

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Кафедра естественнонаучных дисциплин

Педагогический А.В. Семиров

Рабочая программа дисциплины (модуля)

Б1.О.21.02 Содержательные особенности углубленного обучения в общем образовании: Биотехнология

Направление подготовки **44.03.05** Педагогическое образование (с двумя профилями подготовки)

Направленность (профиль) подготовки Технология-Экология

Квалификация (степень) выпускника - Бакалавр

Форма обучения - очная

Согласована с УМС ПИ ИГУ

Протокол № 8 от «26» амреля 2019 г.

Председатель ______ М.С. Павлова

Рекомендовано кафедрой:

Протокол № 7

От «24» апреля-2019 г

Зав. кафедрой Сеськой О.Г. Пенькова

Иркутск 2019 г.

1. Цель освоения дисциплины сформировать систему знаний о биотехнологии, как о современной комплексной области деятельности, в которой новые методы современной генетики, молекулярной биологии соединены с устоявшейся практикой традиционных биотехнических технологий.

2. Задачи дисциплины.

- ознакомить студентов с традиционными и новейшими технологиями, в основе которых лежат достижения генной и клеточной инженерии;
- оценить практическое значение современной биотехнологии для решения актуальных социально-экономических проблем;
- проанализировать морально-этические аспекты генно-инженерных исследований.

3. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Содержательные особенности углубленного обучения в общем образовании» входит в состав дисциплин части Б1.О учебного плана по направлению 44.03.05 Педагогическое образование (с двумя профилями подготовки) по профилю «Технология-Экология».

Изучение данной дисциплины базируется на комплексе знаний, усвоенных в ходе изучения дисциплин Методика обучения и воспитания (уровень общего образования), Решение профессиональных задач (практикум), Решение практических задач, Общенаучные методы познания.

Место дисциплины в профессиональной подготовке студентов определяется как средство формирования научного мировоззрения учителя. Значение дисциплины определяется необходимостью профессионального ориентирования специалиста на научно-исследовательскую и педагогическую деятельность.

4. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

УК-1 способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	ИД-1 _{УК-1} выполняет поиск необходимой информации, её критический анализ и обобщает результаты анализа для решения поставленной задачи. ИД-2 _{УК-1} использует системный подход для решения поставленных задач.	Знать: процедуры системного анализа, включающего методики проведения исследования и организацию процесса принятия решения; Уметь: оценить повышение эффективности процедур анализа проблем и принятия решений; Владеть: алгоритмом принятия решения; методами установления причинно-следственных связей и определения наиболее значимых среди них; методиками постановки цели и определения способов ее достижения.			
ОПК-2 спосо- бен участвовать в	ИД-10ПК-2 знает законо-	Знать: теории, законы, принципы сложения и управле-			
разработке основ-	мерности и принципы построения и функционирования	ния природных и социальных			
ных и дополни-	природных и социальных сис-	систем; принципы организации			
тельных образова-	тем; основные принципы дея-	проектной деятельности в рамках			
тельных программ,	тельностного подхода и пути	образовательных программ;			
разрабатывать от-	достижения образователь-	Уметь: использовать ИКТ в			
дельные их компо-	ных результатов в том числе с	профессиональной деятельности;			

ненты (в том числе с использованием информационно-коммуникационных технологий)

использованием ИКТ

ИД-2_{ОПК-2} разрабатывает и реализует знаниевый компонент естественнонаучных дисциплин в рамках основной образовательной программы на уровне пользователя, общепедагогическом уровне, на уровне преподаваемого/ых предметов.

разрабатывать и проектировать исследовательскую деятельность в предметной области;

Владеть: навыками разработки, реализации знаниевых компонент экологических дисциплин в рамках основной образовательной программы;

ОПК-3. Способен организовывать совместную и индивидуальную учебную И воспитательную деятельность обучающихся, в том числе, с особыми образовательными потребностями, в соответствии с требовафедеральниями ных государственных образовательных стандартов

ИДК опкз.1

проектирует совместную и индивидуальную деятельность обучающихся в соответствии с их индивидуальными психофизиологическими особенностями и возрастными закономерностями

ИДК опкз.2

использует педагогически обоснованное содержание, формы, методы и приемы организации совместной и индивидуальной учебной и воспитательной деятельности обучающихся в соответствии с требованиями федеральных государственных образовательных стандартов

ИДК опкз.з

соотносит виды адресной помощи с индивидуальными образовательными потребностями обучающихся

ИДК опкз.4

использует приемы оценки общих, типологических и индивидуальных образовательных потребностей обучающихся для организации продуктивной учебной и воспитательной деятельности

Знать: основные приемы и методы прикладных экологических исследований;

Уметь: проектировать совместную и индивидуальную исследовательскую деятельность обучающихся по экологии в процессе учебной деятельности в соответствии с требованиями ФГОС;

Владеть: комплексом лабораторных методов экологических исследований, необходимых для организации образовательной деятельности.

