

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра почвоведения и оценки земельных ресурсов Кафедра общей и космической физики

Рабочая программа дисциплины

паименование дисциплины (модуля). <u>b1.0.13 Физика</u>						
Направление подготовки: 06.03.02 Почвоведение						
Направленность (профиль): Управление зем	ельными ресурсами					
Квалификация (степень) выпускника: бака	лавр					
Форма обучения: <u>очная с элементами электро</u> образовательных технолог	-					
Согласовано с УМК	Рекомендовано кафедрой:					
биолого-почвенного факультета	общей и космической физики					
Протокол № <u>5</u>	Протокол №8					
от « <u>21 » марта</u> 2025_г.	от « <u>21</u> » <u>марта</u> 2025_г.					
Председатель д.б.н., профессор	Зав.кафедрой д.фм.н., профессор					
А. Н. Матвеев	Паперный В.Л.					

Содержание

I. Цели и задачи дисциплины (модуля)	3
II. Место дисциплины (модуля) в структуре ОПОП ВО	
III. Требования к результатам освоения дисциплины	3
IV. Содержание и структура дисциплины (модуля)	4
4.1. Содержание дисциплины, структурированное по темам, с указанием видов	
учебных занятий и отведенного на них количества академических часов	5
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине	6
4.3. Содержание учебного материала	7
4.3.1. Перечень семинарских, практических занятий и лабораторных работ	11
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами	В
рамках самостоятельной работы (СРС)	11
4.4. Методические указания по организации самостоятельной работы студентов.	12
4.5. Примерная тематика курсовых работ (проектов) (при наличии)	
V. Учебно-методическое и информационное обеспечение дисциплины (модуля)	13
а) перечень литературы	
б) периодические издания	14
в) список авторских методических разработок	
г) базы данных, информационно-справочные и поисковые системы	14
VI. Материально-техническое обеспечение дисциплины (модуля)	14
6.1. Учебно-лабораторное оборудование:	14
6.2. Программное обеспечение:	14
6.3. Технические и электронные средства:	14
VII. Образовательные технологии	14
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации	15

І. Цели и задачи дисциплины (модуля)

Программа предназначена для обеспечения курса «Физика», изучаемого студентами в течение второго семестра.

Цель курса – знакомство с основными законами физики и возможностями их применения при решении задач, возникающих в последующей профессиональной деятельности.

Для достижения данной цели ставятся задачи:

- изучить фундаментальные физические законы и явления, лежащие в основе современной физической картины мира;
- обеспечить углубленное изучение наиболее важных открытий в области физики, оказавших определяющее влияние на развитие физико-химических методов исследований в физике почв;
- способствовать развитию научно-исследовательских и научно-производственных компетенций, базирующихся на законах физики, в области изучения и анализа физических свойств почв.

II. Место дисциплины (модуля) в структуре ОПОП ВО

Дисциплина «Физика» относится к обязательной части блока дисциплин Б1.

Входные знания, умения и компетенции студентов, необходимые для изучения дисциплины, определяются их базовыми знаниями, полученными при изучении физики, химии и математики в курсе средней школы.

III. Требования к результатам освоения дисциплины

После изучения курса физики, студент должен обладать следующими компетенциями:

- Способен для решения профессиональных задач использовать основные закономерности в области математики, физики, химии, наук о Земле, биологии и экологии, прогнозировать последствия своей профессиональной деятельности (ОПК-1).

Изучение курса направлено на развитие представлений студентов о физической картине мира, расширение, углубление и обобщение знаний о строении вещества, развитие познавательных интересов, интеллектуальных и творческих способностей. Основа получения физических знаний — не только изучение теоретических положений и законов, но и лабораторный эксперимент.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с инликаторами лостижения компетенций

Компетенция	индикаторами достиж Индикаторы	Результаты обучения
Компстенция	компетенций	т сзультаты обучения
ОПК-1	ИДК _{ОПК.1.1}	Знает:
Способен для	Используют базовые	• физические основы механики,
решения	знания основных общих	колебания и волны, основы
профессиональных	закономерностей в	молекулярной физики и
задач	области математики,	термодинамики, электричества и
использовать	физики, химии, наук о	магнетизма, оптики, атомной и
основные	Земле, биологии и	ядерной физики в объеме,
закономерности в	экологии для решения	необходимом для освоения физики
области	профессиональных задач	почв.
математики,	почвоведения	Умеет:
физики, химии,		• объяснить основные наблюдаемые
наук о Земле,		природные и техногенные явления и
биологии и		эффекты с позиций
экологии,		фундаментальных физических
прогнозировать		взаимодействий;
последствия своей		• использовать физические законы при
профессиональной		анализе и решении проблем
деятельности;		профессиональной деятельности;
		• истолковывать смысл физических
		величин и понятий;
		• работать с приборами и
		оборудованием современной
		физической лаборатории.
		Владеет:
		• методами проведения физических
		измерений, методами корректной
		оценки погрешности при проведении
		физического эксперимента;
		• знаниями общефизических законов и
		принципов в важнейших
		практических приложениях биологии,
		экологии и физики почв.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 2 зачетных единицы, 72 часа, в том числе 42 часов контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭлИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 16 аудиторных часа (во время выполнения лабораторных работ).

