимметричную форму. Оно характеризуется двумя 

параметрами: meanlog (среднее логарифма данных) и sdlog (стандартное отклонение 
логарифма данных). 
Ваша задача – проверить, действительно ли сгенерированная выборка, или загруженная из 
файла, подчиняется логнормальному распределению. 
Задание: 
1. Генерация или загрузка данных: 

o Вариант 1 (Генерация): Сгенерируйте выборку из n = 100 случайных чисел, 

подчиняющихся логнормальному распределению с параметрами meanlog = 0 и 

sdlog = 1. Используйте функцию rlnorm() в R. 

o Вариант 2 (Загрузка из файла): Предположим, у вас есть файл data.csv, 
содержащий столбец числовых данных. Загрузите данные из файла в R. Убедитесь, 

что данные положительные. R # Загрузка данных из CSV файла (пример) # 
data <- read.csv("data.csv") # sample_data <- data$ваш_столбец  

2. Оценка параметров логнормального распределения: 

o Оцените параметры meanlog и sdlog для вашей выборки. Для этого можно 

использовать следующие формулы: 
 meanlog = mean(log(sample_data)) 
 sdlog = sd(log(sample_data)) 

3. Критерий Колмогорова-Смирнова: 
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o Используйте функцию ks.test() в R для проверки гипотезы о соответствии выборки 

логнормальному распределению. 

 В качестве первого аргумента передайте вашу выборку (sample_data). 

 В качестве второго аргумента укажите "plnorm" (функция распределения 
логнормального распределения). 

 Задайте параметры meanlog и sdlog, оцененные в предыдущем шаге: 
ks.test(sample_data, "plnorm", meanlog = estimated_meanlog, sdlog = 

estimated_sdlog). 
4. Интерпретация результатов: 

o Проанализируйте результаты, выведенные функцией ks.test(). Сформулируйте 

нулевую (H0) и альтернативную (H1) гипотезы. На основе p-value сделайте вывод о 

том, можно ли отклонить H0 на уровне значимости alpha = 0.05. 

5. Визуализация (Дополнительно): 
o Постройте гистограмму вашей выборки. 
o Постройте график теоретической функции плотности вероятности логнормального 

распределения с оцененными параметрами поверх гистограммы. Для этого 

используйте функцию dlnorm(). 

Ответ: 

# 1. Генерация выборки 

n <- 100 

meanlog <- 0 

sdlog <- 1 

set.seed(123) # Для воспроизводимости результатов 

sample_data <- rlnorm(n, meanlog = meanlog, sdlog = sdlog) 

 

# # Альтернативный вариант: Загрузка данных из файла (раскомментируйте и 

адаптируйте) 

# data <- read.csv("data.csv") 

# sample_data <- data$your_column 

 

# 2. Оценка параметров логнормального распределения 

estimated_meanlog <- mean(log(sample_data)) 

estimated_sdlog <- sd(log(sample_data)) 

 

cat("Оцененные параметры: meanlog =", estimated_meanlog, ", sdlog =", estimated_sdlog, 

"\n") 

 

# 3. Критерий Колмогорова-Смирнова 

ks_result <- ks.test(sample_data, "plnorm", meanlog = estimated_meanlog, sdlog = 

estimated_sdlog) 

 

# 4. Интерпретация результатов 

print(ks_result) 

 

# H0: Выборка происходит из логнормального распределения с оцененными параметрами. 

# H1: Выборка не происходит из логнормального распределения с оцененными 

параметрами. 

 

alpha <- 0.05 

 

if (ks_result$p.value > alpha) { 

  cat("P-value =", ks_result$p.value, "> alpha =", alpha, "\n") 
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  cat("Не отклоняем нулевую гипотезу. Выборка, вероятно, происходит из логнормального 

распределения.\n") 

} else { 

  cat("P-value =", ks_result$p.value, "<= alpha =", alpha, "\n") 

  cat("Отклоняем нулевую гипотезу. Выборка, вероятно, не происходит из логнормального 

распределения.\n") 

} 

 

# 5. Визуализация (Дополнительно) 

hist(sample_data, freq = FALSE, main = "Гистограмма и логнормальное распределение", 

     xlab = "Значения", ylab = "Плотность", col = "lightblue") 

 

x <- seq(min(sample_data), max(sample_data), length = 100) 

y <- dlnorm(x, meanlog = estimated_meanlog, sdlog = estimated_sdlog) 

lines(x, y, col = "red", lwd = 2) 

legend("topright", legend = c("Выборка", "Логнормальное распределение"), 

       col = c("lightblue", "red"), lty = 1, lwd = 2) 

 

Задание по теме 7: 
Цель: Разработать алгоритм для генерации случайных нуклеотидных последовательностей и 
научиться записывать сгенерированные последовательности в формат FASTA. Развить 
навыки работы со строками, циклами и файлами в R. 
Описание: 
Нуклеотидные последовательности являются основой генетической информации. Формат 
FASTA – это стандартный текстовый формат для представления нуклеотидных или 
аминокислотных последовательностей. Последовательность в FASTA файле начинается со 
строки заголовка (иногда называемой комментарием или описанием), которая начинается с 
символа ">", за которым следует описание последовательности. Далее следуют сами 
нуклеотиды (A, T, C, G) или аминокислоты (для белковых последовательностей). 
Задание: 
1. Разработка алгоритма генерации: 

o Разработайте алгоритм, который будет генерировать случайную нуклеотидную 
последовательность длиной 1000 пар оснований. Каждый нуклеотид в 
последовательности должен быть случайно выбран из набора {A, T, C, G} с равной 
вероятностью. 

o Реализуйте этот алгоритм в виде функции на языке R. 
2. Генерация набора последовательностей: 

o Используя созданную функцию, сгенерируйте набор из 20 случайных нуклеотидных 
последовательностей. 

3. Форматирование в FASTA: 
o Для каждой последовательности создайте строку заголовка в формате FASTA: 

>sequence_i, где i – номер последовательности (от 1 до 20). 
o Разделите каждую последовательность на строки длиной не более 80 символов (это 

стандартная практика для удобства чтения FASTA файлов). 
4. Запись в файл: 

o Запишите все последовательности в файл с именем random_sequences.fasta. 
Каждая последовательность (включая заголовок и отформатированные нуклеотиды) 
должна быть записана в файл в правильном формате FASTA. 

Ответ: 

# 1. Функция для генерации случайной нуклеотидной последовательности 

generate_random_sequence <- function(length) { 

  nucleotides <- c("A", "T", "C", "G") 

  sequence <- paste(sample(nucleotides, length, replace = TRUE), collapse = "") # replace = 

TRUE разрешает повторение нуклеотидов 

  return(sequence) 
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} 

 

# 2. Генерация набора последовательностей 

num_sequences <- 20 

sequence_length <- 1000 

sequences <- list() # Создаем список для хранения последовательностей 

 

for (i in 1:num_sequences) { 

  sequences[[i]] <- generate_random_sequence(sequence_length) # Сохраняем 

сгенерированную последовательность в список 

} 

 

# 3. Форматирование в FASTA 

format_fasta <- function(sequence, sequence_number) { 

    header <- paste0(">sequence_", sequence_number) 

    # Разделение последовательности на строки длиной до 80 символов 

    sequence_split <- paste(strsplit(sequence, paste0("(.{1,", 80, "})"))[[1]][-1], collapse = "\n") 

    fasta_string <- paste0(header, "\n", sequence_split, "\n") 

    return(fasta_string) 

} 

 

# 4. Запись в файл 

output_file <- "random_sequences.fasta" 

 

# Создание (или перезапись) файла и запись последовательностей 

file_conn <- file(output_file, open = "w") # Открываем файл для записи 

 

for (i in 1:num_sequences) { 

  fasta_string <- format_fasta(sequences[[i]], i) 

  writeLines(fasta_string, file_conn)  # Записываем строку FASTA в файл 

} 

 

close(file_conn)  # Закрываем соединение с файлом 

 

cat("Сгенерированные последовательности записаны в файл:", output_file, "\n") 

 

Задание по теме 8: 
Цель: Научиться использовать программу SimCoal2 для моделирования эволюционного 
сценария популяции с постоянным размером численности. Студенты должны освоить 
синтаксис файлов параметров SimCoal2, научиться запускать программу и интерпретировать 
результаты моделирования. 
Описание: 
SimCoal2 - это мощная программа, позволяющая моделировать эволюцию генетического 
материала в популяциях, с учетом различных демографических и селективных сценариев. 
Данное задание фокусируется на базовом сценарии: популяция с постоянным размером 
численности. 
Задание: 
1. Установка SimCoal2: (Предполагается, что программа уже установлена) 

o Убедитесь, что программа SimCoal2 установлена в вашей системе и доступна из 

командной строки. Проверьте это, запустив simcoal2 -h в терминале. Если команда 
найдена, значит SimCoal2 установлен корректно. 