ОПК-8 способен осуществлять педа-гогическую деятельность на основе специальных научных знаний

ИД-1_{ОПК-8} использует методы, формы и средства обучения для реализации проектной естественнонаучной деятельности обучающихся

Знать: основные принципы и процедуры научного экологического исследования, экспериментальные и теоретические методы научно-исследовательской деятельности;

Уметь: анализировать методы научных экологических исследований в целях решения исследовательских и практических

задач; представлять результаты			
исследовательских работ, высту-			
пать с сообщениями по тематике			
проводимых исследований;			
Владеть: навыками проведе-			
ния исследований с учетом тео-			
ретических и эмпирических ог-			
раничений, накладываемых			
структурой психолого-			
педагогического знания;			

5. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

5.1. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего ча-	Семестры			
	сов / за- четных	9			
	единиц Очн.				
Аудиторные занятия (всего)	42	42			
В том числе:					
Лекции	14	14			
Практические занятия (ПЗ)	28	28			
Лабораторные работы (ЛР)					
Самостоятельная работа (всего)	12	12			
Вид промежуточной аттестации (экзамен)	54	54			
Контактная работа (всего)*	42	42			
Общая трудоемкость часы	108	108			
зачетные единицы	3	3			

5.2. Содержание учебного материала дисциплины

БИОТЕХНОЛОГИЯ

Введение. Предмет и задачи биотехнологии. Использование научных достижений в области физико-химической биологии и фундаментальных дисциплин в биоиндустрии. Отличительные особенности современной биотехнологии. Экономические и социальные аспекты развития биотехнологии.

Биотехнологические процессы в пищевой промышленности. Перспективные направления биотехнологии в снабжении человечества продовольствием: промышленное получение кормового белка; микробиологический синтез пищевого белка; промышленное получение биопестицидов, удобрении и стимуляторов роста; технология переработки пищевых продуктов.

Биотехнология производства метаболитов. Классификация продуктов биотехнологических производств; механизмы интенсификации процессов получения продуктов клеточного метаболизма; селекция мутантов микроорганизмов — продуцентов первичных метаболитов; биотехнология получения вторичных продуктов.

Ферментативная биотехнология и инженерная энзимология. Инженерная энзимология, её задачи; технология культивирования микроорганизмов — продуцентов ферментов; технология выделения и очистки ферментов; иммобилизованные ферменты; промышленные процессы с использованием иммобилизованных ферментов; применение иммобилизованных ферментов.

Энергия и биотехнология. Получение экологически чистой энергии; производство технического этанола из восстановленного сырья как компонента топлива для автомобилей; биогаз; преобразование солнечной энергии.

Экологическая биотехнология. Экологическая биотехнология и её задачи; биотрасформация ксенобиотиков; очистка сточных вод.

Основы генетической инженерии. История развития генной инженерии, методы генетической инженерии; биотехнология рекомбинантных ДНК; экспрессия чужеродных генов; клонирование и экспрессия генов в различных организмах; использование достижений генной инженерии в животноводстве, растениеводстве и медицине; морально-этические аспекты генной и нженерии.

Основы клеточной инженерии. История клеточной инженерии; культура клеток и тканей; методы культивирования изолированных тканей; типы культуры клеток и тканей; клонирование повзвоночных животных: успехи и проблемы; получение трансгенных растений.

Бионика. История формирования исследований в области бионики. Разработка и конструирование систем управления и связи на основе использования знаний из биологии. Освоение биологических методов добычи полезных ископаемых, технологии производства сложных веществ органической химии, строительных материалов и покрытий, которые использует живая природа. Биороботы.

Нанотехнологическое направление в биотехнологии. История формирования нанотехнологических работ. Наночастицы. Нанотрубки. Использование достижений нанотехнологии в биологических и медицинских исследованиях.

