

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ИГУ»)

Институт математики и информационных технологий Кафедра информационных технологий

> УТВЕРЖДАЮ» Директор ИМИТ ИГУ М. В. Фалалеев

Рабочая программа дисциплины (модуля)

Б1.О.11 Математический анализ

Направление подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки Фундаментальная информатика и

программная инженерия

Квалификация выпускника бакалавр

Форма обучения очная

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели: формирование у будущих бакалавров способности осуществлять поиск, критический анализ и синтез информации, способности применять системный подход для решения поставленных задач; способности управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни.

Задачи: освоение базовых теоретических знаний математического анализа, отработка практических навыков в их использовании при решении модельных задач как теоретического типа, так и с практическим содержанием; формирование у будущих бакалавров способности применять фундаментальные знания, полученные при изучении математического анализа в профессиональной деятельности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Учебная дисциплина Б1.О.11 Математический анализ относится к обязательной части Блока 1 образовательной программы.

Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: школьный курс математики.

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: дифференциальные уравнения, физика.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс освоения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО и ОП ВО по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии:

УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач;

УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни;

ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

В результате освоения дисциплины обучающийся должен

Знать: основные понятия курса математического анализа.

Уметь: применять методы математического анализа к задачам разного типа, осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Владеть: навыками самостоятельного приобретения и совершенствования методов решения поставленных задач, навыками использования их в профессиональной деятельности.

4. СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Объем дисциплины составляет 14 зачетных ед., 504 час.

Форма промежуточной аттестации: экзамен, экзамен, экзамен.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

Раздел дисциплины / тема	Сем.	Виды учебной работы			Формы	
		Контактная работа			Самос	текущего
		преподавателя с			т.	контроля;
		обучающимися			работа	Формы
		Лекци	Лаб.	Практ.	_	промежут.
		И	заняти	заняти		аттестации
			Я	Я		
Раздел 1. Введение.	1	6		14	3	
Раздел 2. Предел числовой	1	8		18	10	KP 1
последовательности.						Экз.
Раздел 3. Предел функции.	1	10		18	10	KP 2
Непрерывность функции.						Экз.
Раздел 4. Дифференциальное	1	10		18	10	KP 3, KP 4
исчисление функций одной						Экз.
переменной.						
Раздел 5. Интегральное исчисление	2	18		54	2	KP 5, KP 6
функций одной переменной.						Экз.
Интеграл Римана.						
Раздел 6. Дифференциальное	2	18		18	16	KP 7, KP 8
исчисление функций многих						Экз.
переменных.						
Раздел 7. Числовые ряды.	3	8		6	19	KP 9
_						Экз.
Раздел 8. Степенные ряды.	3	8		6	8	KP 9
_						Экз.
Раздел 9. Кратные интегралы.	3	18		22	4	KP 10
						Экз.
Итого (1 семестр):		34		68	33	экз.
Итого (2 семестр):		36		72	18	экз.
Итого (3 семестр):		34		34	31	экз.

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

Раздел дисциплины /	Самостоятельная работа			Оценочн	Учебно-
тема	обучающихся			oe	методическо
	Вид Сроки Затраты		средство	e	
	самост. выполнени времени			обеспечение	
	работы	Я			самост.
					работы
Раздел 1. Введение.	конспект	2 неделя	3	опрос	[3], [8]
		(1семестр)		_	

Раздел 2. Предел числовой последовательности.	конспект	3-6 неделя (1семестр)	10	KP № 1	[1,2,3,7,8,9]
Раздел 3. Предел функции. Непрерывность функции.	конспект	7- 11 неделя (1семестр)	10	KP № 2	[1,2,3,7,8,9]
Раздел 4. Дифференциальное исчисление функций одной переменной.	конспект	11-14 неделя (1семестр)	10	KP № 3,	[1,2,3,7,8,9]
Раздел 5. Интегральное исчисление функций одной переменной. Интеграл Римана.	конспект	1-10 неделя (2семестр)	2	KP № 5, 6	[1,2,3,7,8,10, 13]
Раздел 6. Дифференциальное исчисление функций многих переменных.	конспект	11-14 неделя (2семестр)	16	KP № 7, 8	[1,2,3,7,8,10]
Раздел 7. Числовые ряды.	конспект	1-6 неделя (3семестр)	19	KP № 9	[1,2,4,7,8,11]
Раздел 8. Степенные ряды.	конспект	7-9 неделя (3семестр)	8	KP № 9	[1,2,4,7,8,11]
Раздел 9. Кратные интегралы.	конспект	10-14 неделя (Зсеместр)	4	KP № 10	[1,2,4,7,8,11, 12]
Общая трудоемкость самостоятельной работы (час.) Из них с использованием электронного обучения и дистанционных образовательных технологий (час.)			82 40		