2. Создание файла параметров: 



18 

 

o Создайте файл параметров SimCoal2 (например, constant_size.par) с настройками 

для моделирования популяции с постоянным размером численности. Файл должен 
содержать следующую информацию: 
 Число популяций: 1 
 Размер популяции: Задайте размер популяции (например, 10000 особей). 
 Тип хромосомы: Задайте длину участка ДНК (например, 10000 нуклеотидов). 
 Частоту мутаций: Укажите частоту мутаций (например, 1.45e-8 на нуклеотид на 

поколение). 
 Тип выходного файла: укажите формат выходного файла. 
 Число симуляций: Задайте количество симуляций (например, 100). 

3. Запуск SimCoal2: 
o Запустите SimCoal2 из командной строки, указав файл параметров в качестве 

аргумента: bash simcoal2 constant_size.par  
4. Анализ результатов (на R): 

o SimCoal2 создаст файл с данными (обычно в формате arl или ms). Программа 
simcoal2 создаст .arp файл. 

o Используя R (или другой инструмент), прочитайте и проанализируйте данные из 
файла. 

o Рассчитайте статистические показатели, характеризующие генетическое 
разнообразие в популяции. Примеры показателей: 
 Нуклеотидное разнообразие (Pi) 
 Тета Ватта (Theta W) 
 Число сегрегирующих сайтов (S) 
 Можно расчитать Tajima’s D. 

5. Интерпретация результатов: 
o Объясните, что означают calculated статистические показатели. 
o Соответствуют ли полученные результаты теоретическим ожиданиям для популяции с 

постоянным размером численности? 

Ответ: 

Текст файла с заданным популяционным сценарием: 

//Number of population samples (demes) 

1 nbr of population samples 

//Population sizes 

10000 

//Samples sizes 

20 

//Growth rates : negative rates imply population expansion 

0 

//Number of migration matrices : if 0 : no migration between demes 

0 

// historical event: time, source, destination, migration parameter, relative size change 

0  historical event 

//Chromosome 1 : number of loci, relative recombination rates among loci 

1 1 1 

//Locus 1 : type, number of categories, relative mutation rates, scheme, parameters 

DNA 1 1 1 0 10000 

//Number of independent blocks [chromosome 1] 

1 

//Block 1 : first and last locus 

1 1 

//range of simulation 

1 100 

//seed number 

12345 

 



19 

 

Задание по теме 9: 
Цель: Освоить моделирование динамики популяций с использованием системы 

дифференциальных уравнений, научиться использовать пакет deSolve в R для решения 
дифференциальных уравнений, а также визуализировать результаты моделирования. 
Описание: 
В этом задании студенты будут моделировать динамику популяции двух конкурирующих 
видов, используя модель Лотки-Вольтерра для конкуренции. Нужно будет: 
1. Определить систему дифференциальных уравнений, описывающую конкуренцию двух 

видов. 
2. Реализовать эту систему уравнений в виде R-функции. 

3. Использовать пакет deSolve для решения системы уравнений численными методами. 
4. Визуализировать результаты моделирования с помощью графиков. 
Задание: 
1. Теоретическая модель: 

o Определите систему дифференциальных уравнений Лотки-Вольтерра для двух 
конкурирующих видов: 

2. dN1/dt = r1 * N1 * (K1 - N1 - alpha12 * N2) / K1 
3. dN2/dt = r2 * N2 * (K2 - N2 - alpha21 * N1) / K2 

где: 

o N1 и N2 - численности популяций первого и второго видов соответственно. 

o r1 и r2 - коэффициенты рождаемости первого и второго видов соответственно. 

o K1 и K2 - ёмкости среды для первого и второго видов соответственно. 

o alpha12 - коэффициент конкуренции, описывающий влияние второго вида на первый 

вид. 

o alpha21 - коэффициент конкуренции, описывающий влияние первого вида на второй 
вид. 

4. Реализация в R: 

o Создайте R-функцию, которая принимает на вход время t, текущие численности 

популяций N1 и N2, а также параметры модели (r1, r2, K1, K2, alpha12, alpha21). 

o Функция должна возвращать список, содержащий производные dN1/dt и dN2/dt. 

5. Решение уравнений с deSolve: 

o Используйте функцию ode из пакета deSolve для решения системы 
дифференциальных уравнений. 

o Задайте начальные условия для N1 и N2, а также значения параметров модели. 
o Укажите временной интервал для моделирования. 

6. Визуализация: 

o Используйте функции plot или ggplot2 для визуализации результатов 
моделирования. 

o Постройте графики изменения численности популяций N1 и N2 во времени. 
o Подпишите оси графиков. 
o Добавьте легенду. 

Ответ: 

# Загрузка пакета deSolve 

library(deSolve) 

library(ggplot2) 

 

# 1. Функция для моделирования системы уравнений Лотки-Вольтерра 

 

lotka_volterra_competition <- function(t, state, parameters) { 

  with(as.list(c(state, parameters)), { 

    dN1 <- r1 * N1 * (K1 - N1 - alpha12 * N2) / K1 

    dN2 <- r2 * N2 * (K2 - N2 - alpha21 * N1) / K2 

    list(c(dN1, dN2)) 

  }) 

} 
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# 2. Задание параметров модели 

parameters <- c( 

  r1 = 0.5,   # Коэффициент рождаемости вида 1 

  r2 = 0.3,   # Коэффициент рождаемости вида 2 

  K1 = 1000,  # Ёмкость среды для вида 1 

  K2 = 800,   # Ёмкость среды для вида 2 

  alpha12 = 0.8, # Влияние вида 2 на вид 1 

  alpha21 = 1.2  # Влияние вида 1 на вид 2 

) 

 

# 3. Задание начальных условий 

initial_state <- c( 

  N1 = 100,  # Начальная численность вида 1 

  N2 = 50   # Начальная численность вида 2 

) 

 

# 4. Задание временного интервала для моделирования 

times <- seq(0, 200, by = 1) # Время от 0 до 200 с шагом 1 

 

# 5. Решение системы уравнений с помощью ode 

out <- ode(y = initial_state, times = times, func = lotka_volterra_competition, parms = 

parameters) 

 

# 6. Преобразование результатов в data frame для ggplot2 

out_df <- as.data.frame(out) 

 

# 7. Визуализация результатов с помощью ggplot2 

ggplot(out_df, aes(x = time)) + 

  geom_line(aes(y = N1, color = "Вид 1"), linewidth = 1) + 

  geom_line(aes(y = N2, color = "Вид 2"), linewidth = 1) + 

  labs( 

    x = "Время", 

    y = "Численность", 

    title = "Динамика популяций двух конкурирующих видов", 

    color = "Вид" 

  ) + 

  scale_color_manual(values = c("Вид 1" = "blue", "Вид 2" = "red")) + 

  theme_minimal() 

 

# Дополнительная визуализация (альтернативный график) 

plot(out[, "time"], out[, "N1"], type = "l", col = "blue", 

     xlab = "Время", ylab = "Численность", 

     main = "Динамика популяций двух конкурирующих видов", 

     ylim = c(0, max(out[, "N1"], out[, "N2"]))) 

lines(out[, "time"], out[, "N2"], col = "red") 

legend("topright", legend = c("Вид 1", "Вид 2"), col = c("blue", "red"), lty = 1) 

 

Задание по теме 10: 
Цель: Научиться применять критерий хи-квадрат для проверки гипотезы о соответствии 
наблюдаемых результатов эксперимента теоретическим ожиданиям. В данном случае, 
студенты будут проверять соответствие результатов опытов Менделя с горохом 
теоретическому расщеплению признаков. 
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Описание: 
Студентам необходимо будет реализовать алгоритм, который принимает на вход 
наблюдаемые частоты фенотипов в потомстве, теоретическое ожидаемое соотношение 
фенотипов и вычисляет статистику хи-квадрат, степени свободы и p-значение. На основе 
полученного p-значения нужно интерпретировать, подтверждают ли наблюдаемые данные 
гипотезу о менделевском расщеплении. 
Задание: 
1. Ввод данных: 

o Создайте функцию на R, которая принимает на вход вектор наблюдаемых частот 

фенотипов (observed) и вектор теоретических ожидаемых вероятностей 

(expected_probabilities). 

o Функция должна проверять, что сумма элементов в expected_probabilities равна 
1. Если нет, выводить сообщение об ошибке и прекращать работу. 

o Функция должна проверять, что длина векторов observed и 

expected_probabilities совпадает. Если нет, выводить сообщение об ошибке и 
прекращать работу. 