Форма промежуточной аттестации: зачёт.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

№ п/н	Разлел лисциплины/тема		Раздел дисциплины/тема		го часов	них практическая товка обучающихся	включая само практичео Контактна	Виды учебной рабо остоятельную рабо скую подготовку и (в часах) я работа преподава обучающимися	ту обучаюц трудоемкос	ть	Формы текущего контроля успеваемости; Форма промежуточной аттестации (по семестрам)
	н	Семестр	Всего	Из них п	Лекции	Семинарские/ практические/ лабораторные занятия	Консуль тации	Самостоятельная работа			
1	2	3	4	5	6	7	8	9	10		
1	1 Раздел 1. Физические основы механики		6	0	2	0		4	Отчёты по		
2	Раздел 2. Термодинамика и статистическая физика	2	8	2	2	2		4	лабораторной		
3	<u>Раздел 3</u> . Электричество и магнетизм.	2	12	4	4	4		4	работе, контрольные		
4	Раздел 4. Колебания и волны	2	10	2	2	2		6	вопросы,		
5	Раздел 5. Волновая оптика и квантовая физика	2	12	4	4	4		4	тестирования по		
6	Раздел 6. Основы атомной и ядерной физики	2	14	4	2	4		8	разделам, домашние конспекты		
	КОнтроль	2	8								
	КСР										
	Экзамен										
	<u>Итого часов</u>		72	16	16	16		30			

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

		Самостоятельная рабо	та обучающі	ихся		Учебно-
Семестр	Название раздела, темы	Вид самостоятельной работы	Сроки выполнени я	Трудоемкост ь (час.)	Оценочное средство	методическое обеспечение самостоятельной работы
2	Разделы 2,3,4,5,6	Оформление отчета по лабораторной работе	В течение семестра	4	Отчёт	Методические
2	Разделы 2,3,4,5,6	Подготовка к защите отчета по лабораторной работе	В течение семестра	4	Ответы на контрольные вопросы	материалы к лаб.работам
2	По каждому из шести разделов	Подготовка к итоговому тестированию	Пройти самостоят ельное тестирова ние, освоить теоретиче ский материал темы	10	Тесты	Вся рекомендуемая литература
2	Разделы 3,4,5,6	Подготовка дополнений по теме лекции (интерактивная форма занятий), конспект на выбранную тему из списка	К концу каждого семестра	12	Конспект	Вся рекомендуемая литература
Общий	объем самостоятельной работы по дисциплин	не (час)	•	30		

4.3. Содержание учебного материала

Содержание разделов и тем дисциплины

Введение

Физика в системе естественных наук. Общая структура и задачи дисциплины «Физика». Единицы физических величин. Структурные элементы материи. Силы и взаимодействия в природе.

ДЕ 1. Физические основы механики

1.1. Кинематика

Основные кинематические характеристики криволинейного движения: скорость и ускорение: нормальное и тангенциальное. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.

1.2. Динамика

Законы Ньютона. Масса, импульс, сила. Закон сохранения импульса. Момент импульса материальной точки и механической системы. Момент силы. Уравнение моментов. Уравнение движения материальной точки в координатной форме.

1.3. Гравитационное поле Земли

Сила тяжести и гравитационное поле Земли. Характеристики гравитационного поля: напряженность и потенциал. Потенциальные силы, введение понятия потенциала для взаимодействующих тел.

1.4.Элементы механики твердого тела.

Момент силы и момент импульса, их взаимосвязь и законы сохранения. Деформация твердого тела, виды деформаций, закон Гука. Упругие деформации грунтов.

ДЕ 2. Термодинамика и статистическая физика

2.1 Элементы статистической и молекулярной физики.

Основное уравнение МКТ. Степени свободы молекул и распределение энергии по степеням свободы. Распределение Максвелла, экспериментальное обоснование. Распределение Больцмана и барометрическая формула.