4.3. Содержание учебного материала

- Раздел 1. Введение.
- Тема 1.1. Аксиоматика множества действительных чисел.
- Тема 1.2. Множества и операции над ними.
- Тема 1.3. Принцип минимального элемента. Принцип математической индукции.
- Тема 1.4. Модуль вещественного числа. Целая и дробная части числа. Плотность ${\bf Q}$ в ${\bf R}$.
- Тема 1.5. Верхние и нижние грани числовых множеств. Принцип вложенных отрезков.
 - Тема 1.6. Отображение, образ, прообраз, биекция.
- Тема 1.7. Мощность множества. Счетные множества. Несчетность R. Плотность $(R\Q)$ в R.

Раздел 2. Предел числовой последовательности.

- Тема 2.1. Понятие предела последовательности. Единственность предела. Линейные свойства предела последовательности.
 - Тема 2.2. Свойства предела, связанные с неравенствами.
- Тема 2.3. Необходимое условие сходимости последовательности. Теоремы о пределе произведения и частного сходящихся последовательностей.
- Тема 2.4. Теорема Вейерштрасса о пределе монотонной и ограниченной последовательности. Число е. Теорема Штольца.

- Тема 2.5. Подпоследовательности. Частичные пределы последовательности. Теорема Больцано-Вейерштрасса.
 - Тема 2.6. Критерий Коши сходимости числовых последовательностей.
 - Тема 2.7. Бесконечно большие и бесконечно малые последовательности.

Раздел 3. Предел функции. Непрерывность функции.

- Тема 3.1. Понятие предела функции в точке. Односторонние пределы.
- Тема 3.2. Свойства предела функции.
- Тема 3.3. Критерий Коши существования предела функции.
- Тема 3.4. Замечательные пределы.
- Тема 3.5. Бесконечно большие и бесконечно малые функции. Сравнение функций. О-символика. Эквивалентные функции.
- Тема 3.6. Понятие непрерывности функции в точке (на множестве). Простейшие свойства непрерывных функций. Непрерывность элементарных функций. Точки разрыва и их классификация.
- Тема 3.7. Глобальные свойства функций, непрерывных на отрезке (теоремы Вейерштрасса и Больцано-Коши).
 - Тема 3.8. Понятие равномерной непрерывности функции.
- Тема 3.9. Свойства замкнутых и открытых множеств. Компакт. Функции непрерывные на компакте.

Раздел 4. Дифференциальное исчисление функций одной переменной.

- Тема 4.1. Понятия дифференцируемости функции в точке, производной, дифференциала.
- Тема 4.2. Уравнение касательной к графику функции. Геометрический смысл производной и дифференциала. Механический смысл производной.
- Тема 4.3. Дифференцирование сложной и обратной функций. Инвариантность формы первого дифференциала.
 - Тема 4.4. правила дифференцирования.
 - Тема 4.5. Производные и дифференциалы высших порядков. Формула Лейбница.
- Тема 4.6. Основные теоремы дифференциального исчисления (теоремы Ролля, Лагранжа и Коши о средних значениях).
 - Тема 4.7. Неравенства Юнга, Гельдера, Минковского.
- Тема 4.8. Признаки монотонности функции. Точки экстремума. Необходимые и достаточные условия экстремума.
 - Тема 4.9. Выпуклость и точки перегиба. Асимптоты.
 - Тема 4.10. Правило Лопиталя.
 - Тема 4.11. Формула Тейлора.

Раздел 5. Интегральное исчисление функций одной переменной. Интеграл Римана.

- Тема 5.1. Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла.
- Тема 5.2. Основные методы интегрирования (замена переменной, интегрирование по частям).
 - Тема 5.3. Понятие определенного интеграла.
 - Тема 5.4. Суммы и интегралы Дарбу. Критерий интегрируемости Римана.
 - Тема 5.5. Классы функций, интегрируемых по Риману.
 - Тема 5.6. Свойства определенного интеграла.
 - Тема 5.7. Критерий Лебега интегрируемости функции по Риману.
- Тема 5.8. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница.
- Тема 5.9. Замена переменных и интегрирование по частям в определенном интеграле.
 - Тема 5.10. Теоремы о среднем для определенного интеграла.

