

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВПО «ИГУ»

Кафедра гидрологии и природопользование

УТВЕРЖДАЮ

Декан географического факультета,

≰ канд. геогр. наук, доцент҈ С.Ж. Вологжина

20 22-

Рабочая программа дисциплины

Наименование дисциплины (модуля) Б1.О.34.01Кинематика жидкости и газа

Направление подготовки 05.03.04 «Гидрометеорология»

Направленность (профиль) «Информационные технологии в метеорологии»

Квалификация (степень) выпускника бакалавр

Форма обучения заочная

Согласовано с УМК географического факультета

Протокол № 5 от «15» мая 2023г. Председатель, канд. геогр. наук, доцент

С.Ж. Вологжина

Рекомендовано кафедрой гидрологии и природопользования:

Протокол №11 от 12.05.2023.

Зав. кафедрой Е.Н. Сутырина

Иркутск 2023 г.

Содержание

- І. Цели и задачи дисциплины (модуля)
- II. Место дисциплины (модуля) в структуре ОПОП.
- III. Требования к результатам освоения дисциплины (модуля)
- IV. Содержание и структура дисциплины (модуля)
- 4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов
- 4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине
 - 4.3 Содержание учебного материала
- 4.3.1 Перечень семинарских, практических занятий и лабораторных работ
- 4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение в рамках самостоятельной работы студентов
- 4.4. Методические указания по организации самостоятельной работы студентов
- V. Учебно-методическое и информационное обеспечение дисциплины (модуля)
 - а) перечень литературы
 - б) базы данных, поисково-справочные и информационные системы
 - VI. Материально-техническое обеспечение дисциплины (модуля)
 - 6.1. Учебно-лабораторное оборудование:
 - 6.2. Программное обеспечение
 - 6.3. Технические и электронные средства обучения:
 - VII. Образовательные технологии
- VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

І. Цели и задачи дисциплины (модуля):

Цель: Получение общих и специальных знаний о кинематике жидкостей и газов.

Цели освоения данной дисциплины определяют её основные задачи:

Задачи дисциплины:

- получению базовых знаний по кинематике жидкости и газа
- формировать умение решать задачи кинематики жидкости и газа.

ІІ. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина (модуль) <u>Б1.О.34.01 Кинематика жидкости и газа</u> относится к обязательной части. Совокупность разделов, включенных в программу данного курса, представляет собой важный этап единой системы подготовки бакалавров в области *гидрометеорологии*.

Для изучения данной учебной дисциплины (модуля) необходимы знания, умения и навыки, формируемые предшествующими дисциплинами:

Б1.О.16.02 Математический анализ

Б1.О.15 Физика

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

Б1.О.39 Математические методы и модели в задачах окружающей среды

ІІІ. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки <u>05.03.04 Гидрометеорология</u>.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Компетенция	Индикаторы компе-	Результаты обучения
	тенций	
ОПК-1. Способен	ИДК ОПК-1.2.	Знать: основные понятия, гипотезы и до-
применять базовые	Применяет базовые	пущения, применяемые при описании
знания в области	знания физических	сплошной среды; задачи кинематики жид-
математических и	законов и анализа фи-	кости и газа, методы их решения;
естественных наук при	зических явлений при	Уметь: проводить анализ поставленной
решении задач	решении задач про-	задачи на основе современного математи-
профессиональной	фессиональной дея-	ческого аппарата; формулировать и ре-
деятельности	тельности	шать задачи по движению жидкостей и
		газов
		Владеть: представлениями о прикладных
		задачах изучения течений жидкости для
		решения задач профессиональной дея-
		тельности.

IV. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет <u>4</u> зачетные единицы, <u>144</u> часов

Форма промежуточной аттестации: экзамен

4.1 Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/н	Раздел дисциплины/тема		08	Из них практическая подготовка обучающихся	Виды учебной работы, включая самостоятельную работу обучающихся, практиче скую подготовку и трудоемкость (в часах) Контактная работа преподавателя с обучающимися			_	Форма текущего контроля успеваемости/ Форма промежуточной аттестации (по семестрам)	
		Курс	Всего часов	Из них пран подготовка	Лекция	Семинар/ Практическое, лабораторное занятие	ко	КСР		
1	2	3	4	5	6	7	8	9	10	11
1	1 Основные понятия.	4	2		1	1				Проверочная работа (решение задач)
2	2 Методы описания движения жидкости	4	5		2	2	1			Проверочная работа (решение задач)
3	3 Поток, дивергенция, уравнение неразрывности.	4	3		1	1	1			Проверочная работа (решение задач)
4	4 Вихревое движение жидкости	4	126		1	1	1	2	121	Проверочная работа (решение задач) / Реферат
5	5 Безвихревое движение	4	3		1	1	1			Проверочная ра- бота (решение