5.3. Разделы и темы дисциплин (модулей) и виды занятий

№	Наименование раздела/темы	Типы занятий в часах			
п/п					
		Лекции	П3	CPC	Всего
9 семестр БИОТЕХНОЛОГИЯ					
1.	Тема 1. Введение. Предмет, задачи, объекты и методы биотехнологии.	1	2	2	5
2.	Тема 2. Биотехнологические процессы в пищевой промышленности.	2	4	2	8
3.	Тема 3. Биотехнология производства метаболитов. Ферментативная биотехнология и инженерная энзимология.	3	6	2	11
4.	Тема 5. Экологическая биотехнология.Энергия и биотехнология.	2	4	2	8
5.	Тема 6. Основы генетической инженерии.	2	4	2	8
6.	Тема 7. Основы клеточной инженерии.	2	4	2	8
7.	Тема8. Бионика. Нанотехнологическое	2	4	2	8

направление в биотехнологии.				
Всего:	14	28	12	108

5.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа заключается в том, что в ходе такого обучения студенты прежде всего учатся приобретать и применять знания, искать и находить нужные для них средства обучения и источники информации, уметь работать с этой информацией.

Самостоятельная работа студента направлена на углубление знаний по изучаемому предмету, а также на формирование умений самостоятельно проводить анализ и синтез на основании имеющегося материала.

В рамках изучаемой дисциплины семестре предлагаются следующие формы самостоятельной работы:

- Учебное задание вид поручения преподавателя студенту, в котором содержится требование выполнить какие-либо учебные (теоретические и практические) действия. Критерии оценки по каждому заданию преподаватель выставляет дополнительно.
 - Глоссарий список терминов, понятий, теорий в рамках предметной области с их объяснением (размер и форма тезауруса оговариваются индивидуально со студентом).
 - Поиск материалов в сети Интернет по предлагаемой для СРС теме студент осуществляет поиск современных воззрений, описаний точек зрений различных авторов. Итогом работы является файл MS Word с изложением указанного вопроса и ссылками на источники (объем не менее 2-х печатных страницы A4 шрифт TimeNewRoman 12 кегль через 1 интервал и не менее 5-ти источников для одной темы).
 - Составление тестов, презентаций подготовка не менее 10-ти тестовых заданий по отдельной теме в трёх основных формах (свободный ввод, выбор варианта, соответствие) или файла презентации не менее 10 слайдов с иллюстрациями, ссылками на используемые источники (не менее 3-х).
 - Заполнение сводных таблиц на основании анализа теоретического лекционного материала или материала учебника создание сводной обобщающей данную тему таблицы.

5.5. Примерная тематика курсовых работ (проектов). Курсовые работы не предусмотрены учебным планом.

6. Учебно-методическое и информационное обеспечение дисциплины (модуля):

- а) основная литература:
 - 1. Ксенофонтов Б.С. Основы микробиологии и экологической биотехнологии [Электронный ресурс] : учеб. пособие / Б. С. Ксенофонтов. ЭВК. М. : Инфра-М, 2015. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
 - 2. Нетрусов А.И. Введение в биотехнологию [Электронный ресурс] : учеб. для вузов по напр. "Биология" и смежным напр. / А. И. Нетрусов. ЭВК. М. : Академия, 2014. Режим доступа: ЭЧЗ "Библиотех".
 - 3. Технология пищевых производств / А.П. Нечаев и др. М.: КолосС, 2007. 767 с. (18 экз).
- б) дополнительная литература:
- 1. Промышленная микробиология / Под ред. Н.С. Егорова М.: Высшая школа, 1989.
- 2. Жизнь микробов в экстремальных условиях. М.: Мир, 1982.
- 3. А.И.Нетрусов. Экология микроорганизмов. М.: «Академия», 2004.
- 4. А.И.Нетрусов. Практикум по микробиологии. М.: «Академия», 2005.