2. Вычисление ожидаемых частот: 
o Вычислите ожидаемые частоты для каждого фенотипа, умножив общую численность 

потомства (сумма элементов в observed) на соответствующие элементы в 

expected_probabilities. 
3. Вычисление статистики хи-квадрат: 

o Вычислите статистику хи-квадрат (χ²) по формуле: 
4. χ² = Σ ((observed_i - expected_i)^2 / expected_i) 

где: 

o observed_i - наблюдаемая частота i-го фенотипа. 

o expected_i - ожидаемая частота i-го фенотипа. 
5. Вычисление степеней свободы: 

o Вычислите число степеней свободы (df): 
6. df = number_of_phenotypes - 1 

7. Вычисление p-значения: 

o Используйте функцию pchisq в R для вычисления p-значения на основе статистики 
хи-квадрат и числа степеней свободы. P-значение = pchisq(chi_square_statistic, 
degrees_of_freedom, lower.tail = FALSE) 

8. Интерпретация результатов: 
o Функция должна возвращать список, содержащий значения статистики хи-квадрат, 

числа степеней свободы и p-значения. 
o Напишите код, который интерпретирует p-значение. Если p-значение меньше 

заданного уровня значимости (например, 0.05), то делается вывод об отклонении 
гипотезы о менделевском расщеплении (т.е. наблюдаемые результаты значительно 
отличаются от теоретических). В противном случае, принимается вывод о том, что 
наблюдаемые данные не противоречат менделевскому расщеплению. 

Ответ: 

# Функция для анализа результатов опытов Менделя с использованием критерия хи-

квадрат 

mendeleev_chi_square <- function(observed, expected_probabilities, alpha = 0.05) { 

 

  # 1. Проверка входных данных 

  if (abs(sum(expected_probabilities) - 1) > 1e-6) { 

    stop("Сумма вероятностей должна быть равна 1") # Сумма вероятностей должна быть 

равна 1 

  } 

 

  if (length(observed) != length(expected_probabilities)) { 

    stop("Длина векторов наблюдаемых и ожидаемых значений должна совпадать") # Длина 

векторов наблюдаемых и ожидаемых значений должна совпадать 

  } 
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  # 2. Вычисление ожидаемых частот 

  total_observations <- sum(observed) 

  expected_counts <- total_observations * expected_probabilities 

 

  # 3. Вычисление статистики хи-квадрат 

  chi_square_statistic <- sum((observed - expected_counts)^2 / expected_counts) 

 

  # 4. Вычисление степеней свободы 

  degrees_of_freedom <- length(observed) - 1 

 

  # 5. Вычисление p-значения 

  p_value <- pchisq(chi_square_statistic, degrees_of_freedom, lower.tail = FALSE) 

 

  # 6. Интерпретация результатов 

  result <- list( 

    chi_square = chi_square_statistic, 

    df = degrees_of_freedom, 

    p_value = p_value 

  ) 

 

  cat("Статистика хи-квадрат:", result$chi_square, "\n") 

  cat("Степени свободы:", result$df, "\n") 

  cat("P-значение:", result$p_value, "\n") 

 

  if (result$p_value < alpha) { 

    cat("P-значение меньше уровня значимости", alpha, "\n") 

    cat("Гипотеза о менделевском расщеплении отклоняется.\n") 

    cat("Наблюдаемые данные значительно отличаются от теоретических.\n") 

  } else { 

    cat("P-значение больше или равно уровню значимости", alpha, "\n") 

    cat("Нет оснований отклонять гипотезу о менделевском расщеплении.\n") 

    cat("Наблюдаемые данные не противоречат теоретическим.\n") 

  } 

 

  return(result) 

} 

 

# Пример использования функции 

# Скрещивание дигетерозиготы (AaBb) -> 9:3:3:1 

observed_counts <- c(315, 101, 108, 32) #Наблюдаемые частоты фенотипов (например, при 

скрещивании дигетерозигот по Менделю) 

expected_probabilities <- c(9/16, 3/16, 3/16, 1/16) #Теоретическое ожидаемое соотношение 

 

#Проверка работы функции 

result <- mendeleev_chi_square(observed_counts, expected_probabilities) 

 

Критерий оценивания самостоятельной работы – результаты по каждой работе 

оформляются по указанным требованиям (смотрите в описании задания) и загружаются на 

образовательный портал ИГУ (https://educa.isu.ru/). Преподаватель оценивает задания, 

если все решено верно, студен получает зачет по заданию, если имеются недочеты или 

ошибки, задание отправляться на доработку с указанием допущенных ошибок. Отчёт по 

https://educa.isu.ru/
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переработанному заданию загружается на образовательный портал для повторного 

оценивания. 

 

3.Оценочные средства для промежуточной аттестации и  

Промежуточная аттестация проходит в форме зачета (8 семестр), к которому 

допускаются студенты, выполнившие в полном объеме аудиторную нагрузку, 

самостоятельную работу. Студенты, имеющие задолженность, должны выполнить все 

обязательные виды деятельности. 

Фонд оценочных средств для промежуточной аттестации включает: 

- тестовые задания для зачета. 

Назначение оценочных средств: выявить сформированность компетенций ОПК-2, ОПК-3 

(см. п. III). 

Тестовое задание включает два варианта по 20 вопросов по всем темам курса. К тесту 

допускаются студенты, выполнившие все домашние задания и получившие по каждому 

заданию зачет. 

 

                     Критерий оценивания тестового задания для зачета 

 

 

№ Тип задания Критерии оценки Результат 

оценивания 

1 Задание закрытого типа на 

установление соответствия 

Считается верным, если 

правильно установлены 

все соответствия 

(позиции одного столбца 

верно соотнесены с 

позициями другого 

столбца) 

Полное совпадение с 

верным ответом – 1 

балл 

Все остальные случаи 

– 0 баллов 

2 Задание закрытого типа на 

установление 

последовательности 

Считается верным, если 

правильно указана вся 

последовательность цифр 

Полное совпадение с 

верным ответом – 1 

балл 

Все остальные случаи 

– 0 баллов 

3 Задание комбинированного типа 

с выбором одного верного ответа 

из  четырех предложенных и 

обоснованием выбора 

Считается верным, если 

правильно указана цифра 

(буква) правильного 

ответа и приведены 

корректные аргументы, 

используемые при выборе 

ответа 

Полное совпадение с 

верным ответом – 1 

балл 

Все остальные случаи 

– 0 баллов 

4 Задание комбинированного типа 

с выбором нескольких верных 

ответов из  четырех 

предложенных и обоснованием 

выбора 

Считается верным, если 

правильно указаны 

цифры (буквы) 

правильного ответа и 

приведены корректные 

аргументы, используемые 

при выборе ответа 

Полное совпадение с 

верным ответом – 1 

балл 

Все остальные случаи 

– 0 баллов  

5 Задание открытого типа с 

развернутым ответом 

Считается верным, если 

ответ совпадает с 

эталонным ответом по 

содержанию и полноте 

Полное соответствие 

эталонному ответу – 1 

балл 

Все остальные случаи 

– 0 баллов 
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Система получения баллов за тестирование 

 

 

Оценка критерий 

зачтено 15 и более баллов 

незачтено 14 баллов и менее 
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3.1 Оценочные материалы для промежуточной аттестации (зачет) 

Тестирование (Вариант 1). 