- Тема 5.11. Формула Тейлора с остаточным членом в интегральной форме. Интегральные неравенства.
- Тема 5.12. Понятие несобственных интегралов 1-го и 2-го рода. Критерий Коши сходимости несобственных интегралов.
 - Тема 5.13. Достаточные признаки сходимости несобственных интегралов.
- Тема 5.14. Замена переменных под знаком несобственного интеграла и формула интегрирования по частям. Абсолютная и условная сходимость несобственных интегралов. Главное значение (в смысле Коши) несобственного интеграла.
- Раздел 6. Дифференциальное исчисление функций многих переменных.
 - Тема 6.1. Непрерывность функции в \mathbb{R}^n .
- Тема 6.2. Дифференцируемые функции многих переменных. Дифференцирование сложных функций.
- Тема 6.3. Производная по направлению. Градиент. Элементы дифференциальной геометрии.
 - Тема 6.4. Частные производные высших порядков.
- Тема 6.5. Дифференциалы высших порядков. Формула Тейлора для функций многих переменных.
- Тема 6.6. Локальный экстремум функции многих переменных. Необходимые и достаточные условия экстремума.
 - Тема 6.7. Неявные функции. Теоремы о неявных функциях.
 - Тема 6.8. Условный экстремум функции многих переменных.

Раздел 7. Числовые ряды.

- Тема 7.1. Понятие числового ряда, сходимости и расходимости числового ряда. Простейшие свойства сходящихся рядов.
- Тема 7.2. Критерий Коши сходимости (расходимости) числового ряда. Необходимый признак сходимости. Признак сравнения.
- Тема 7.3. Достаточные признаки сходимости рядов с неотрицательными членами (признаки Даламбера, Коши, Раабе, интегральный признак, Куммера, Бертрана, Гаусса).
 - Тема 7.4. Знакочередующиеся ряды.
- Тема 7.5. Абсолютная и условная сходимость числовых рядов. Достаточные признаки абсолютной сходимости.
 - Тема 7.6. Свойства абсолютно и условно сходящихся рядов.
 - Тема 7.7. Преобразование Абеля. Признаки сходимости Дирихле и Абеля.

Раздел 8. Степенные ряды.

- Тема 8.1. Понятие степенного ряда. Область сходимости, радиус сходимости степенного ряда.
 - Тема 8.2. Свойства сходящихся степенных рядов.
- Тема 8.3. Ряды Тейлора и Маклорена. Единственность разложения функции в степенной ряд.
 - Тема 8.4. Теорема Вейерштрасса для степенных рядов. Теорема Арцела-Асколи.
 Раздел 9. Кратные интегралы.
- Тема 9.1. Определение двойного интеграла для прямоугольной области. Необходимое условие интегрируемости.
- Тема 9.2. Верхняя и нижняя интегральные суммы Дарбу и их свойства. Понятие верхнего и нижнего интегралов Дарбу.
- Тема 9.3. Критерии интегрируемости Дарбу и Римана. Классы функций, интегрируемых по Риману.
- Тема 9.4. Определение двойного интеграла для произвольной области. Свойства двойного интеграла.
 - Тема 9.5. Сведение двойного интеграла к повторному.
 - Тема 9.6. Замена переменных в двукратном интеграле.

- Тема 9.7. Определение тройного интеграла для прямоугольной области. Необходимое условие интегрируемости.
- Тема 9.8. Определение тройного интеграла для произвольной области. Свойства тройного интеграла.
 - Тема 9.9. Сведение тройного интеграла к повторному в декартовых координатах.
- Тема 9.10. Замена переменных в тройом интеграле. Цилиндрические и сферические координаты.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

Тема занятия	Всего часов	Оценочные	Формируемые
		средства	компетенции
Тема 1.1 – 1.7	14	CP	УК-1, УК-6,
			ОПК-1
Тема 2.1 – 2.7	18	KP № 1	УК-1, УК-6,
			ОПК-1
Тема 3.1 – 3.6	18	KP № 2	УК-1, УК-6,
			ОПК-1
Тема 4.1 – 4.14	18	KP № 3, 4	УК-1, УК-6,
			ОПК-1
Темы 5.1 – 5.2, 5.8 -5.10, 5.12 – 5.14	54	KP № 5, 6	УК-1, УК-6,
			ОПК-1
Темы 6.2 – 6.8	18	KP № 7, 8	УК-1, УК-6,
			ОПК-1
Темы 7.1 – 7.6	6	KP № 9	УК-1, УК-6,
			ОПК-1
Темы 8.1 – 8.4	6	KP № 9	УК-1, УК-6,
			ОПК-1
Темы 9.1, 9.5, 9.6, 9.9, 9.10	22	KP № 10	УК-1, УК-6,
			ОПК-1