									задач)
Контроль		4	5						
	ОТОТИ	4	144	6	6	4	2	1 21	экзамен

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная р	работа обучающихся			Учебно-
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнения	Трудоемкость (час.)	Оценочное сред- ство	методическое обеспечение са- мостоятельной работы
	· · ·	Реферат на тему: «Вихревые движения жидкости в атмосфере и океане»	До начала промежуточной атте- стации		Оценка реферата на educa.isu.ru (оценка в баллах: от 0 до 10 баллов)	осн. — 1-4 доп. — 1-3

4.3. Содержание учебного материала

- 1 Основные понятия. Механика жидкости и газа один из разделов теоретической механики. Гипотеза сплошности. Жидкая частица (элементарный объем). Кинематика материальной точки и абсолютно твердого тела. Плотность. Общность и различия между капельной жидкостью и газом. Жидкости сжимаемые и несжимаемые. Векторные и скалярные величины. Градиент скалярной величины. Режимы движения жидкости. Понятие турбулентности. Структура и основные характеристики турбулентности. Понятие пульсации.
- **2 Методы описания движения жидкости**. Два основных метода описания движения жидкости Лагранжа и Эйлера. Индивидуальная (субстанциональная) производная, ее разложение на локальную и конвективную составляющие. Траектории и линии тока, их дифференциальные уравнения. Установившееся движение. Трубка тока. Струя.
- **3 Поток, дивергенция, уравнение неразрывности**. Поток векторного поля через поверхность. Дивергенция. Формула Остроградского Гаусса в векторном виде. Вывод уравнения неразрывности. Частные виды уравнения неразрывности. Гидравлическое уравнение неразрывности.
- 4 Вихревое движение жидкости. Циркуляция вектора скорости по замкнутому контуру. Вихрь скорости. Теорема Стокса в векторной форме. Связь между ротором вектора скорости и угловой скоростью вращения твердого тела. Теорема Коши Гельмгольца (1-я теорема Гельмгольца) о движении жидкой частицы. Скорость деформации. Физический смысл составляющих тензора деформаций: деформации растяжения, сжатия, сдвига. Вихревая линия и ее дифференциальное уравнение. Вихревая трубка. 2-я теорема Гельмгольца (о постоянстве потока вихря скорости через произвольное сечение вихревой трубки). Интенсивность вихревой трубки. Теорема Стокса о связи интенсивности вихревой трубки с циркуляцией по замкнутому контуру, охватывающему трубку.
- **5 Безвихревое движение.** Потенциал скорости. Уравнение неразрывности для потенциального движения. Плоско-параллельное движение несжимаемой жидкости. Функция тока. Безвихревое плоско-параллельное движение. Связь потенциала скорости с функцией тока и геометрическая интерпретация этой связи. Потенциалы скоростей и функций тока простейших потоков.

4.3.1 Перечень семинарских, практических занятий и лабораторных работ

№ п/н	№ раздела и темы	Наименование семинаров, практических и	Трудоемкость (час.)		Оценочные средства	Формируемые компетенции (индикаторы)
		лабораторных работ	Всего часов	Из них практическая подготовка		
1	2	3	4	5	6	7
1.	1 Основные понятия.	Решение задач: Действия с векторными величинами. Градиенты скалярных величин	1	-	Проверочная работа (решение задач) (оценка в баллах: от 0 до 10 баллов)	ИДК опк-1.2
2.	2 Методы описания движения жидкости	Решение задач: два основных метода описания движения жидкости, разложение индивидуальной производной на	2	-	Проверочная работа (решение задач) (оценка в баллах: от 0 до 10 баллов)	ИДК ОПК-1.2