2.2. Элементы термодинамики.

Равновесные и неравновесные состояния, время релаксации. Уравнение состояния идеального газа. Изопроцессы. Первое начало термодинамики, адиабатический процесс. Обратимые и необратимые процессы. энтропия. Второе начало термодинамики.

2.3. Элементы физической кинетики

Давление в жидкости и газе. Ламинарное и турбулентное течения жидкости. Вязкость. Методика определения вязкости. Вязкость, как физическое свойство крови. Явления переноса: диффузия, теплопроводность, внутреннее трение. Броуновское движение.

Процессы переноса в физике почв. Поверхностное натяжение. Движение жидкости в капиллярах. Эмболия.

ДЕ 3. Электричество и магнетизм

3.1.Электростатическое поле и его характеристики.

Поле диполя. Поток вектора. Потенциал. Эквипотенциальные поверхности. Связь потенциала и напряженности электрического поля.

3.2.Постоянный ток.

Электрический ток; сила и плотность тока. Сторонние силы; электродвижущая сила и напряжение. Закон Ома в интегральной и дифференциальной форме. Закон Джоуля — Ленца. Гальванизация и электрофорез. Порог ощутимого тока. Электрический ток в электролитах.

3.3 .Магнитостатика

Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Сила Лоренца. Движение зарядов в электрических и магнитных полях. Закон Био-Савара-Лапласа. Теорема о циркуляции (закон полного тока). Действие постоянного магнитного поля на организм.

3.4. Магнитное поле Земли.

Магнитное поле и его характеристики.

3.5. Магнитное поле в веществе.

Природа магнетизма. Магнитные моменты электрона и атома. Диа- и парамагнетики. Намагниченность. Магнитное поле в веществе. Ферромагнетики и их свойства. Природа ферромагнетизма. Действие переменного магнитного поля на организм.

3.6. Основы теории Максвелла для электромагнитного поля.

Вихревое электрическое поле. Ток смещения. Уравнения Максвелла для электромагнитного поля; их вид для стационарных полей.

ДЕ 4. Колебания и волны

4.1.Гармонический осциллятор.

Математический, пружинный, физический. Уравнение гармонических колебаний; сложение колебаний одного направления и одинаковой частоты. Упругие волны. Уравнение бегущей волны.

4.2.Электромагнитные волны.

Дифференциальное уравнение электромагнитной волны. Энергия электромагнитных волн. Импульс электромагнитного поля.

4.3. Ультразвуковые методы в физике почв.

Эффект Доплера. Акустические и ультразвуковые методы при исследовании структурных неоднородностей.

ДЕ 5. Волновая оптика и квантовая физика

5.1. Интерференция света.

Сложение двух монохроматических электромагнитных волн. Понятие когерентности. Классические опыты. Интерференция в тонких пленках. Голография. Явление интерференции при изучении оптических свойств кристаллов.

5.2. Дифракция света.

Принцип Гюйгенса-Френеля. Объяснение дифракции Френеля на круглом отверстии и круглом экране при помощи зон Френеля. Разрешающая способность оптических приборов. Дифракция Фраунгофера на щели.

Дифракционная решетка. Дисперсия и разрешающая способность решетки.

5.3. Рентгеновские лучи.

Дифракция на макромолекулах. Характеристическое рентгеновское излучение. Закон Вульфа - Брегга.

5.4. Поляризация света.

Понятие о поляризованном свете. Закон Малюса. Прохождения света через систему поляризатор – кристалл – анализатор. Поляризация света при отражении и преломлении. Закон Брюстера. Линейное двулучепреломление.

5.5. Вращение плоскости поляризации

Сахарометрия. Поляризационный микроскоп

5.6. Тепловое излучение

Модель абсолютно черного тела. Спектр теплового излучения. Серые тела. Закон Стефана-Больцмана. Закон Вина. Энергия кванта электромагнитного излучения.

5.7. Квантовая природа излучения.

Масса и импульс фотона. Давление света. Эффект Комптона. Фотоэффект.

5.8. Люминесценция.

Способы возбуждения, Механизмы элементарных процессов, Длительность свечения, Спектр люминесценции. Правило Каши. Закон Стокса-Ломмеля, Правило Левшина, Квантовый выход люминесценции. Правило Вавилова.

5.8. Квантовая механика

Гипотеза де Бройля. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер.

ДЕ 6. Основы атомной и ядерной физики

6.1.Планетарная модель атома.