д) базы данных, информационно-справочные и поисковые системы

г) базы данных, информационно-справочные и поисковые системы:

http://library.isu.ru/ - Научная библиотека ИГУ

http://www.viniti.msk.su/ - Сервер ВИНИТИ, Москва

http://www.isf.ru/ - Сервер Международного научного фонда, Москва

http://www.lib.msu.su/ - Сервер научной библиотеки МГУ, Москва

http://www.nsc.ru - Сервер "Академгородок", Новосибирск

http://www.mon.gov.ru - Официальный сайт Министерства образования и науки РФ

http://www.window.edu.ru - Единое окно доступа к образовательным ресурсам

http://www.openet.edu.ru - Российский портал открытого образования

http://www.ed.gov.ru - Сайт Федерального агентства по образованию Министерство образования и науки $P\Phi$

http://www.catalog.iot.ru - Каталог образовательных ресурсов сети Интернет http://www.window.edu.ru/catalog/resources/uchebnik-anatomiya-i-fiziologiya http://www.lib.msu.su /Сервер научной библиотеки МГУ, Москва http://www.nsc.ru /Сервер "Академгородок", Новосибирск.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Помещения и оборудование

Помещения — учебные аудитории для проведения учебных занятий, предусмотренных учебным планом ОПОП ВО бакалавриата, оснащены оборудованием и техническими средствами обучения.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ФГБОУ ВО «ИГУ».

Оборудование: мультимедийный проектор.

7.2. Лицензионное и программное обеспечение

Microsoft Office Profissional

Антивирус Kaspersky

8.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В образовательном процессе используются активные и интерактивные формы проведения занятий (разбор конкретных ситуаций, групповые дискуссии), развивающие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств и формирующие компетенции.

9.ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

9.1. Оценочные средства для проведения текущего контроля успеваемости

Текущий контроль осуществляется в течение всего времени изучения дисциплины.

9.1.1. Образцы тестовых заданий

001. НАЧАЛО ПОСЛЕПАСТЕРОВСКОГО ПЕРИОДА В РАЗВИТИИ БИОТЕХНОЛОГИИ ОТНОСЯТ К

1) 1941 г. 2) 1866 г. 3) 1975 г. 4) 1982 г.

002. ОТКРЫЛ МИКРООРГАНИЗМЫ И ВВЕЛ ПОНЯТИЕ

БИООБЪЕКТА

1) Д. Уотсон 3) Ф. Сенгер 2) Ф. Крик 4) Л. Пастер

003. ПЕРИОД АНТИБИОТИКОВ В РАЗВИТИИ БИОТЕХНОЛОГИИ

ОТНОСИТСЯ К 1) 1866-1940 гг. 3) 1961-1975 гг. 4) 1975-2001 гг. 2) 1941-1960 гг. 004. СТРУКТУРУ БЕЛКА ИНСУЛИНА УСТАНОВИЛ 1) Д. Уотсон 3) Ф. Сенгер 4) М. Ниренберг 2) Ф. Крик 005. РАЗРАБОТКА ТЕХНОЛОГИИ РЕКОМБИНАНТНЫХ ДНК ОТНОСИТСЯ К ПЕРИОЛУ РАЗВИТИЯ БИОТЕХНОЛОГИИ 1) антибиотиков 3) послепастеровскому 4) управляемого биосинтеза 2) допастеровскому 006. ПОЛУЧЕНИЕ ХЛЕБОПЕКАРНЫХ И ПИВНЫХ ДРОЖЖЕЙ ОТНОСИТСЯ ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ 1) допастеровскому 2) послепастеровскому 3) антибиотиков 4) управляемого биосинтеза 5) новой и новейшей биотехнологии 007. ИСПОЛЬЗОВАНИЕ СПИРТОВОГО БРОЖЕНИЯ В ПРОИЗВОДСТВЕ ПИВА И ВИНА ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ 1) допастеровскому 2) послепастеровскому 3) антибиотиков 4) управляемого биосинтеза 5) новой и новейшей биотехнологии 008. ИСПОЛЬЗОВАНИЕ МОЛОЧНОКИСЛОГО БРОЖЕНИЯ ПРИ ПЕРЕРАБОТКЕ МОЛОКА ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ 1) допастеровскому 2) послепастеровскому 3) антибиотиков 4) управляемого биосинтеза 5) новой и новейшей биотехнологии 009. ПЕРИОД РАЗВИТИЯ ПРОИЗВОДСТВА ВИТАМИНОВ 1) допастеровскому 3) новой и новейшей биотехнологии 2) послепастеровскому 4) управляемого биосинтеза 010. ПРОИЗВОДСТВО ЭТАНОЛА ОТНОСИТСЯ К ПЕРИОЛУ **РАЗВИТИЯ** БИОТЕХНОЛОГИИ 1) допастеровскому 2) послепастеровскому 3) антибиотиков 4) управляемого биосинтеза 5) новой и новейшей биотехнологии 011. ВНЕДРЕНИЕ В ПРАКТИКУ ВАКЦИН И СЫВОРОТОК ОТНОСИТСЯ К

- ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) управляемого биосинтеза

3) послепастеровскому

2) допастеровскому

- 4) антибиотиков
- 012. КУЛЬТИВИРОВАНИЕ КЛЕТОК И ТКАНЕЙ РАСТЕНИЙ ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) новой и новейшей биотехнологии
- 3) послепастеровскому

2) допастеровскому

- 4) антибиотиков
- 013. ПОЛУЧЕНИЕ ВИРУСНЫХ ВАКЦИН ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) допастеровскому

- 2) послепастеровскому
- 3) антибиотиков
- 4) управляемого биосинтеза
- 5) новой и новейшей биотехнологии
- 014. МИКРОБИОЛОГИЧЕСКАЯ ТРАНСФОРМАЦИЯ СТЕРОИДНЫХ СТРУКТУР ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) управляемого биосинтеза

3) послепастеровскому

2) допастеровскому

- 4) антибиотиков
- 015. ПРОИЗВОДСТВО ВИТАМИНОВ ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) допастеровскому
 - 2) послепастеровскому
 - 3)антибиотиков
 - 4) управляемого биосинтеза
 - 5) новой и новейшей биотехнологии
- 016. ПРОИЗВОДСТВО ЧИСТЫХ ФЕРМЕНТОВ ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) управляемого биосинтеза

3) послепастеровскому

2) допастеровскому

- 4) антибиотиков
- 017. ПРОМЫШЛЕННОЕ ИСПОЛЬЗОВАНИЕ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТОВ И КЛЕТОК ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) управляемого биосинтеза

3) послепастеровскому

2) допастеровскому

- 4) антибиотиков
- 018. ПРОИЗВОДСТВО АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ МИКРОБНЫХ МУТАНТОВ ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) допастеровскому
 - 2) послепастеровскому
 - 3) антибиотиков
 - 4) управляемого биосинтеза
 - 5) новой и новейшей биотехнологии
- 019. ПОЛУЧЕНИЕ БИОГАЗА ОТНОСИТСЯ К ПЕРИОДУ РАЗВИТИЯ БИОТЕХНОЛОГИИ
 - 1) допастеровскому
 - 2) послепастеровскому
 - 3) антибиотиков
 - 4) управляемого биосинтеза
 - 5) новой и новейшей биотехнологии
 - 020. ПЕРВАЯ РЕКОМБИНАНТНАЯ ДНК ПОЛУЧЕНА
 - 1) в 1953 г. Дж. Утсоном и Ф. Криком
 - 2) в 1972 г. П. Бергом
 - 3) в 1963 г. М. Ниренбергом
 - 4) в 1953 г. Ф. Сенгером.

9.1.2.Метод кейсов.

Кейс-метод представляет собой имитацию реального события: учебный материал подается студентам виде проблем (кейсов), а знания приобретаются в результате активной и творческой работы: самостоятельного осуществления целеполагания, сбора необходимой информации, ее анализа с разных точек зрения, выдвижения гипотезы, выводов, заключения, самоконтроля процесса получения знаний и его результатов.

Используемые кейсы в курсе «Введение в биотехнололгию»:

- в ходе выполнения практических работы объяснить необходимость манипуляций для

достижения окрашивания капсуло- и спорообразующих бактерий, а также бактерий Γ^+ и Γ^- ;

- выполнить поисковую работу по заранее определённой теме, выступить с докладом, сопроводив его презентацией.
 - выполнить задания, обозначенные в п.4.5.

9.1.3. Примерный перечень форм выступлений на аудиторию

Выступление с докладом и презентацией

Устные ответы на семинарах

9.1.4. Тематика устного опроса.