		локальную и				
		конвективную				
		составляющие,				
		уравнения тра-				
		ектории и ли-				
		нии тока				
3.	3 Поток,	Решение задач:	1	-	Проверочная	ИДК опк-1.2
	дивер-	поток вектор-			работа (реше-	
	генция,	ного поля через			ние задач)	
	уравне-	поверхность,			(оценка в бал- лах: от 0 до 10	
	ние не-	уравнение не-			лах. от о до то баллов)	
	разрыв-	разрывности			,	
	ности.					
4.	4 Вихре-	Решение задач:	1	-	Проверочная	ИДК _{ОПК-1.2}
	вое дви-	циркуляция			работа (реше-	
	жение	вектора скоро-			ние задач) (оценка в бал-	
	жидкости	сти по замкну-			оценка в оал- лах: от 0 до 10	
		тому контуру,			баллов)	
		вихрь скорости,			,	
		уравнение вих-				
		ревой линии				
5.	5 Безвих-	Решение задач:	1		Проверочная	ИДК _{ОПК-1.2}
	ревое	потенциальное			работа (реше-	
	движение	движение жид-			ние задач)	
		кости			(оценка в бал- лах: от 0 до 10	
					баллов)	

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

№	Тема	Задание	Формируемая	ИДК
п/п			компетенция	
1	2	3	4	5
1.	4 Вихревое дви-	Реферат на тему: «Вихри в	ОПК-1	ИДК опк-1.2
	жение жидкости	атмосфере и океане»		

4.4. Методические указания по организации самостоятельной работы студентов

Цель самостоятельной работы — изучить определенные темы некоторых разделов дисциплины самостоятельно. Для лучшей проработки и усвоения материала студенту необходимо написать реферат на заданную тему. Проверка самостоятельной работы осуществляется путем размещения студентом реферата на портале educa.isu.ru.

Выполненная работа оценивается в баллах, согласно разработанной балльной системе (реферат может быть от **0** до **10** баллов в зависимости от степени освещения заданной тематики). При недостаточном освещении заданной темы — студенту возвращается задание на доработку с последующим собеседованием для выявления степени усвоения.

Результаты самостоятельных работ фиксируются на портале educa.isu.ru в электронном виде, что является основанием для отслеживания успеваемости студентов.

Для выполнения всех перечисленных самостоятельных работ студенту предоставляется возможность использования одного из трех компьютерных классов во внеучебное время (все компьютеры подключены к сети "Интернет" и обеспечены доступом в электронную информационно-образовательную среду университета), фондов стационарной библиотеки и фундаментальной библиотеки ИГУ, читальных залов Институтов академии наук (согласно

заключенным с ними Договорами), фондов библиотеки Иркутского управления по гидрометеорологии и мониторингу окружающей среды, индивидуальных консультаций с преподавателями факультета (согласно графику еженедельных консультаций).

Методические указания по организации самостоятельной работы, с подробным описанием каждого задания, представленного в таблице 4.3.2, размещены в ЭИОС по соответствующей дисциплине.

V. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ (МОДУЛЯ)

а) перечень литературы

- 1. **Аргучинцев В.К.** Механика жидкости и газа [Текст] : учеб. пособие / В. К. Аргучинцев, А. В. Аргучинцева. Иркутск : Изд-во ИГУ, 2015. 125 с. (45 экз.)+
- 2. **Аргучинцев В.К., Аргучинцева А.В.** Механика жидкости и газа [Текст] : учеб.-метод. пособие / Иркутский гос. ун-т, Геогр. фак. ; сост.: В. К. Аргучинцев, А. В. Аргучинцева. Иркутск : Изд-во ИГУ, 2010. 59 с.. **Имеются экземпляры в отделах:** всего 61 : нф (1), геохим (60) +
- **3. Лойцянский, Лев Герасимович** Механика жидкости и газа [Текст] : учеб. для студ. вузов, обуч. по спец. 010500 "Механика" / Л. Г. Лойцянский. 7-е изд., испр. М. : Дрофа, 2003. 840 с. Имеются экземпляры в отделах: всего 15 : нф (1), геохим (14)+
- 4. <u>Учайкин, В. В.</u> Механика. Основы механики сплошных сред [Электронный ресурс] / В. В. Учайкин. Электрон. текстовые дан. Москва : Лань, 2017. ЭБС "Лань". неогранич. доступ. **ISBN** 978-5-8114-2235-7 : Б. ц.