Индекс и 

содержание 

формируемой 

компетенции 

Индикаторы 

компетенций 
Тестовые задания для промежуточной аттестации 

ОПК-2 

Способен 

использовать 

специализированные 

знания 

фундаментальных 

разделов 

математики, физики, 

химии и биологии 

для проведения 

исследований в 

области 

биоинженерии, 

биоинформатики и 

смежных дисциплин 

(модулей) 

ИДК ОПК-2.1 

Демонстрирует 

специализированные 

знания в области 

фундаментальных 

разделов 

математики, физики, 

химии,  биологии и 

перспективы 

междисциплинарных 

исследований 

Задание комбинированного типа с выбором одного или нескольких верных ответов из 

четырех предложенных с аргументацией выбора 
 

Вопрос 1. 

Что представляет собой линейное уравнение с двумя переменными? 

a) Описание нелинейной динамики 

b) Уравнение прямой линии на плоскости 

c) Описание экспоненциального роста 

d) Уравнение параболы 

Ответ ___________ 

Правильный ответ: b 

Аргументация: Линейное уравнение с двумя переменными задает прямую на координатной плоскости. 

 

Вопрос 2. 

Как называется функция, описывающая скорость изменения популяции по времени? 

a) Алгебраическая функция 

b) Производная 

c) Интеграл 

d) Модулятор 

Ответ ___________ 

Правильный ответ: b 

Аргументация: Производная функции численности популяции по времени показывает скорость её изменения. 

 

Вопрос 3. 

Какой тип уравнений используется для описания взаимодействующих популяций? 

a) Алгебраические уравнения 

b) Линейные уравнения 

c) Дифференциальные уравнения 

d) Интегральные уравнения 

ИДК ОПК-2.2 

Умеет использовать 

навыки проведения 

исследований в 

области 

биоинженерии, 

биоинформатики с 

учетом 

специализированных 

фундаментальных 

знаний 

ИДК ОПК-2.3 

Владеет методами 

химии, физики и  
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математического 

моделирования для 

проведения 

исследований в 

области 

биоинженерии, 

биоинформатики 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Взаимодействие популяций описывается через системы дифференциальных уравнений. 

 

Вопрос 4. 

акой метод численного интегрирования основан на использовании линейного приближения? 

a) Метод Рунге-Кутты 

b) Метод Монте-Карло 

c) Метод Эйлера 

d) Метод Ньютона 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Метод Эйлера использует линейное приближение для расчета следующего значения функции. 

 

Вопрос 5. 

Какова вероятность выпадения «1» при броске честного кубика? 

a) 1/6 

b) 1/2 

c) 1/3 

d) 1/4 

Ответ ___________ 

Правильный ответ: a 

Аргументация: У кубика 6 граней, каждая равновероятна. 

 

Вопрос 6.  

Как называется гипотеза, принимаемая по умолчанию в статистическом тестировании? 

a) Альтернативная 

b) Нулевая 

c) Основная 

d) Обратная 

Ответ: b 

Аргументация: Нулевая гипотеза предполагает отсутствие эффекта или различия и проверяется на 

статистическую значимость 

 

Вопрос 7. 

Какой процесс описывается как случайная величина, зависящая от времени? 

a) Статистическая дисперсия 

b) Гауссов процесс 

ОПК-3 

Способен проводить 

экспериментальную 

работу с 

организмами и 

клетками, 

использовать 

физико-химические 

методы 

исследования 

макромолекул, 

математические 

методы обработки 

результатов 

биологических 

исследований 

ИДК ОПК-3.1 

Проводит 

экспериментальную 

работу с 

организмами и 

клетками с 

использованием 

физико-химических 

методов 

исследования 

макромолекул 

ИДК ОПК-3.2 

Демонстрирует 

практические 

навыки 

математических 

методов обработки 

результатов 

экспериментальных 

исследований 

ИДК ОПК-3.3 

Владеет опытом 

применения методов 

для исследования 
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макромолекул, 

обработки 

результатов 

биологических 

исследований,  

прогнозирования 

перспектив и 

социальных 

последствий своей 

профессиональной 

деятельности. 

 

c) Случайный процесс 

d) Плотность вероятности 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Случайный процесс — это множество случайных величин, зависящих от времени 

 

Вопрос 8. 

Что используется в имитационном моделировании для генерации случайных чисел? 

a) Интеграл 

b) Производная 

c) Генератор псевдослучайных чисел 

d) Дифференциальный оператор 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Генераторы псевдослучайных чисел — основа имитационного моделирования стохастических 

процессов. 

 

Вопрос 9. 

Какая модель описывает конкуренцию двух видов? 

a) Модель Лотки-Вольтерры 

b) Модель Хардди-Вайнберга 

c) Модель Монте-Карло 

d) Модель Эйлера 

Ответ ___________ 

Правильный ответ: a 

Аргументация: Модель Лотки-Вольтерры описывает взаимодействие видов — хищник-жертва или конкуренция. 

 

Вопрос 10. 

Какое уравнение описывает динамику аллелей в популяции без мутаций и отбора? 

a) Уравнение Шрёдингера 

b) Уравнение Хардди-Вайнберга 

c) Уравнение Пуассона 

d) Уравнение Фишера 

Ответ ___________ 

Правильный ответ: b 

Аргументация: Закон Хардди-Вайнберга — математическая модель популяционной генетики при идеальных 

условиях. 
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Вопрос 11. 

Как называется комбинация элементарных функций для моделирования биологического процесса? 

a) Функциональная группа 

b) Модельная система 

c) Композиция функций 

d) Биохимический каскад 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Композиция функций — это вложение одной функции в другую, применяемое при 

моделировании. 

 

Вопрос 12. 

Какой из методов решения дифференциальных уравнений является аналитическим? 

a) Метод Эйлера 

b) Метод Рунге-Кутты 

c) Метод разделения переменных 

d) Метод Монте-Карло 

Ответ ___________ 

Правильный ответ: c 

Аргументация: Метод разделения переменных позволяет получить точное решение без приближений. 

 

Вопрос 13. 

Какой вид моделирования используют в биохимии для исследования динамики молекул? 

a) Дискретное моделирование 

b) Имитационное моделирование 

c) Квантово-механическое моделирование 

d) Стохастическое моделирование 

Ответ ___________ 

Правильный ответ: c 

Аргументация: В биохимии молекулярная динамика часто включает квантово-механические расчеты. 

 

Задание закрытого типа на установление соответствия 
 

Вопрос14. 

Сопоставьте термин и определение: 

а) Метод Эйлера 

б) Начальные условия 

в) Общее решение 
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г) Частное решение 

1. Численный метод интегрирования дифференциальных уравнений 

2. Значения переменных в начальный момент времени 

3. Формула с произвольными постоянными, описывающая класс решений 

4. Конкретное решение, удовлетворяющее начальному условию 

Ответ ___________ 

Правильный ответ: 

а — 1 

б — 2 

в — 3 

г — 4 

 

Вопрос 15. 

Сопоставьте термин и определение: 

а) Математическое ожидание 

б) Дисперсия 

в) Нормальное распределение 

г) p-значение 

1. Среднее значение случайной величины 

2. Средний квадрат отклонения от среднего 

3. Колоколообразная функция плотности вероятности 

4. Вероятность наблюдаемого эффекта при верной нулевой гипотезе 

Ответ ___________ 

Правильный ответ: 

а — 1 

б — 2 

в — 3 

г — 4 

 

Задание закрытого типа на установление последовательности 

 
Вопрос 16. 

Численное интегрирование методом Эйлера, реализация на языке программирования R. 