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы

Тема	Задание	Формируемые
		компетенции
Раздел 1: Леммы о единственности	конспект	УК-1, УК-6,
минимального элемента и принцип		ОПК-1
минимального элемента; Принцип		
математической индукции;		
Неравенство Бернулли; Бином		
Ньютона; Определения модуля		
вещественного числа, целой и		
дробной частей числа; Теоремы о		
плотности Q в R и $R \setminus Q$ в R .		

Раздел 2: Арифметические свойства предела числовой последовательности; Свойства предела числовой последовательности, связанные с неравенствами; Определение ограниченной последовательности; Ряд сравнения бесконечно больших	конспект	УК-1, УК-6, ОПК-1
Раздел 3: О-символика и сравнение функций; Ряд эквивалентных бесконечно малых функций; Свойства непрерывных функций	конспект	УК-1, УК-6, ОПК-1
Раздел 4: Уравнение касательной к графику функции; Геометрический смысл производной и дифференциала; Правила дифференцирования; Формула Лейбница; Основные теоремы дифференциального исчисления (теоремы Ролля, Лагранжа и Коши о среднем).	конспект	УК-1, УК-6, ОПК-1
Раздел 5: Свойства определенного интеграла; Абсолютная и условная сходимость несобственных интегралов; Первая теорема о среднем для определенного интеграла и следствия из нее; Вторая теорема о среднем для определенного интеграла и следствия из нее; Формула Тейлора с остаточным членом в интегральной форме; Неравенства содержащие интегралы (неравенства Гельдера, Минковского, Коши-Буняковского), Абсолютная и условная сходимость несобственных интегралов;.	конспект	УК-1, УК-6, ОПК-1

Раздел 6: Понятие	ГОИСПЕКТ	УК-1, УК-6,
дифференцируемости функции	конспект	УК-1, УК-0, ОПК-1
		011111
многих переменных. Необходимое		
условие дифференцируемости;		
Понятие частной производной.		
Первое достаточное условие		
дифференцируемости; Теорема о		
дифференцировании сложной		
функции. Инвариантность формы		
первого дифференциала. Правила		
дифференцирования; Производная		
по направлению. Градиент		
функции и его свойства;		
Геометрический смысл		
дифференциала функции.		
Касательные и нормальный		
векторы поверхности; Частные		
производные высших порядков.		
Теоремы Шварца и Юнга. Второе		
достаточное условие		
дифференцируемости;		
Дифференциалы высших порядков.		
Формула Тейлора для функций		
многих переменных с остаточным		
=		
членом в форме Пеано; Формула		
Тейлора для функций многих		
переменных с остаточным членом		
в форме Лагранжа		XXX 1 XXX C
Раздел 7: Абсолютная и условная	конспект	УК-1, УК-6,
сходимость числовых рядов.		ОПК-1
Достаточные признаки абсолютной		
сходимости числовых рядов;		
Свойства абсолютно и условно		
сходящихся числовых рядов.		
Теорема Римана; Признаки		
Дирихле и Абеля сходимости		
числовых рядов. Преобразование		
Абеля.		
Раздел 8: Понятие степенного ряда.	конспект	УК-1, УК-6,
Теорема Абеля. Область		ОПК-1
сходимости и радиус сходимости		
степенного ряда; Свойства		
сходящихся степенных рядов		
Раздел 9: Свойства двойного	конспект	УК-1, УК-6,
интеграла; Свойства тройного	ROMONIA	ОПК-1
интеграла; Свойства гроиного интеграла; Свойства		
криволинейных интегралов.		
криволинсиных интегралов.		