- 1. Классификация основных этапов становления и развития биотехнологии.
- 2. Современные биотехнологические агенты.
- 3. Основные задачи постферментационной стадии биотехнологических процессов.
- 4. Основные характеристики технологичных штаммов-продуцентов.
- 5.Структура коллекций микроорганизмов, принципы организации.
- 6. Достоинства и недостатки микробиологического синтеза белковых продуктов.
- 7. Специфика биопроцессов получения антибиотиков.
- 8. Разрушаемые биопластики, принципы получения, преимущества применения.
- 9.Основные принципы очистки ферментов.
- 10.Значение технологии иммобилизации ферментов для биотехнологии.
- 11. Способы биосинтеза ферментов.
- 12. Промышленные процессы получения целевых продуктов с применением иммобилизованных ферментов.
- 14. Биотопливо реалии и перспективы.
- 15. Роль метаногенеза для технологической биоэнергетики.
- 16. Актуальность биологического синтеза углеводородов.
- 17. Биотопливные элементы и фотоводород, перспективы промышленного освоения.
- 18. Принципы биологических методов очистки стоков и газо-воздушных выбросов.
- 19.Значение технологии клонирования растительных клеток и тканей для сельского хозяйства.
- 20.Области применения трансгенных растений.
- 21. Стратегия риска генно-инженерных технологий.
- 22. «Старые» и новейшие процессы биотехнологии для повышения продуктивности сельского хозяйства.
- 23. Биоудобрения, преимущества применения.
- 24. Биоинсектициды и проблемы экологии.
- 25. Роль международного сотрудничества для расширения сфер биотехнологии

9.1.5. Примерные темы учебных проектов по дисциплине:

- 1. Биотехнология очистки сточных вод
- 2. Биотехнология и энергетика будущего
- 3. Стволовые клетки в биотехнологии
- 4. Клеточная инженерия как биотехнологический метод
- 5. Что может биотехнология: мораторий Берга.
- 6. Основные направления нанобиотехнологии
- 7. Биотехнология в освоении Мирового океана
- 8. Биотехнология и биобезопасность
- 9. Биотехнология в повышении урожайности растений
- 10. Генная инженерия и биотехнология
- 11. Интерфероны биотехнология получения
- 12. Пептиднуклеиновая кислота новая молекула жизни?
- 13. Пищевая биотехнология направления и достижения.

9.2. Примерный перечень вопросов на экзамене:

- 1. Особенности возникновения биотехнологии, природа и многообразие биотехнологических процессов.
- 2. Периодизация развития биотехнологии.
- 3. Технологические основы биотехнологических производств. Характеристика основных стадий биотехнологических процессов.
- 4. Элементы, слагающие биотехнологию. Биологические агенты (клетки, микробные монокультуры и ассоциации, ферменты, культуры клеток и тканей, гибридомы, трансгенные организмы).
- 5. Аппаратура для реализации биотехнологических процессов и получения конечного продукта.
- 6. Типы ферментационных аппаратов, применяемых в анаэробных и аэробных процессах ферментации (поверхностное культивирование, глубинное, гомогенное проточное и периодическое).
- 7. Классификация систем аэрации и перемешивания.
- 8. Аппаратура для конечной стадии биотехнологических производств и получения готового продукта.
- 9. Совокупность методов для контроля и управления биотехнологическими процессами. Моделирование и оптимизация процессов получения целевых продуктов.
- 10. Критерии оценки эффективности биотехнологических процессов: скорость роста продуцента, выход продукта, экономический коэффициент и непродуктивные затраты энергии, энергозатраты и затраты на обезвреживание отходов.
- 11. Технологические факторы, влияющие на производительность и экономику биотехнологических процессов.
- 12. Характеристика продуктов микробиологического синтеза.
- 13. Особенности промышленного биосинтеза белковых веществ.
- 14. Технологическая схема производства белковых веществ. Характеристика основных этапов.
- 15. Критерии оценки питательной ценности и безвредности продукта.
- 16. Субстраты I поколения для получения белково-витаминных концентратов.
- 17. Субстраты II поколения: углеводороды. Особенности микробного роста на углеводородах и ферментации.
- 18. Субстраты III поколения: особенности получения белка одноклеточных на спиртах и природном газе. Перспективы применения фото- и хемосинтетиков для получения белка одноклеточных.
- 19. Микробиологическое получение аминокислот. Субстраты и продуценты. Регуляторные и ауксотрофные мутанты продуценты аминокислот.
- 20. Особенности ферментации и контроля процесса получения аминокислот. Состав сред. Техника выделения и очистки аминокислот.
- 21. Микробиологический синтез органических кислот. Среды и аппараты, применяемые для получения органических кислот. Поверхностное и глубинное культивирование, метод долива и пленок.
- 22. Промышленный синтез антибиотиков. Продуценты и среды. Классификация антибиотиков. Особенности ферментации. Выделение, очистка, стандартизация конечного продукта.
- 23. Ферментные препараты, особенности получения, применения.
- 24. Продуценты и среды. Типы ферментационных процессов (твердофазное поверхностное и глубинное). Технологический цикл и стадийность процесса производства ферментов. Методы выделения и очистки ферментов.
- 25. Методы подложек и методов иммобилизации ферментов. Адсорбция, включение в гели, химическая сшивка и присоединение.
- 26. Характеристика процессов и аппаратов для использования иммобилизованных ферментов.