Рассмотрим следующее дифференциальное уравнение первого порядка: 

dy/dt = f(t, y) = -2 * y + t 

с начальным условием: 

y(0) = 1 

Используя метод Эйлера, необходимо численно решить данное уравнение на интервале [0, 5] с шагом h = 0.1. 
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Требуется выполнить следующие шаги в правильной последовательности (пронумеровать их от 1 до N): 

(Перемешайте представленные ниже шаги случайным образом перед выдачей их пользователю для усложнения 

задачи.) 

Шаги (В СЛУЧАЙНОМ ПОРЯДКЕ): 

A. y[i+1] <- y[i] + h * f(t[i], y[i]) (Вычисление следующего значения y с использованием формулы метода Эйлера) 

B. t <- seq(0, 5, by = h) (Создание вектора значений времени t от 0 до 5 с шагом h) 

C. h <- 0.1 (Определение размера шага h равного 0.1) 

D. y <- numeric(length(t)) (Создание числового вектора y для хранения результатов численного решения, 

соответствующего размеру вектора t) 

E. plot(t, y, type = "l", xlab = "t", ylab = "y(t)", main = "Численное решение dy/dt = -2y + t методом Эйлера") 

(Визуализация полученного решения: построение графика зависимости y(t)) 

F. y[1] <- 1 (Установка начального условия y(0) = 1 в первый элемент вектора y) 

G. f <- function(t, y) { -2 * y + t } (Определение функции f(t, y), представляющей правую часть 

дифференциального уравнения) 

H. for (i in 1:(length(t) - 1)) { ... } (Начало цикла для итеративного вычисления значений y для каждого шага 

времени) 

Правильный ответ: 

1. C 

2. B 

3. D 

4. F 

5. G 

6. H 

7. A 

8. E 

 

Вопрос 17. 

Численное решение нелинейного уравнение построением графика функции в R 

Пусть необходимо найти приближенное решение нелинейного уравнения: 

f(x) = x^3 - 2*x - 5 = 0 

графическим методом, используя язык программирования R. Предположим, что решение находится в интервале 

[1, 3]. 

Ниже представлены фрагменты кода, необходимые для построения графика функции и визуального определения 

корня. Расположите эти фрагменты в правильной последовательности, чтобы получилась работающая программа 

на R. 

Фрагменты кода (В СЛУЧАЙНОМ ПОРЯДКЕ): 

A. f <- function(x) { x^3 - 2*x - 5 } 

B. abline(h = 0, col = "red") 
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C. plot(x, y, type = "l", xlab = "x", ylab = "f(x)", main = "Графическое решение уравнения x^3 - 2x - 5 = 0") 

D. x <- seq(1, 3, length.out = 100) 

E. y <- f(x) 

Требуется: Укажите правильную последовательность букв, соответствующих фрагментам кода, чтобы получить 

работающую программу, отображающую график функции и позволяющую визуально оценить корень уравнения. 

Правильный ответ: A, D, E, C, B 

 

Задание открытого типа с развернутым ответом 
 

Вопрос 18. 

Опишите принцип работы критерия Стьюдента для тестирования достоверности различий между средними 

значениями при неравных диспепсиях? 

Ответ: 

Когда дисперсии двух сравниваемых групп значительно отличаются (т.е., не выполняется предположение о 

гомогенности дисперсий), для проверки достоверности различий между средними значениями используется 

модификация t-критерия Стьюдента, известная как t-критерий Уэлча (Welch's t-test) или t-критерий с поправкой 

Уэлча. Принцип работы этого критерия практически такой же, как и у стандартного t-критерия, но с двумя 

ключевыми отличиями: 

1. Формула для t-статистики: Формула немного отличается, чтобы учесть неравные дисперсии. 

2. Расчет степеней свободы (df): Расчет df также модифицирован, обычно приводит к нецелым значениям, и 

более сложный, чем для стандартного t-критерия. 

Давайте рассмотрим подробнее: 

1. Гипотезы: 

Гипотезы формулируются так же, как и в стандартном t-критерии: 

 H0 (Нулевая гипотеза): Средние значения двух групп равны (µ1 = µ2). 

 H1 (Альтернативная гипотеза): Средние значения двух групп не равны (µ1 ≠ µ2) (двусторонняя) или µ1 > µ2 

(односторонняя) или µ1 < µ2 (односторонняя). 

2. Расчет t-статистики (t-критерий Уэлча): 

Формула для t-статистики Уэлча выглядит следующим образом: 

t = (x̄1 - x̄2) / sqrt((s1^2 / n1) + (s2^2 / n2)) 

где: 

 x̄1 и x̄2 - средние значения первой и второй групп 

 s1^2 и s2^2 - дисперсии первой и второй групп 

 n1 и n2 - размеры выборок первой и второй групп 

Ключевое отличие: В знаменателе используется непосредственная оценка стандартной ошибки разницы между 

средними значениями, рассчитанная на основе индивидуальных дисперсий каждой группы и размеров выборок, 

без объединения дисперсий в одну общую оценку (как делается в стандартном t-критерии). 
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3. Расчет степеней свободы (df - t-критерий Уэлча): 

Это наиболее сложное отличие. Степени свободы для t-критерия Уэлча вычисляются с использованием формулы, 

известной как формула Велча-Саттертуэйта: 

df = ( (s1^2 / n1) + (s2^2 / n2) )^2 / ( ( (s1^2 / n1)^2 / (n1 - 1) ) + ( (s2^2 / n2)^2 / (n2 - 1) ) ) 

где: 

 s1^2 и s2^2 - дисперсии первой и второй групп 

 n1 и n2 - размеры выборок первой и второй групп 

Важно отметить, что полученное значение df часто не является целым числом. В большинстве случаев его 

округляют до ближайшего целого числа, но некоторые статистические пакеты и калькуляторы используют не 

округленное значение для большей точности. 

4. Определение p-значения: 

После вычисления t-статистики и степеней свободы, p-значение определяется с использованием t-распределения 

с соответствующими степенями свободы. Этот шаг аналогичен стандартному t-критерию. 

5. Принятие решения: 

P-значение сравнивается с уровнем значимости (α), обычно 0.05. 

 Если p-значение ≤ α: Нулевая гипотеза отклоняется. Делается вывод, что существует статистически значимая 

разница между средними значениями групп, даже при неравных дисперсиях. 

 Если p-значение > α: Нулевая гипотеза не отклоняется. Делается вывод о том, что нет достаточных 

оснований утверждать о наличии статистически значимой разницы между средними значениями групп при 

данном уровне значимости. 

 

Вопрос 19. 

Принцип построения уравнения Колмогорова для переходных вероятностей в теории случайных процессов? 

Ответ: 

Уравнение Колмогорова (точнее, прямое уравнение Колмогорова или уравнение Чепмена-Колмогорова) является 

фундаментальным уравнением в теории случайных процессов, описывающим эволюцию переходных 

вероятностей во времени. Оно выражает связь между вероятностью перехода системы из одного состояния в 

другое в разные моменты времени. Важно отметить, что существует два типа уравнений Колмогорова: прямое 

(forward) и обратное (backward). Здесь речь пойдет о прямом уравнении. 

Общая идея: 

Основная идея заключается в том, что переход из состояния i в состояние j в момент времени t+Δt может 

произойти через любое промежуточное состояние k в момент времени t. То есть, система сначала переходит из 

состояния i в состояние k за время t, а затем из состояния k в состояние j за время Δt. Уравнение суммирует 

вероятности всех таких путей. 

Основные понятия: 

 Случайный процесс: Это семейство случайных величин {Xt, t ∈ T}, где t - параметр времени, а Xt - состояние 

системы в момент времени t. T может быть дискретным или непрерывным. 

 Состояние: Значение, которое может принимать случайная величина Xt. Состояния могут быть дискретными 
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или непрерывными. 

 Переходная вероятность: Вероятность того, что система, находящаяся в состоянии i в момент времени s, 

перейдет в состояние j в момент времени t (где t > s). Обозначается как: 

o P(Xt = j | Xs = i) или, более компактно, Pij(s, t). 