Явления подтверждающее сложное строение атома. Модели атома по Томсону и Резерфорду. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Эмпирические закономерности в атомных спектрах. Формула Бальмера

6.2. Основы физики атомного ядра.

Искусственное превращение атомных ядер. Открытие нейтрона. Строение атомного ядра. Запись ядерных реакций. Изотопы. Понятие о мезонной теории ядерных сил. Энергия связи и дефект массы. Использование ядерных превращений; цепная реакция деления ядер. Термоядерные реакции.

6.3. Радиоактивность.

Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Поглощение радиоактивного излучения в веществе. Дозы. Радиоактивные изотопы в природе.

Перечень лекционных занятий

No	№ раздела и	Наименование используемых	Трудое	Оценочные	Формируе
Π/Π	темы	технологий	мкость	средства	мые
	дисциплины		(часы)		компетен
	(модуля)				ции
1	2	3	4	5	6
	1.1.			Т	
1	1.2	Лекция с использованием	2	Тест,	ОПК-1
1	1.3	мультимедийных презентаций	2	наличие	OHK-1
	1.4			конспектов	
	2.1	п		Тест,	
2	2.2	Лекция с использованием	2	наличие	ОПК-1
	2.3	мультимедийных презентаций		конспектов	
	3.1	П		Опрос,	
3	3.2	Лекция с использованием мультимедийных презентаций	2	наличие	ОПК-1
		партина прозонтидни		конспектов	
	3.3			Тест,	
4	3.4	Лекция с использованием	2	наличие	ОПК-1
	3.5	мультимедийных презентаций		конспектов	
	3.6			ROHOHORTOB	
	4.1	Лекция с использованием		Тест,	
5	4.2	мультимедийных презентаций	2	наличие	ОПК-1
	4.3	мультимедииных презентации		конспектов	
	5.1				
	5.2	Поминя о напож порожном		Опрос,	
6	5.3	Лекция с использованием мультимедийных презентаций	2	наличие	ОПК-1
	5.4	мультимедииных презентации		конспектов	
	5.5				
7	5.6		2	Тест,	ОПК-1

		5.7 5.8 5.9	Лекция с использованием мультимедийных презентаций		наличие конспектов	
I		6.1	П		Тест,	
ı	8	6.2	Лекция с использованием	2	наличие	ОПК-1
ı		6.3 мультимедийных презентаций			конспектов	

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

4 <u>.3.1. 1</u>	.1. Перечень семинарских, практических занятий и лабораторных работ						
№	№ раздела и	Наименование семинаров,	Трудо	Оценочные	Форми		
п/п	темы	практических и лабораторных	емкос	средства	руемые		
	дисциплины	работ	ть,		компет		
			часы		енции		
1	2	3	4	5	6		
2.	Термодинамика и статистическая физика	1.Определение коэффициента вязкости воздуха, расчет средней длины свободного пробега и эффективного диаметра молекул воздуха.	2	Отчет, опрос	ОПК-1		
3.	Электричество и магнетизм	1. Изучение основных закономерностей протекания электрического тока и электростатических полей с помощью электролитической ванны.	4	Отчет, опрос	ОПК-1		
				Отчет, опрос			
4.	Колебания и волны	1. Изучение колебаний с помощью маятника.	2	Отчет, опрос	ОПК-1		
5.	Волновая оптика и квантовая физика	1.Изучение явлений интерференции, дифракции и поляризация света	4	Отчет, опрос	ОПК-1		
6.	Основы атомной и ядерной физики	1.Знакомство с методом спектроскопии на примере изучения спектра водорода.	2	Отчет, опрос	ОПК-1		
		2.Исследование поглощения радиоактивного излучения в веществе.	2	Отчет, опрос			

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

No	Тема	Вид	Задание	Рекомендуемая	Количес
		самостоятельной		литература	ТВО
		работы			часов
1.	Все лекции	Подготовка дополнений по теме лекции	Подготовить домашние конспекты,	Вся рекомендуемая	12
		(конспектов)	дополняющие материал лекции	литература	

2.	Все темы	Индивидуальные	Выполнить	Вся	
		задания, задачи и тесты	задание для защиты отчета по практ.работе	рекомендуемая литература	10
3.	Все темы	Подготовка отчета по лабораторной работе	Оформить отчет*, подготовиться к защите	Вся рекомендуемая литература	8

^{*} Правила оформления отчета по лабораторной работе прилагаются

4.4. Методические указания по организации самостоятельной работы студентов

К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной финансовой ситуации. Формирование такого умения происходит в течение всего периода обучения через участие студентов в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом самостоятельная работа студентов играет решающую роль в ходе всего учебного процесса.