- 27. Промышленные процессы получения целевых продуктов на основе иммобилизованных ферментов.
- 28. Биологические микроустройства. Типы ферментных электродов. Биолюминесцентный микроанализ.
- 29. Биотехнология в решении энергетических проблем.
- 30. Технология получения биогаза, спирта.
- 31. Перспективы получения углеводородов биотехнологическими процессами. Фотоводород. 32. Микробное выщелачивание и биогеотехнология металлов. Химизм процесса микробного взаимодействия с минералами и горными породами.
- 33. Биогидрометаллургия как раздел биотехнологии. Принципы, продуценты, технологии.
- 34. Биохимические основы бактериального выщелачивания металлов.
- 35. Методы извлечения металлов (подземное, кучное, чановое). Биосорбция металлов. Использование микроорганизмов в процессах добычи полезных ископаемых.
- 36. Принципы биологических методов аэробной и анаэробной переработки промышленных и с/х отходов
- 37. Биотехнологические методы переработки городских и промышленных стоков. Конструкция и принцип действия промышленных биофильтров и аэротенков.
- 38. Техника очистки городских стоков.
- 39. Переработка твердых отходов.
- 40. Принципы применения и типы биотехнологических установок и методов для очистки газовоздушных выбросов.
- 41. Биологические процессы в деградации ксенобиотиков.
- 42. Генетическая инженерия, принципы, возможности.
- 43. Области применения биологических агентов, полученных методами генетический инженерии.
- 44. Технологии генетического конструирования организмов in vitro. Источники ДНК для клонирования генов / рестрикция, ферментный и химико-ферментный синтез генов/. Методы введения ДНК. Экспрессия генов в рекомбинантных ДНК.
- 45. Генная инженерия промышленно-важных продуцентов инсулина, соматотропина, интерферонов.
- 46. Клеточная инженерия. Получение биологических агентов методами клеточной инженерии in vivo.
- 47. Мутагенез; методы получения и выделения мутантов.
- 48. Гибридизация эукариотических клеток.
- 49. Плазмиды и конъюгация у бактерий. Фаги и трансдукция.
- 50. Техника слияния протопластов.
- 51. Гибридомы. Получение и применение моноклональных антител.
- 52. Особенности получения и применения биопрепаратов для сельского хозяйства.
- 53. Технология получения биологических удобрений. Продуценты, среды, ферментационная техника.
- 54. Биологические методы и препараты для борьбы с вредителями и болезнями сельско-хозяйственных растений и животных.
- 55. Технология получения и применения биологических препаратов (бактериальных, грибных, вирусных).
- 56. Новейшие методы биотехнологии для культурных растений и с/х животных
- 57. Техника микроклонального размножения высших растений.
- 58. Технология получения и перспективы применения трансгенных растений.
- 59. Новые направления биотехнологии.
- 60. Выбор, распространение и применение биотехнологии.
- 61. Предотвращение риска.
- 62. Роль международного сотрудничества в области биотехнологических исследований..

Условия выставления оценок:

Оценки «отлично» заслуживает студент, обнаруживший систематическое и глубокое знание учебного материала, усвоивший основную литературу и знакомый с дополнительной литературой, рекомендованной программой. Оценка «отлично» выставляется усвоившим взаимосвязь основных понятий дисциплины и их значение для профессии учителя, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала и на экзамене, и в учебном году.

Оценки «хорошо» заслуживает студент, обнаруживший полное знание учебного материала, усвоивший основную литературу, рекомендованную в программе. Оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценка «удовлетворительно» выставляется, если студент допускает погрешности в ответе на экзамене, но способен устранять их под руководством преподавателя. Этой оценки заслуживает студент, обнаруживший знание основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой.

Документ составлен в соответствии с требованиями ФГОС ВО по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), утвержденный приказом Министерства образования и науки Российской Федерации от «22» февраля 2018 г. №125.

Авторы программы: д-р биол.наук, профессор кафедры естественнонаучных дисциплин С.В. Пыжьянов.

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.