дополнительная литература

- 1. **Высоцкий**, Л. И. Математическое и физическое моделирование потенциальных течений жидкости [Электронный ресурс] / Л. И. Высоцкий, Г. Р. Коперник, И. С. Высоцкий. Москва : Лань", 2014. 64 с. ; 21 см. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. +
- 2. <u>Пиралишвили, Ш. А.</u> Физические основы механики [Электронный ресурс] / Ш. А. Пиралишвили. Электрон. текстовые дан. Москва : Лань, 2017. ЭБС "Лань". неогранич. доступ. **ISBN** 978-5-8114-2432-0 : Б. ц.
- 3. Токарева, С. А. Прикладная газовая динамика. Численные методы решения гиперболических систем уравнений [Электронный ресурс]: учебное пособие / С. А. Токарева. Электрон. текстовые дан. Санкт-Петербург: Лань, 2019. 244 с. ЭБС "Лань". неогранич. доступ. **ISBN** 978-5-8114-3741-2: Б. ц.

б) базы данных, информационно-справочные и поисковые системы

http://e.lanbook.com/ - ЭБС «Издательство Лань»

https://isu.bibliotech.ru/ - ЭБС ЭЧЗ «Библиотех»

http://rucont.ru/ - ЭБС «Национальный цифровой ресурс «Руконт»

http://ibooks.ru - ЭБС «Айбукс.py/ibooks.ru»

http://www.sciencemag.org - Научная база данных SCIENCE -ONLINE- SCINCE-NOW

http://www.nature.com - Научная база данных Nature

http://ingrid.Idgo.colombia.edu/ - Библиотека климатических данных (IRILDEO);

http://www.ncdc.noaa.gov - Всемирный центр метеорологических и океанографических данных (NOAA);

Сайт Федеральной службы по гидрометеорологии и мониторингу окружающей среды, http://www.meteorf.ru;

VI.МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Учебно-лабораторное оборудование:

Учебная аудитория с мультимедийным проектором для проведения лекционных занятий. Компьютерные классы для выполнения практических и самостоятельных работ. Каждый компьютер имеет широкополосный доступ в сеть Интернет. Все компьютеры подключены к корпоративной компьютерной сети ИГУ и находятся в едином домене.

6.2. Программное обеспечение:

Программа Microsoft Office Ward для написания реферата представления материалов и результатов.

6.3. Технические и электронные средства:

Учебный материал подается с использованием современных средств визуализации с применением мультимедийного оборудования.

Персональные компьютеры для выполнения практических и самостоятельных работ.

VII.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

Информационные технологии: использование электронных образовательных ресурсов при подготовке к занятиям, занятия сопровождаются мультимедийными презентациями, просмотром роликов по проходимым темам.

Проектная технология: организация самостоятельной работы студентов, когда обучение происходит в процессе деятельности, направленной на разрешение проблемы, возникшей в ходе изучения темы

Проблемное обучение: стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы, его элементы используются в ходе занятий.

Контекстное обучение: мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением;

Обучение на основе опыта: активизация познавательной деятельности студента проводится за счет ассоциации и собственного опыта.

Обучение критическому мышлению: построение занятия по определенному алгоритму — последовательно, в соответствии с тремя фазами: вызов, осмысление и рефлексия. Цель данной образовательной технологии — развитие мыслительных навыков обучающихся, необходимых не только при изучении учебных предметов, но и в обычной жизни, и в профессиональной деятельности (умение принимать взвешенные решения, работать с информацией и др.).

Станционное обучение: организация целенаправленной и планомерной самостоятельной работы студентов на занятии в мини-группах в целях более эффективного усвоения проходимого материала, когда каждая группа выбирает свою образовательную траекторию, и студенты сами оценивают свою работу.