 Марковское свойство (отсутствие последействия): Будущее состояние процесса зависит только от текущего 

состояния и не зависит от прошлых состояний. Это критическое условие для применения уравнения 

Колмогорова. Формально: 

o P(Xt = j | Xs = i, Xr = kr для всех r < s) = P(Xt = j | Xs = i) 

Построение уравнения Чепмена-Колмогорова (основа для уравнения Колмогорова): 

Уравнение Чепмена-Колмогорова выражает связь между переходными вероятностями для трех моментов 

времени s < u < t: 

Pij(s, t) = Σk Pik(s, u) * Pkj(u, t)   (для дискретных состояний) 

Pij(s, t) = ∫ Pik(s, u) * Pkj(u, t) dk   (для непрерывных состояний) 

Где: 

 Pij(s, t) - вероятность перехода из состояния i в состояние j за время (t - s). 

 Pik(s, u) - вероятность перехода из состояния i в состояние k за время (u - s). 

 Pkj(u, t) - вероятность перехода из состояния k в состояние j за время (t - u). 

 Σk или ∫ dk - суммирование (или интегрирование) по всем возможным состояниям k. 

Построение прямого уравнения Колмогорова (уравнение эволюции): 

Прямое уравнение Колмогорова получается из уравнения Чепмена-Колмогорова путем рассмотрения очень 

малого интервала времени Δt после момента времени t. Предполагается, что интенсивность переходов между 

состояниями известна. 

1. Предположение о малом времени: Предполагаем, что Δt достаточно мало, чтобы за это время произошел 

только один переход (либо вообще не произошло переходов). 

2. Определение интенсивностей переходов: Вводим понятие интенсивности перехода qij(t), которое 

представляет собой скорость, с которой система переходит из состояния i в состояние j в момент времени t. 

Формально: 

3. qij(t) = lim (Δt -> 0)  [Pij(t, t + Δt) / Δt]    для i ≠ j 

4. qii(t) = lim (Δt -> 0)  [(Pii(t, t + Δt) - 1) / Δt] 

5. Разложение Pij(t, t+Δt) в ряд Тейлора (или аналогичное представление): Используя предположение о малом 

Δt, мы можем аппроксимировать переходные вероятности: 

o Pij(t, t + Δt) ≈ qij(t) * Δt (для i ≠ j) 

o Pii(t, t + Δt) ≈ 1 + qii(t) * Δt 

6. Подстановка в уравнение Чепмена-Колмогорова: Подставляем эти аппроксимации в уравнение Чепмена-

Колмогорова: 

7. Pij(s, t + Δt) = Σk Pik(s, t) * Pkj(t, t + Δt) 

8. Pij(s, t + Δt) ≈ Pik(s, t) * (1 + qkk(t) * Δt) + Σ(k≠j) Pik(s, t) * (qkj(t) * Δt) 

9. Перегруппировка и предел: Переносим Pij(s, t) в левую часть, делим обе части на Δt и берем предел при Δt -> 
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0: 

10. [Pij(s, t + Δt) - Pij(s, t)] / Δt  ≈  Σ(k≠j) Pik(s, t) * qkj(t)  + Pjj(s, t) * qjj(t) 

11. ∂Pij(s, t) / ∂t = Σk Pik(s, t) * qkj(t) 

 

Вопрос 20. 

Имитационные модели для исследования процессов видообразования? 

Ответ: 

Имитационные модели играют важную роль в исследовании процессов видообразования, поскольку они 

позволяют исследователям экспериментировать с различными сценариями, параметрами и генетическими 

механизмами, которые сложно изучить в реальных популяциях или в контролируемых лабораторных условиях. 

Эти модели помогают понять, какие факторы могут приводить к дивергенции популяций и, в конечном итоге, к 

образованию новых видов. 

Вот основные типы имитационных моделей, используемых для изучения видообразования: 

1. Индивидуально-ориентированные модели (Agent-Based Models, ABM): 

 Принцип работы: Эти модели имитируют поведение отдельных особей в популяции. Каждая особь 

обладает набором характеристик (генотип, фенотип, местоположение и т.д.) и правил поведения 

(размножение, миграция, взаимодействие с другими особями). Моделирование происходит дискретно во 

времени, и поведение каждой особи обновляется на каждом временном шаге. 

 Преимущества: 
o Позволяют моделировать сложные взаимодействия между особями и окружающей средой. 

o Легко включать различные типы генетических механизмов (мутации, рекомбинация, генетический 

дрейф). 

o Позволяют отслеживать генеалогию особей и анализировать структуру популяций. 

 Применение для исследования видообразования: 
o Изучение роли географической изоляции (аллопатрическое видообразование). 

o Исследование влияния экологического отбора (экологическое видообразование). 

o Моделирование репродуктивной изоляции (пре- и пост-зиготические барьеры). 

o Анализ влияния полового отбора на дивергенцию популяций. 

 

Тестирование (Вариант 2). 

Индекс и 

содержание 

формируемой 

компетенции 

Индикаторы 

компетенций 
Тестовые задания для промежуточной аттестации 

ОПК-2 

Способен 

ИДК ОПК-2.1 

Демонстрирует 
Задание комбинированного типа с выбором одного или нескольких верных ответов из 

четырех предложенных и аргументацией выбора 
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использовать 

специализированные 

знания 

фундаментальных 

разделов 

математики, физики, 

химии и биологии 

для проведения 

исследований в 

области 

биоинженерии, 

биоинформатики и 

смежных дисциплин 

(модулей) 

 

специализированные 

знания в области 

фундаментальных 

разделов 

математики, физики, 

химии,  биологии и 

перспективы 

междисциплинарных 

исследований 

 

Вопрос 1. 

Что такое определитель матрицы? 

a) Среднее значение вектора 

b) Характеристика обратимости матрицы 

c) Сумма диагональных элементов 

d) Скалярное произведение векторов 

Ответ: b 

Аргументация: Если определитель матрицы равен нулю, она необратима. 

Вопрос 2. 

Какая функция описывает экспоненциальный рост бактерий? 

a) y = sin(x) 

b) y = x² 

c) y = e^x 

d) y = log(x) 

Ответ: c 

Аргументация: Экспоненциальный рост описывается функцией вида y = e^(kx). 

Вопрос 3. 

Что такое начальное условие для дифференциального уравнения? 

a) Значение переменной 

b) Значение производной в начале 

c) Функция роста 

d) Диапазон времени 

Ответ: b 

Аргументация: Начальное условие задает значение функции или производной в начальный момент времени. 

Вопрос 4. 

В чем недостаток метода Эйлера? 

a) Сложная реализация 

b) Высокая точность 

c) Низкая точность при больших шагах 

d) Требует символьных вычислений 

Ответ: c 

Аргументация: Метод Эйлера точен лишь при малом шаге, иначе дает грубые ошибки. 

Вопрос 5. 

Какой закон распределения применим к числу мутаций на участке ДНК? 

a) Нормальный 

b) Равномерный 

ИДК ОПК-2.2 

Умеет использовать 

навыки проведения 

исследований в 

области 

биоинженерии, 

биоинформатики с 

учетом 

специализированных 

фундаментальных 

знаний 

ИДК ОПК-2.3 

Владеет методами 

химии, физики и  

математического 

моделирования для 

проведения 

исследований в 

области 

биоинженерии, 

биоинформатики 

ОПК-3 ИДК ОПК-3.1 



36 

 

Способен проводить 

экспериментальную 

работу с 

организмами и 

клетками, 

использовать 

физико-химические 

методы 

исследования 

макромолекул, 

математические 

методы обработки 

результатов 

биологических 

исследований 

Проводит 

экспериментальную 

работу с 

организмами и 

клетками с 

использованием 

физико-химических 

методов 

исследования 

макромолекул 

c) Пуассоновский 

d) Биномиальный 

Ответ: c 

Аргументация: Пуассоновское распределение описывает редкие случайные события, например, мутации. 

Вопрос 6.  

Какой метод статистики используется для проверки различий между средними двух групп? 

a) Регрессия 

b) Корреляция 

c) t-тест 

d) Кластеризация 

Ответ: c 

Аргументация: t-тест используется для проверки различий между двумя средними значениями. 

Вопрос 7. 

Какой процесс описывается уравнением Колмогорова? 

a) Нелинейная динамика 

b) Стохастический процесс 

c) Дифференцирование функции 

d) Упрощенное моделирование 

Ответ: b 

Аргументация: Уравнения Колмогорова описывают переходные вероятности в случайных процессах. 