На лекциях излагаются лишь основные, имеющие принципиальное значение и наиболее трудные для понимания и усвоения теоретические и практические вопросы.

Теоретические знания, полученные студентами на лекциях и при самостоятельном изучении курса по литературным источникам, закрепляются при выполнении лабораторных работ, а также при самотестировании.

При выполнении лабораторной работы обращается особое внимание на выработку у студентов умения грамотно выполнять и оформлять документацию, умения пользоваться научно-технической справочной литературой. Каждый студент должен подготовиться к защите своего отчета, разобравшись с теорией исследуемого явления.

Текущая работа над учебными материалами включает в себя обработку конспектов лекций путем систематизации материала, заполнения пропущенных мест, уточнения схем и выделения главных мыслей основного содержания лекции. Для этого используются имеющиеся учебно-методические материалы и другая рекомендованная литература.

Границы между разными видами самостоятельных работ достаточно размыты, а сами виды работы пересекаются. Таким образом, самостоятельной работа студентов может быть как в аудитории, так и вне ее.

Закрепление всего изученного материала осуществляется с помощью тестирования по всем темам курса. Студенты проходят тестирование удаленно и самостоятельно.

Преподаватель помогает разобраться с проблемными вопросами и задачами (по мере их поступления) в ходе текущих консультаций.

4.5. Примерная тематика курсовых работ (проектов) (при наличии)

Курсовые работы не предусмотрены.

V. Учебно-методическое и информационное обеспечение дисциплины (модуля)

- а) перечень литературы
 - основная литература
- 1) Ливенцев, Н.М. Курс физики [Электронный ресурс] : учебник / Н. М. Ливенцев. Электрон. текстовые дан. Москва : Лань, 2012. 672 с. : ил. ЭБС "Лань". неогранич. доступ. ISBN 978-5-8114-1240-2
- 2) Ремизов, А.Н. Курс физики : учебник для студ. вузов / А. Н. Ремизов, А. Я. Потапенко. 3-е изд., стер. М. : Дрофа, 2006. 720 с. : ил. ; 21 см. (Высшее образование). ISBN 5-358-01411-х : 56 экз.
- 3) Грабовский, Р.И. Курс физики [Электронный ресурс] : учеб. пособие / Р. И. Грабовский. Москва : Лань, 2012. 608 с. : ил. (Учебники для вузов. Специальная литература). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0466-7
- 4) Савельев, И.В. Курс общей физики [Электронный ресурс] : учеб. пособие: / И. В. Савельев = А course in general physics. Москва : Лань, 2011. (Лучшие классические учебники) (Классическая учебная литература по физике). Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1211-2

дополнительная литература

- 1) Валишев, М. Г. Курс общей физики [Электронный ресурс] / М. Г. Валишев, А. А. Повзнер. Москва : Лань, 2010. 576 с. : ил. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0820-7
- Ивлиев, А.Д. Физика [Электронный ресурс] : учеб. пособие / А. Д. Ивлиев. Москва
 : Лань, 2009. 671 с. : ил. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ.
 ISBN 978-5-8114-0760-6
- 3) Николаев, В.И. Трудные графики в курсе общей физики [Текст] : учеб. пособие для вузов, по напр. подгот. "Физика" и спец. "Астрономия" / В. И. Николаев, Т. А. Бушина. 3-е изд., испр. СПб. [и др.] : Лань, 2014. 199 с. ; 24 см. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1669-1. (1 экз.)

- б) периодические издания
 - нет.
- в) список авторских методических разработок
 - 1. В системе образовательного портала ИГУ (http://educa.isu.ru/) размещены методические материалы и задания по данному курсу
- г) базы данных, информационно-справочные и поисковые системы
 - 1) HБ ИГУ <u>http://library.isu.ru/ru</u>
 - 2) ЭЧЗ «Библиотех» https://isu.bibliotech.ru/
 - 3) ЭБС «Лань» http://e.lanbook.com/
 - 4) ЭБС «Руконт» <u>http://rucont.ru</u>
 - 5) ЭБС «Айбукс» http://ibooks.ru

VI. Материально-техническое обеспечение дисциплины (модуля)

6.1. Учебно-лабораторное оборудование:

<u>Оборудование</u>. Имеется две учебные лаборатории, оснащенные соответствующими приборами и принадлежностями. В макеты работ входят блоки питания, измерительные приборы, компьютеры, лабораторные стенды, электронные весы, реостаты, счетчики, и др. <u>Материалы</u>: методические описания ко всем лабораторным работам, комплект учебников и пособий по курсу общей физики в учебной лаборатории, справочники и таблицы физических величин.