Наименование тем занятий с использованием активных форм обучения:

$N_{\underline{0}}$	Тема занятия	Вид занятия	Форма / Методы	Кол-во часов
			интерактивного	
			обучения	
1	1 Основные понятия.	Лекция / практи-	Информационные	2
		ческая работа	технологии /	
		_	Обучение крити-	
			ческому мышле-	
			нию	
2	2 Методы описания дви-	Лекция / практи-	Информационные	4

	жения жидкости	ческая работа	технологии /	
			Обучение крити-	
			ческому мышле-	
			нию	
3	3 Поток, дивергенция,	Лекция / практи-	Информационные	2
	уравнение неразрывно-	ческая работа	технологии /	
	сти.		Обучение крити-	
			ческому мышле-	
			нию	
4	4 Вихревое движение	Лекция / практи-	Информационные	123
	жидкости	ческая работа /	технологии /	
		самостоятельная	Обучение крити-	
		работа	ческому мышле-	
			нию / Контекст-	
			ное обучение	
5	5 Безвихревое движение	Лекция / практи-	Информационные	2
	•	ческая работа	технологии /	
			Обучение крити-	
			ческому мышле-	
			нию	

VIII.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ

Оценочные средства для входного контроля – не предусмотрены

Оценочные средства текущего контроля

Тема или раздел дисциплины	Показатель	Критерий оценивания	Формируемые компетенции и индикаторы
1 Основные понятия.	Знает основные понятия, гипотезы и допущения, применяемые при описании сплошной среды. Владеет представлениями о прикладных задачах изучения течений жидкости для решения профильных научноисследовательских задач Умеет выполнять действия с векторными величинами, определять градиенты скалярных величин	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ОПК-1 ИДК _{ОПК-1.2}
2 Методы опи- сания движе- ния жидкости	Знает основные методы описания движения жидкости. Владеет представлениями о траектории и линии тока, трубке тока и струе. Умеет описывать движение в переменных Лагранжа и Эйлера, определять уравнения траектории и линии тока	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ОПК-1 ИДК _{ОПК-1.2}
3 Поток, дивергенция, уравнение неразрывности.	Знает формулу Остроградского – Гаусса, знает вывод уравнения неразрывности и частные виды уравнения неразрывности. Владеет представлениями о потоке векторного поля и дивергенции Умеет использовать уравнение неразрывности, вычислять поток векторного поля, дивергенцию	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетворительно»	ОПК-1 ИДК _{ОПК-1.2}
4 Вихревое движение жид- кости	Знает понятия циркуляции вектора скорости, вихря скорости Владеет представлениями о кинематике вихревого движения жидкости, о вихрях в атмосфере и океане	Владеет материалом данного раздела. Выполнил проверочную работу по разделу с оценкой не ниже «Удовлетвори-	ОПК-1 ИДК _{ОПК-1,2}

Тема или раздел	Показатель	Критерий оценивания	Формируемые
дисциплины			компетенции
			и индикаторы
	Умеет определять циркуляцию вектора	тельно»	
	скорости по замкнутому контуру, вихрь	Написал реферат с оценкой	
	скорости, уравнение вихревой линии	не ниже «Удовлетворитель-	
		HO»	
5 Безвихревое	Знает понятия потенциала скорости, функ-	Владеет материалом данно-	ОПК-1
движение	ции тока, связь потенциала скорости с	го раздела.	ИДК ОПК-1.2
	функцией тока	Выполнил проверочную	
	Владеет представлениями о кинематике	работу по разделу с оцен-	
	безвихревого движения жидкости	кой не ниже «Удовлетвори-	
	Умеет решать задачи на потенциальное	тельно»	
	движение жидкости		

Критерии оценки практических заданий (текущий контроль, формирование компетенций):

«Отлично»:

10 баллов: правильно решил все задачи проверочных работ, студент четко и без ошибок ответил на все контрольные вопросы;

«Хорошо»:

8 баллов: решил все решил все задачи проверочных работ с отдельными недочетами, студент ответил на все контрольные вопросы с замечаниями;

«Удовлетворительно»:

6 баллов: решил все решил все задачи проверочных работ с ошибками, студент ответил на все контрольные вопросы с замечаниями;

«Неудовлетворительно»:

3 балла: студент неправильно решил все задачи проверочных работ или решил не все задачи, студент ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

0 баллов: студент не решил все задачи проверочных работ.