4.4. Методические указания по организации самостоятельной работы студентов

Самостоятельная работа студентов всех форм и видов обучения является одним из обязательных видов образовательной деятельности, обеспечивающей реализацию требований Федеральных государственных стандартов высшего образования. Согласно требованиям нормативных документов самостоятельная работа студентов является обязательным компонентом образовательного процесса, так как она обеспечивает закрепление получаемых на лекционных занятиях знаний путем приобретения навыков осмысления и расширения их содержания, навыков решения актуальных проблем формирования общекультурных и профессиональных компетенций, научно-исследовательской деятельности, подготовки к семинарам, лабораторным работам, сдаче зачетов и экзаменов. Самостоятельная работа студентов представляет собой совокупность аудиторных и внеаудиторных занятий и работ. Самостоятельная работа в рамках образовательного процесса в вузе решает следующие задачи:

- закрепление и расширение знаний, умений, полученных студентами во время аудиторных и внеаудиторных занятий, превращение их в стереотипы умственной и физической деятельности;
- приобретение дополнительных знаний и навыков по дисциплинам учебного плана;
- формирование и развитие знаний и навыков, связанных с научно-исследовательской деятельностью;
- развитие ориентации и установки на качественное освоение образовательной программы;
- развитие навыков самоорганизации;
- формирование самостоятельности мышления, способности к саморазвитию, самосовершенствованию и самореализации;
- выработка навыков эффективной самостоятельной профессиональной теоретической, практической и учебно-исследовательской деятельности.

Подготовка к лекции. Качество освоения содержания конкретной дисциплины прямо зависит от того, насколько студент сам, без внешнего принуждения формирует у себя установку на получение на лекциях новых знаний, дополняющих уже имеющиеся по данной дисциплине. Время на подготовку студентов к двухчасовой лекции по нормативам составляет не менее 0,2 часа.

Подготовка к практическому занятию. Подготовка к практическому занятию включает следующие элементы самостоятельной деятельности: четкое представление цели и задач его проведения; выделение навыков умственной, аналитической, научной деятельности, которые станут результатом предстоящей работы. Выработка навыков осуществляется с помощью получения новой информации об изучаемых процессах и с помощью знания о том, в какой степени в данное время студент владеет методами исследовательской деятельности, которыми он станет пользоваться на практическом занятии. Подготовка к практическому занятию нередко требует подбора материала, данных и специальных источников, с которыми предстоит учебная работа. Студенты должны дома подготовить к занятию 3-4 примера формулировки темы исследования, представленного в монографиях, научных статьях, отчетах. Затем они самостоятельно осуществляют поиск соответствующих источников, определяют актуальность конкретного исследования процессов и явлений, выделяют основные способы доказательства авторами научных работ ценности того, чем они занимаются. В ходе самого практического занятия студенты сначала представляют найденные ими варианты формулировки актуальности исследования, обсуждают их и обосновывают свое мнение о наилучшем варианте. Время на подготовку к практическому занятию по нормативам составляет не менее 0,2 часа.

Подготовка к семинарскому занятию. Самостоятельная подготовка к семинару направлена: на развитие способности к чтению научной и иной литературы; на поиск дополнительной информации, позволяющей глубже разобраться в некоторых вопросах; на выделение при работе с разными источниками необходимой информации, которая

требуется для полного ответа на вопросы плана семинарского занятия; на выработку умения правильно выписывать высказывания авторов из имеющихся источников информации, оформлять их по библиографическим нормам; на развитие умения осуществлять анализ выбранных источников информации; на подготовку собственного выступления по обсуждаемым вопросам; на формирование навыка оперативного реагирования на разные мнения, которые могут возникать при обсуждении тех или иных научных проблем. Время на подготовку к семинару по нормативам составляет не менее 0,2 часа.

Подготовка к коллоквиуму. Коллоквиум представляет собой коллективное обсуждение раздела дисциплины на основе самостоятельного изучения этого раздела студентами. Подготовка к данному виду учебных занятий осуществляется в следующем порядке. Преподаватель дает список вопросов, ответы на которые следует получить при изучении определенного перечня научных источников. Студентам во внеаудиторное время необходимо прочитать специальную литературу, выписать из нее ответы на вопросы, которые будут обсуждаться на коллоквиуме, мысленно сформулировать свое мнение по каждому из вопросов, которое они выскажут на занятии. Время на подготовку к коллоквиуму по нормативам составляет не менее 0,2 часа.

Подготовка к контрольной работе. Контрольная работа назначается после изучения определенного раздела (разделов) дисциплины и представляет собой совокупность развернутых письменных ответов студентов на вопросы, которые они заранее получают от преподавателя. Самостоятельная подготовка к контрольной работе включает в себя: — изучение конспектов лекций, раскрывающих материал, знание которого проверяется контрольной работой; повторение учебного материала, полученного при подготовке к семинарским, практическим занятиям и во время их проведения; изучение дополнительной литературы, в которой конкретизируется содержание проверяемых знаний; составление в мысленной форме ответов на поставленные в контрольной работе вопросы; формирование психологической установки на успешное выполнение всех заданий. Время на подготовку к контрольной работе по нормативам составляет 2 часа.