Вопрос 8. 

Что является выходом имитационного моделирования? 

a) Абстрактная формула 

b) Статистическое распределение результатов 

c) График дифференциального уравнения 

d) Дифференциальная система 

Ответ: b 

Аргументация: Имитационное моделирование многократно повторяет процесс и анализирует распределение 

результатов. 

Вопрос 9. 

Какое уравнение описывает рост популяции с учетом ограничений среды? 

a) Экспоненциальное 

b) Логистическое 

c) Синусоидальное 

d) Линейное 

Ответ: b 

Аргументация: Логистическая модель учитывает ограниченность ресурсов и насыщение популяции. 

Вопрос 10. 

ИДК ОПК-3.2 

Демонстрирует 

практические 

навыки 

математических 

методов обработки 

результатов 

экспериментальных 

исследований 

ИДК ОПК-3.3 

Владеет опытом 

применения методов 

для исследования 

макромолекул, 

обработки 

результатов 

биологических 

исследований,  

прогнозирования 

перспектив и 

социальных 
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последствий своей 

профессиональной 

деятельности. 

Какая модель используется для описания частоты аллелей с учетом мутации и отбора? 

a) Модель Монте-Карло 

b) Модель Рунге-Кутты 

c) Модель Кимуры 

d) Модель Хардди-Вайнберга 

Ответ: c 

Аргументация: Модель Кимуры учитывает мутации и отбор в популяционной генетике. 

Вопрос 11. 

Какая функция описывает поведение колебательной системы? 

a) Логарифмическая 

b) Синусоидальная 

c) Квадратичная 

d) Ступенчатая 

Ответ: b 

Аргументация: Колебания описываются синусом или косинусом во времени. 

Вопрос 12. 

Какой метод позволяет находить точные решения некоторых ОДУ? 

a) Метод Монте-Карло 

b) Метод разделения переменных 

c) Метод Эйлера 

d) Имитационное моделирование 

Ответ: b 

Аргументация: Разделение переменных позволяет аналитически решать некоторые дифференциальные 

уравнения. 

 

Вопрос13. 

Какой метод моделирования используется для эволюционной динамики? 

a) Имитационное моделирование 

b) Системы линейных уравнений 

c) Теорема Байеса 

d) Уравнение Пуассона 

Ответ: a 

Аргументация: Имитационное моделирование помогает проследить эволюционные сценарии и динамику 

популяций. 

Задание закрытого типа на установление соответствия 

 

Задание закрытого типа на установление соответствия 
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Вопрос 14. 

Сопоставьте термин и определение: 

а) Ранг матрицы 

б) Определитель 

в) Собственные значения 

г) Линейная зависимость 

 Количество линейно независимых строк или столбцов матрицы 

 Число, характеризующее матрицу и определяющее её обратимость 

 Числа, при которых Ax=λxAx = \lambda xAx=λx имеет ненулевое решение 

 Существование нетривиальной линейной комбинации векторов, дающей ноль 

Ответ ___________ 

Правильный ответ: 

а — 1 

б — 2 

в — 3 

г — 4 

 

Вопрос 15. 

Сопоставьте термин и определение: 

а) Производная 

б) Интеграл 

в) Периодическая функция 

г) Логарифм 

 Показывает скорость изменения функции 

 Вычисление площади под графиком функции 

 Значения функции повторяются через равные промежутки 

 Обратная функция к показательной 

Ответ ___________ 

Правильный ответ: 

а — 1 

б — 2 

в — 3 

г — 4 

 

Задание закрытого типа на установление последовательности 

 
Вопрос 16. 
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Численное интегрирование методом Эйлера с пересчетом, реализация на языке программирования R. 

Предположим, вам необходимо численно решить следующее дифференциальное уравнение методом Эйлера в R: 

dy/dx = f(x, y) = y * cos(x) 

с начальным условием: 

y(0) = 0.5 

Решение необходимо найти на интервале [0, 10] с шагом h = 0.05. 

Ниже представлены фрагменты кода, необходимые для решения этой задачи. Ваша задача - расположить эти 

фрагменты в правильной последовательности, чтобы получилась работающая программа на R, реализующая 

метод Эйлера и визуализирующая результат. 

Фрагменты кода (В СЛУЧАЙНОМ ПОРЯДКЕ): 

A. y <- numeric(length(x)) 

B. plot(x, y, type="l", xlab="x", ylab="y(x)", main="Решение методом Эйлера") 

C. f <- function(x, y) { y * cos(x) } 

D. for (i in 1:(length(x)-1)) { y[i+1] <- y[i] + h * f(x[i], y[i]) } 

E. x <- seq(0, 10, by=h) 

F. h <- 0.05 

G. y[1] <- 0.5 

Требуется: Укажите правильную последовательность букв, соответствующих фрагментам кода, чтобы получить 

рабочую программу, реализующую метод Эйлера. 

Правильный ответ: F, E, A, G, C, D, B 
 

Вопрос 17. 

Численное решение нелинейного уравнение построением графика функции в R. 

Рассмотрим нелинейное уравнение: 

g(x) = sin(x) - x/3 = 0 

Необходимо найти приближенное решение этого уравнения графическим методом с использованием R. Известно, 

что один из корней находится в окрестности x = 2. Для этого необходимо построить график функции на 

интервале, позволяющем визуально определить этот корень. 

Ниже представлены фрагменты кода, необходимые для построения графика функции g(x) в R. Ваша задача - 

расположить их в правильной последовательности, чтобы получить график, позволяющий визуально оценить 

корень уравнения g(x) = 0. 

Фрагменты кода (В СЛУЧАЙНОМ ПОРЯДКЕ): 

A. x <- seq(0, 4*pi, length.out = 200) # Создаем вектор x для построения графика 

B. y <- g(x) # Вычисляем значения функции g(x) 

C. plot(x, y, type="l", xlab="x", ylab="g(x)", main="Графическое решение sin(x) - x/3 = 0") # Строим график 

функции 

D. abline(h=0, col="blue", lty=2) # Добавляем горизонтальную линию y=0 для визуализации корней 

E. g <- function(x) { sin(x) - x/3 } # Определяем функцию g(x) 
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Требуется: Укажите правильную последовательность букв, соответствующих фрагментам кода, чтобы получить 

график функции g(x) с линией y=0, позволяющий оценить корень уравнения. 

Правильный ответ: E, A, B, C, D 
 

Задание открытого типа с развернутым ответом 
 

Вопрос 18. 

Опишите принцип работы критерия Стьюдента для тестирования достоверности различий между средними 

значениями при равных диспепсиях? 

Ответ: 

Критерий Стьюдента (t-критерий) используется для определения, существует ли статистически значимая разница 

между средними значениями двух групп. Он основан на оценке отношения между величиной разницы между 

средними значениями и величиной внутригрупповой изменчивости. Чем больше разница между средними и чем 

меньше изменчивость внутри групп, тем больше вероятность, что разница статистически значима (не случайна). 

Вот основные принципы работы критерия Стьюдента: 

1. Формулирование гипотез: 

 Нулевая гипотеза (H0): Предполагает отсутствие различий между средними значениями двух групп. (µ1 

= µ2) 

 Альтернативная гипотеза (H1): Утверждает наличие различий между средними значениями двух групп. 

Альтернативная гипотеза может быть двусторонней (µ1 ≠ µ2) или односторонней (µ1 > µ2 или µ1 < µ2), в 

зависимости от того, предполагаем ли мы просто различие или различие в определенном направлении. 