Критерии оценивания индивидуального отчета о выполнении самостоятельной работы (реферата) (текущий контроль, формирование компетенций):

«Отлично»:

10 баллов: работа выполнена в срок, оформление, структура и стиль работы образцовые; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; правильные ответы на все вопросы при защите реферата; тема реферата раскрыта полностью; список использованных источников содержит требуемое в задании число источников;

«Хорошо»:

8 балла: содержание работы соответствует тематике реферата; работа выполнена с незначительными замечаниями; работа выполнена в срок, в оформлении, структуре и стиле проекта нет грубых ошибок; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; правильные ответы на все вопросы с помощью преподавателя при защите реферата;

«Удовлетворительно»:

6 балла: содержание реферата в целом соответствует заявленной теме; написанное реферата имеет значительные замечания; сдана с нарушением графика, в оформлении, структуре и стиле работы есть недостатки; работа выполнена самостоятельно, присутствуют собственные обобщения; ответы не на все вопросы при защите отчета;

«Неудовлетворительно»:

3 балла: содержание реферата значительно отклоняется от заявленной темы; отсутствуют или сделаны неправильные выводы и обобщения; оформление работы не соответствует требованиям; нет ответов на вопросы при защите отчета.

0 баллов: работа не выполнена или не является оригинальной, не соответствует заявленной теме; выполнена не самостоятельно

8.1.1 Оценочные материалы для промежуточной аттестации в форме - экзамен Темы рефератов и заданий поисково-исследовательского характера

Реферат на тему: «Реферат на тему: «Вихри в атмосфере и океане»

Демонстрационный вариант теста (фрагмент)

равняется удвоенной угловой скорости вращения частиц жидкости или газа и является характеристикой вращательной способности поля скорости в данной точке

Дивергенция вектора скорости

Поток вектора скорости

Трубка тока

На рисунке показан

Найти дивергенцию скоростного векторного поля, если

и=2x, v=2y, w=2z

Согласно гипотезе в механике жидкости и газа при решении большинства задач принимают жидкость (газ) как сплошную среду ввиду чрезвычайной малости не только самих молекул, но и расстояний между ними по сравнению с объемами, рассматриваемыми при изучении равновесия и движения жидкости. кинетичности текучести сплошности сжимаемости хаотичности Часть жидкости, ограниченная траекториями точек замкнутого контура, называется линия, проведенная в жидкости в данный момент времени так, что скорости всех частиц, находящихся на этой линии, направлены по касательным к этой линии. $\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{\mathbf{V}}) = 0$ Уравнение является выражением закона сохранения

Темы практических работ

- Решение задач: Действия с векторными величинами. Градиенты скалярных величин
- Решение задач: два основных метода описания движения жидкости, разложение на индивидуальной производной на локальную и конвективную составляющие, уравнения траектории и линии тока
- Решение задач: поток векторного поля через поверхность, дивергенция, уравнение неразрывности
- Решение задач: циркуляция вектора скорости по замкнутому контуру, вихрь скорости, уравнение вихревой линии
- Решение задач: потенциальное движение жидкости

Тематика вопросов для самостоятельной работы

Примеры сжимаемых и несжимаемых жидкостей.

Когда жидкость однородна?

Жидкая частица – что это.

В чем общность и различие методов описания жидкости по Лагранжу и Эйлеру? Что характеризует дивергенция? Является она скалярной или векторной величиной? Основные предпосылки при выводе гидравлического уравнения неразрывности.

Может ли быть плоскопараллельное движение вихревым?

Пример проверочной работы (фрагмент)

Задача 1. Движение жидкости описывается потенциалом скоростей $\phi = x \ln(x) + 3e^y$ Требуется определить:

- 1) проекции вектора скорости и его модуль
- 2) дивергенцию векторного поля
- 3) компоненты ускорения
- 4) является ли жидкость несжимаемой

• • •

Примерный перечень вопросов и заданий к экзамену

Механика жидкости и газа — один из разделов теоретической механики. Понятие о сплошной среде. Жидкая частица (элементарный объем).

Кинематика материальной точки и абсолютно твердого тела. Плотность. Общность и различия между капельной жидкостью и газом. Жидкости сжимаемые и несжимаемые. Градиент скалярной величины.

Два основных метода описания движения жидкости – Лагранжа и Эйлера.

Индивидуальная (субстанциональная) производная, ее разложение на локальную и конвективную составляющие.

Траектории и линии тока, их дифференциальные уравнения. Установившееся движение. Трубка тока. Струя.

Поток векторного поля через поверхность. Дивергенция. Формула Остроградского — Γ аусса в векторном виде.