6.2. Программное обеспечение:

Стандартное программное обеспечение, необходимое для показа презентаций и других мультимедийных материалов. Программы, моделирующие некоторые лабораторные работы, созданные преподавателями кафедры.

6.3. Технические и электронные средства:

На лекционных занятиях могут использоваться мультимедийные средства: переносной проектор (или стационарный в соответствующей аудитории), стационарный настенный экран (Classic Solution, 244х244), ноутбук Lenovo B590.

VII. Образовательные технологии

В соответствии с требованиями ФГОС ВО по реализации компетентностного подхода, в учебном процессе используются активные и интерактивные формы проведения занятий. Интерактивные формы работы предусматривают активную позицию студентов при изучении материала. Например, самостоятельно подготовить дополнение к лекции или отчету по лабораторной работе, в котором будут отражены конкретные физические законы и явления в приложении к задачам физики почв, и вынести его на обсуждение; провести

дискуссию, включить элементы собственных исследований и сделать краткую презентацию своих выступлений на зачетных занятиях.

Все лабораторные работы адаптированы для направления студентов биологопочвенного факультета. Формирование профессиональных навыков обусловлено разбором конкретных ситуаций и ролевых игр во время отчетов по лабораторным работам. Все это формирует компетенцию способности применять знания, умения и личностные качества для успешной деятельности в области исследования почв.

На лабораторных занятиях студенты приобретают исследовательские навыки, необходимые для работы по междисциплинарным направлениям после получения базового образования и формируют компетенцию готовности выявить естественнонаучную сущность проблем, компетенцию готовности использовать методы теоретической и экспериментальной физики в профессиональной деятельности по направлению 06.03.02 Почвоведение

Программа основана на использовании современных образовательных технологий: информационных (лекции и презентации в Power Point), проектных (мультимедиа, видео), дистанционных, научно-исследовательской направленности и т. п.

Удельный вес занятий, проводимых в интерактивной форме, составляет не менее 50% аудиторных занятий. (Занятия в интерактивной форме затрагивают практически каждого студента, т. к. устные отчеты по лабораторным работам проходят с использованием деловых и ролевых игр, разборами конкретных ситуаций.)

На первом практическом занятии проводится обязательный инструктаж по технике безопасности, после чего студенты ставят подпись в соответствующем журнале.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

8.1.1. Оценочные средства для входного контроля

Во время первого лабораторного занятия проводится опрос по разным темам курса физики школьного уровня (10-15 минут) и собеседования во время выполнения первой лабораторной работы.

8.1.2. Оценочные средства текущего контроля

Назначение оценочных средств текущего контроля — выявить сформированность всех компетенций, обеспечиваемых данной дисциплиной.

Содержание учебного материала разделено на дидактические единицы (ДЕ) – предметные темы, подлежащие обязательному изучению и усвоению в процессе обучения.

Текущий контроль реализуется при защите лабораторных работ, проведении опросов, выполнении индивидуальных заданий и тестов, предусмотренных программой курса.

Текущий контроль успеваемости – основной вид систематической проверки знаний, умений, навыков обучающихся. Задача текущего контроля — оперативное и регулярное управление учебной деятельностью обучающихся на основе обратной связи и корректировки.

Для реализации текущего контроля используется балльно-рейтинговая система (БРС) оценки

За лабораторные работы — 30 баллов (3 лабораторных работы по 10 баллов максимум). Самостоятельное тестирование на образовательном портале университета https://educa.isu.ru/ — 30 баллов (6 тестов по 5 баллов). Домашние конспекты (5 конспектов по 2 балла). В конце семестра студенты проходят итоговое тестирование на портале https://educa.isu.ru/, которое оценивается максимально в 30 баллов.

Параметры оценочного средства для защиты лабораторных работ

I/myyramyyy	-	Оцен	ка / баллы	
Критерии оценки	Отлично 7-10 баллов	Хорошо 4-6 балла	Удовлетв. 1-3 балла.	Неудовл. 0 баллов
Выполнение заданий	Полностью и корректно оформлен отчет, сделаны выводы. При защите показано всестороннее и глубокое знание материала.	В целом отчет оформлен корректно, сделаны выводы, но имеются незначительные недостатки. При защите студент показывает понимает материала, приводит примеры, но испытывает затруднения с выводами, однако достаточно полно отвечает на дополнительные вопросы.	Отчет оформлен полностью. Имеются замечания по оформлению, выводы сделаны не полностью. При защите - суждения поверхностны, содержат ошибки, примеры не приводятся, ответы на дополнительные вопросы не уверенные.	Отчет не оформлен со значительными замечаниями, выводы не полные, при защите студент с трудом формулирует свои мысли, не приводит примеры, не дает ответа на дополнительные вопросы

Вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины, а также для контроля самостоятельной работы студента по отдельным разделам дисциплины выложены в ЭЛИОС факультета.