2. Расчет статистики t (t-статистика): 

Критерий Стьюдента вычисляет t-статистику, которая представляет собой отношение разницы между средними 

значениями двух групп к стандартной ошибке разницы. Формула для t-статистики зависит от того, какой вариант 

t-критерия используется: 

 Независимый t-критерий (для двух независимых групп): 

 t = (x̄1 - x̄2) / s_pooled * sqrt(1/n1 + 1/n2) 

где: * x̄1 и x̄2 - средние значения первой и второй групп * s_pooled - объединенная оценка стандартного 

отклонения (предполагается равенство дисперсий) или скорректированная оценка, если дисперсии не равны 

(например, t-критерий Уэлча). * n1 и n2 - размеры выборок первой и второй групп 

 Парный t-критерий (для двух зависимых групп - например, "до" и "после" для одной и той же группы): t 

= x̄_diff / (s_diff / sqrt(n)) где: * x̄_diff - среднее значение разности между парными наблюдениями * s_diff 

- стандартное отклонение разности между парными наблюдениями * n - количество пар 

3. Определение степеней свободы (df): 

Степени свободы определяют форму t-распределения, которое используется для оценки p-значения. 

 Независимый t-критерий: 

o Если дисперсии считаются равными: df = n1 + n2 - 2 

o Если дисперсии не считаются равными (t-критерий Уэлча): расчет df более сложный и обычно 
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округляется до ближайшего целого числа. 

 Парный t-критерий: df = n - 1, где n - количество пар. 

4. Определение p-значения: 

P-значение (probability value) - это вероятность получить наблюдаемую разницу между средними значениями 

(или еще более экстремальную), при условии, что нулевая гипотеза верна. P-значение находится с 

использованием t-статистики и степеней свободы, обращаясь к t-распределению. 

5. Принятие решения: 

P-значение сравнивается с заранее выбранным уровнем значимости (α), обычно 0.05. 

 Если p-значение ≤ α: Нулевая гипотеза отклоняется. Делается вывод о том, что существует статистически 

значимая разница между средними значениями групп. 

 Если p-значение > α: Нулевая гипотеза не отклоняется. Делается вывод о том, что нет достаточных 

оснований утверждать о наличии статистически значимой разницы между средними значениями групп. 

Это не означает, что разницы нет, это означает, что у нас недостаточно доказательств для ее 

подтверждения на данном уровне значимости. 
 

Вопрос 19. 

Модель Джукса-Кантора накопления мутация, объяснения принципа работы с точки зрения теории случайных 

процессов? 

Ответ: 

Модель Джукса-Кантора (Jukes-Cantor model) - это самая простая модель эволюции последовательностей ДНК. С 

точки зрения теории случайных процессов, она представляет собой непрерывный во времени, однородный 

марковский процесс на дискретном пространстве состояний, где состояниями являются четыре нуклеотида: A, C, 

G и T. 

Основные принципы модели Джукса-Кантора (JC69): 

 Состояния: Модель рассматривает каждый сайт (позицию) в последовательности ДНК как независимую 

случайную величину, которая может находиться в одном из четырех состояний: A, C, G или T. 

 Марковское свойство: Состояние сайта в будущем зависит только от его текущего состояния и не 

зависит от его прошлых состояний. 

 Однородность во времени: Вероятность замены нуклеотида не зависит от времени. Скорость мутаций 

постоянна на протяжении всего времени эволюции. 

 Одинаковая вероятность замены: Любой нуклеотид имеет одинаковую вероятность быть замененным на 

любой из трех других нуклеотидов. Другими словами, все замены равновероятны. 

 Непрерывное время: Эволюция происходит непрерывно во времени. 

Представление как марковского процесса: 

 Пространство состояний: S = {A, C, G, T} (четыре нуклеотида). 

 Время: t (непрерывное время, обычно измеряемое в единицах времени эволюции). 

 Переходные вероятности: Pij(t) - вероятность того, что нуклеотид i будет заменен на нуклеотид j за время 
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t. 

 Матрица интенсивностей (Q-матрица): Это ключевой элемент, описывающий скорости переходов между 

состояниями. В модели Джукса-Кантора она имеет следующий вид: 

        A     C     G     T 

 A    -3μ    μ     μ     μ 

 C     μ    -3μ    μ     μ 

 G     μ     μ    -3μ    μ 

 T     μ     μ     μ    -3μ 

Где: 

o μ (мю) - это скорость мутации, общая для всех замен. 

o qij = μ для i ≠ j (скорость замены нуклеотида i на нуклеотид j). 

o qii = -3μ (диагональные элементы), которые соответствуют сумме скоростей выхода из 

состояния i. Отрицательное значение необходимо, чтобы строки матрицы в сумме давали 0. 

Уравнение Колмогорова (прямое уравнение) для модели Джукса-Кантора: 

Как и в общих марковских процессах, эволюцию переходных вероятностей в модели JC69 можно описать с 

помощью прямого уравнения Колмогорова: 

dP(t)/dt = P(t) * Q 

Где: 

 P(t) - матрица переходных вероятностей в момент времени t. Элемент (i, j) этой матрицы - Pij(t). 

 Q - матрица интенсивностей, описанная выше. 

Решение уравнения Колмогорова для модели Джукса-Кантора: 

Решение этого матричного дифференциального уравнения дает формулы для переходных вероятностей: 

Pij(t) = 0.25 + 0.75 * exp(-4μt)  (если i = j)  (вероятность остаться в том же состоянии) 

Pij(t) = 0.25 - 0.25 * exp(-4μt)  (если i ≠ j)  (вероятность замены на другой нуклеотид) 

Эти формулы показывают, что: 

 Со временем вероятность остаться в том же состоянии (Pii(t)) уменьшается, приближаясь к 0.25 

(вероятность случайного выбора этого нуклеотида). 

 Со временем вероятность замены на другой нуклеотид (Pij(t), i ≠ j) увеличивается, также приближаясь к 

0.25. 

 В конечном итоге, система достигает равновесия, где каждый нуклеотид встречается с вероятностью 

0.25. 

Расстояние Джукса-Кантора: 

Наблюдая за количеством различий между двумя последовательностями ДНК, мы можем оценить время (или 

эволюционное расстояние) между ними. Однако наблюдаемое количество различий (p) недооценивает истинное 

количество замен, поскольку некоторые позиции могли мутировать несколько раз. Модель Джукса-Кантора 

позволяет скорректировать эту недооценку. 

Эволюционное расстояние d (количество замен на сайт) оценивается как: 
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d = -3/4 * ln(1 - 4/3 * p) 

Где: 

 p - доля сайтов, где последовательности различаются (наблюдаемое расстояние). 

 d - скорректированное расстояние (Джукса-Кантора). 
 

Вопрос 20. 

Имитационные модели при исследований процессов динамики популяций? 

Ответ: 

Имитационные модели играют ключевую роль в исследовании динамики популяций, предоставляя мощный 

инструмент для понимания и прогнозирования изменений в размере и структуре популяций живых организмов. 

Эти модели позволяют исследователям: 

 Изучать сложные взаимодействия: Учитывать влияние различных факторов, таких как рождаемость, 

смертность, миграция, конкуренция, хищничество, болезни и изменения окружающей среды. 

 Проверять гипотезы: Оценивать, насколько хорошо различные теоретические модели соответствуют 

наблюдаемым данным. 

 Прогнозировать будущее: Предсказывать изменения в численности популяций в различных сценариях. 

 Оценивать эффективность управления популяциями: Оценивать влияние стратегий управления, таких 

как регулирование охоты, создание охраняемых территорий или борьба с инвазивными видами. 

Имитационные модели учитывают случайные колебания в рождаемости, смертности, миграции и других 

параметрах, которые могут влиять на динамику популяции. Они используют вероятностные распределения для 

описания этих случайных событий. 

 Типы: 

o Дискретные модели (матричные модели Лесли): Популяция делится на возрастные классы, и 

изменение численности каждого класса описывается с помощью матрицы. Параметры модели 

(выживаемость, плодовитость) могут быть стохастическими. 

o Непрерывные модели (стохастические дифференциальные уравнения): Добавляют случайный 

шум к детерминированным дифференциальным уравнениям. 

o Модели Монте-Карло: Имитируют случайные события большое количество раз, чтобы оценить 

вероятность различных исходов. 

 Преимущества: 

o Более реалистичны, чем детерминированные модели. 

o Учитывают влияние случайных событий на динамику популяций, особенно в малых популяциях. 

o Позволяют оценивать риск вымирания. 

 Недостатки: 

o Более сложны в анализе, чем детерминированные модели. 

o Требуют больше вычислительных ресурсов. 

o Труднее интерпретировать результаты. 
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