Вывод уравнения неразрывности. Частные виды уравнения неразрывности. Гидравлическое уравнение неразрывности.

Циркуляция вектора скорости по замкнутому контуру. Вихрь скорости. Теорема Стокса в векторной форме. Связь между ротором вектора скорости и угловой скоростью вращения твердого тела.

Теорема Коши – Гельмгольца (1-я теорема Гельмгольца) о движении жидкой частицы. Скорость деформации. Физический смысл сос-тавляющих тензора деформаций: деформации растяжения, сжатия, сдвига.

Вихревое движение жидкости. Вихревая линия и ее дифференциальное уравнение. Вихревая трубка. 2-я теорема Гельмгольца (о постоянстве потока вихря скорости через произвольное сечение вихревой трубки). Интенсивность вихревой трубки. Теорема Стокса о связи интенсивности вихревой трубки с циркуляцией по замкнутому контуру, охватывающему трубку.

Безвихревое движение. Потенциал скорости.

Уравнение неразрывности для потенциального движения.

Плоско-параллельное движение несжимаемой жидкости. Функция тока. Безвихревое плоско-параллельное движение. Связь потенциала скорости с функцией тока и геометрическая интерпретация этой связи.

Потенциалы скоростей и функций тока простейших потоков.

Режимы движения жидкости. Понятие турбулентности. Структура и основные характеристики турбулентности. Понятие пульсации.

Критерии оценивания устного ответа на контрольные вопросы (промежуточный контроль, формирование компетенций):

Экзамен проводится в форме тестового задания средствами образовательного портала *educa.isu.ru* из 20 вопросов и оценивается по 2 балла за каждый правильный ответ на вопрос (максимально 40 баллов за тест).

Общая оценка выставляется как сумма текущего контроля и промежуточного контроля:

Оценочное средство	Количество баллов
	за семестр
Текущий контроль:	
Самостоятельная работа:	
Реферат на тему: «Вихри в атмосфере и океане»	0-10
Практические работы:	
Проверочная работа (Решение задач: Действия с векторными величинами.	0-10
Градиенты скалярных величин)	
Проверочная работа (Решение задач: два основных метода описания дви-	0-10
жения жидкости, разложение на индивидуальной производной на ло-	
кальную и конвективную составляющие, уравнения траектории и линии	
тока)	
Проверочная работа (Решение задач: поток векторного поля через поверх-	0-10
ность, уравнение неразрывности)	
Проверочная работа (Решение задач: циркуляция вектора скорости по	0-10

замкнутому контуру, вихрь скорости, уравнение вихревой линии)	
Проверочная работа (Решение задач: потенциальное движение жидкости)	0-10
Промежуточный контроль:	
Экзаменационный тест	0-40
Итого:	0-100

по балльной системе:

Суммарные баллы, полученные обучающимся за	Академическая оценка
текущий контроль и промежуточный контроля	
Менее 60 баллов	неудовлетворительно
60-70 баллов	удовлетворительно
71-85 баллов	хорошо
86-100 баллов	отлично

Разработчик:

Elly

Доцент кафедры гидрологии и природопользования Е.Н. Сутырина

Программа составлена в соответствии с требованиями Φ ГОС ВО по направлению подготовки 05.03.04 Гидрометеорология.

Программа рассмотрена на заседании кафедры гидрологии и природопользования протокол №11 от 12.05.2023

Зав. кафедрой ______Е.Н. Сутырина

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.

Лист согласования, дополнений и изменений в рабочую программу дисциплины на 2024/2025 учебный год

1. Внести изменения:

- 1) наименование п.8.1 *«Оценочные средства (ОС)»* изложить в новой редакции *«Оценочные материалы (ОМ)*
- 2) наименование «Оценочные средства для входного контроля» изложить в новой редакции «Оценочные материалы для входного контроля»
- 3) наименование «Оценочные средства текущего контроля» изложить в новой редакции «Оценочные материалы текущего контроля»
- 2. Внести дополнения:
- 1) Добавить в п.6.2 Программное обеспечение ссылку на реестр ПО на 2024 г. https://isu.ru/export/sites/isu/ru/employee/license/.galleries/docs/Reestr-PO-all-2024.xlsx

Декан географического факультета

Вологжина С.Ж.