8.1.3. Оценочные средства для промежуточной аттестации

Промежуточная аттестация направлена на проверку сформированности всех компетенций, обеспечиваемых данной дисциплиной, и проводится в форме теста.

За основу контроля успеваемости студента взята 100-бальная система организации учебного процесса:

- 1. Уровень и глубина проработки теоретического материала при подготовке к выполнению лабораторных работ. Качество выполнения лабораторных работ. Оцениваются: понимание логики предложенной методики проведения эксперимента, качество полученных экспериментальных данных, тщательность выполнения расчетов, анализ погрешностей и правдоподобности конечных результатов, уровень подготовки и оформления отчета о проделанной работе, правильность и наглядность представления иллюстративного материала (рисунков, графиков и т.д.); Каждая лабораторная работа оценивается до 10 баллов. За семестр студент должен выполнить 3 лабораторные работы. Максимальное количество баллов 30.
- 2. Всего в течение одного семестра студент может набрать 70 баллов максимум.
- 3. Студент бакалавр допускается к итоговому тестированию в том случае, если выполнены и защищены все лабораторные работы и в течение семестра за текущую работу набрано 30 баллов и более. В противном случае выставляется 0 баллов, а в ведомость выставляется оценка «незачет». Во время итогового тестирования студент бакалавр может набрать до 30 баллов. Если на итоговом тестировании студент получил менее чем 8 баллов, то тестирование считается не пройденным, студенту бакалавру выставляется 0 баллов, а в ведомость выставляется оценка «незачет».
- 4. Если на итоговом тестировании студент набирает 8 и более баллов, то они прибавляются к сумме баллов за текущую работу и переводятся в академическую оценку, которая фиксируется в ведомости и зачетной книжке студента.

Итоговый семестровый рейтинг	Академическая оценка
Менее 60 баллов	«незачет»
60 и более баллов	«зачет»

Итоговое тестирование обязательно, даже если сумма баллов, набранная студентом за текущую работу к моменту тестирования уже составляет 60 баллов и более.

Итоговое тестирование выполняется на базе вычислительного центра (ВЦ) университета по тестам федерального Интернет-экзамена образовательного портала http://educa.isu.ru/. При этом ВЦ предоставляет возможность одновременного тестирования всех студентов.

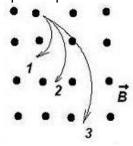
Пример тестовых заданий для проверки сформированности компетенций,

указанных выше п.Ш:

Вопрос № 1

Уравнение плоской синусоидальной волны, распространяющейся вдоль оси OX со
скоростью 500 м/с, имеет вид: $\xi = 0.01 \sin \left(10^3 t - kx\right)$. Волновое число k (в м-1) равно
Выберите один ответ.

- C 5
- 0.5
- 0 2
- C 4

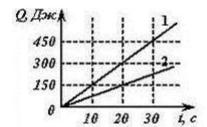

Вопрос № 2

Кинематический закон вращательного движения тела задан уравнением $\varphi=ct^2$, где c=1 рад/c2. Угловая скорость тела в конце третьей секунды равна... Выберите один ответ.

- О 4 рад/с
- 9 рад/с
- О 3 рад/с
- 6 рад/с

Вопрос № 3

Однозарядные ионы, имеющие одинаковые массы, влетают в однородное магнитное поле. Их траектории приведены на рисунке. Наименьшую скорость имеет ион, движущийся по траектории ...



Выберите один ответ.

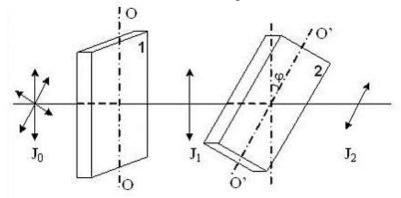
- 0 2
- 0 1
- О характеристики траекторий не зависят от скоростей ионов
- О не хватает данных для ответа на этот вопрос
- 3

Вопрос № 4

На рисунке представлен график зависимости количества теплоты, выделяющейся в двух параллельно соединенных проводниках, от времени.

Отношение сопротивлений проводников R2/R1 равно... Выберите один ответ.

- 0.5
- C 2
- O 4
- 0.25

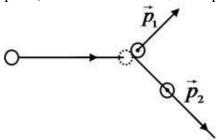

Вопрос № 5

Человек сидит в центре вращающейся по инерции вокруг вертикальной оси карусели и держит в руках длинный шест за его середину. Если он повернет шест из горизонтального положения в вертикальное, то частота вращения в конечном состоянии... Выберите один ответ.

- О уменьшится
- О не изменится
- О увеличится;

Вопрос № 6

На пути естественного света помещены две пластинки турмалина. После прохождения пластинки 1 свет полностью поляризован.


Если J_1 и J_2 - интенсивности света, прошедшего пластинки 1 и 2 соответственно, и $^{J_2}=J_1$, то угол между направлениями ОО и О'О' равен... Выберите один ответ.

- O 60°
- O 0°
- O 90°
- C 30°

Вопрос № 7

На неподвижный бильярдный шар налетел другой такой же. После удара шары разлетелись под углом 90° так, что импульс одного равен p1 = 0.3кг·м/с, а другого

p2=0,4кг·м/с. Налетающий шар имел импульс, равный ...

	Выбе	рите	один	ответ.
--	------	------	------	--------

- 0.5 xe·m/c
- □ 0.25 xe· m/c
- 0.1 xe- m/c
- 0.7 xe·m/c

Вопрос № 8

Сколько альфа- и бета- распадов должно произойти, чтобы радиоактивный изотоп урана $^{238}_{92}U$ превратился в стабильный изотоп свинца $^{206}_{82}Pb$?

Выберите один ответ.

- О 9 α-распадов и 5 β-распадов
- О 10 α-распадов и 4 β-распадов
- С 8 α-распадов и 6 β-распадов
- С 6 α-распадов и 8 β-распадов

Вопрос № 9

Работа выхода для материала пластины равна 2 эВ. Чему равна энергия фотонов падающего света, если максимальная кинетическая энергия фотоэлектронов равна 1,5 эВ. Выберите один ответ.

- 1,5 B
- 0,5 B
- O 3,5 B
- O 2 B

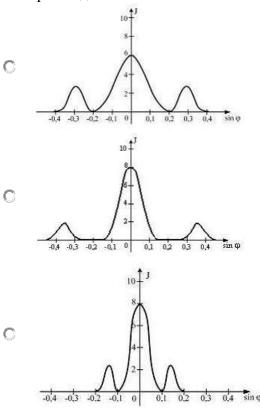
Вопрос № 10

В некоторой точке поля, созданного точечным зарядом, потенциал равен 2 В. Величину точечного заряда увеличили в 2 раза, при этом потенциал в данной точке стал равным \dots Выберите один ответ.

- O 8 B
- O 16 B
- 0 1 B
- 4 B
- C 2 B

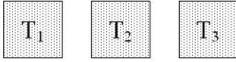
Вопрос № 11

В процессе сильного взаимодействия принимают участие... Выберите один ответ.


- электроны
- протоны

О фотоны

Вопрос № 12


Одна и та же дифракционная решетка освещается различными монохроматическими излучениями с разными интенсивностями. Какой рисунок соответствует случаю освещения светом с наименьшей длиной волны? (J - интенсивность света, $^{\varphi}$ - угол дифракции).

Выберите один ответ.

Вопрос № 13

В трех одинаковых сосудах находится одинаковое количество газа, причем $T_1 > T_2 > T_3$

Распределение молекул по скоростям в сосуде с температурой T1 будет описываться кривой...

Выберите один ответ.

- C 2
- **O** 3
- C 1

 Разработчики:
 доцент, к.ф.-м.н.
 С.П. Горбунов

 (подпись)
 (занимаемая должность)
 (инициалы, фамилия)

 доцент, к.ф.-м.н.
 О. И. Шипилова

 (подпись)
 (занимаемая должность)
 (инициалы, фамилия)

 доцент к.ф.-м.н.
 А.А., Черных

(занимаемая должность)

(подпись)

Программа составлена в соответствии с требованиями Φ ГОС ВО по направлению подготовки 06.03.02 Почвоведение.

(инициалы, фамилия)

Программа рассмотрена на заседании кафедры общей и космической физики ИГУ « 21 » марта 2025 г.

Протокол № _8_, зав. кафедрой ______ В.Л. Паперный

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.