Подготовка к зачету. Самостоятельная подготовка к зачету должна осуществляться в течение всего семестра. Подготовка включает следующие действия: перечитать все лекции, а также материалы, которые готовились к семинарским и практическим занятиям в течение семестра, соотнести эту информацию с вопросами, которые даны к зачету, если информации недостаточно, ответы находят в предложенной преподавателем литературе. Рекомендуется делать краткие записи. Время на подготовку к зачету по нормативам составляет не менее 4 часов.

Подготовка к экзамену. Самостоятельная подготовка к экзамену схожа с подготовкой к зачету, особенно если он дифференцированный. Но объем учебного материала, который нужно восстановить в памяти к экзамену, вновь осмыслить и понять, значительно больше, поэтому требуется больше времени и умственных усилий. Важно сформировать целостное представление о содержании ответа на каждый вопрос, что предполагает знание разных научных трактовок сущности того или иного явления, процесса, умение раскрывать факторы, определяющие их противоречивость, знание имен ученых, изучавших обсуждаемую проблему. Необходимо также привести информацию о материалах эмпирических исследований, что указывает на всестороннюю подготовку студента к экзамену. Время на подготовку к экзамену по нормативам составляет 36 часов для бакалавров.

В ФБГОУ ВО «ИГУ» организация самостоятельной работы студентов регламентируется Положением о самостоятельной работе студентов, принятым Ученым советом ИГУ 22 июня 2012 г.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1.**Сборникзадачиупражнений**по**математическомунализу**[Текст] : учебное пособие / Б. П. Демидович. 19-е изд., испр. СПб. : Лань, 2017. 623 с. : ил. ; 21 см. (Учебники для вузов.Специальная литература). **ISBN** 978-5-8114-2311-8 :**42** экз+
- 2. Ильин, Владимир Александрович. Математический анализ: учеб.для бакалавров вузов с углублен. изучением мат. анализа и для спец. мех.-мат. фак. ун-тов: [в 2 т.] / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. 4-е изд. М.: Юрайт, 2013. Ч. 1. 2013. 357 с. ISBN 978-5-9916-2733-7. Экз. 26. +
- 3. Зорич, Владимир Антонович. Математический анализ: учеб.для студ. мат. и физ.-мат. фак. и спец. вузов / В. А. Зорич. 5-е изд. М. : Изд-во МЦНМО, 2007 ISBN 5-94057-055-0. Ч.1. 2007. 657 с. ISBN 5-94057-056-9. 50 экз.+
- 4. Зорич, Владимир Антонович. Математический анализ: учеб.для студ. мат. и физ.-мат. фак. и спец. вузов / В. А. Зорич. 5-е изд. М. : Изд-во МЦНМО ISBN 5-94057-055-0. Ч.2. 2007. 789 с. ISBN 5-94057-057-7. 50 экз. +
- 5. Будаев, Виктор Дмитриевич. Математический анализ. Функции одной переменной: учебник / В. Д. Будаев, М. Я. Якубсон. Москва : Лань, 2012. 544 с. : ил. ; 22 см. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1186-3 +
- 6. Горлач, Б. А. Математический анализ / Б. А. Горлач. Москва : Лань, 2013. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1428-4+
 - б) дополнительная литература
- 7. Ильин, Владимир Александрович. Математический анализ: учеб.для студ. вузов: В 2 ч. / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов; Московский гос. ун-т им. М. В. Ломоносова. 3-е изд., перераб. и доп. М.: Проспект; М.: Изд-во МГУ: ТК Велби, 2006 Ч. 2. 2006. 357 с. ISBN 5-482-00444-9. 10 экз. +
- 8. Математический анализ: учеб.пособие для бакалавров, для студ. вузов / А. М. Кытманов. ЭВК. М.: Юрайт, 2012. (Бакалавр.Базовый курс). Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ. ISBN 978-5-9916-1810-6. +
- 9. Фалалеев, Михаил Валентинович. Математический анализ : учеб.пособие для студ. вузов. обуч. по напр. подгот. "Математика", "Прикладная математика и информатика", "Информационная безопасность": в 4 ч. / М. В. Фалалеев ; рец.: Н. А. Сидоров, А. А. Щеглова ; Иркутский гос. ун-т, Ин-т мат., эконом.иинформ. Иркутск : Изд-во ИГУ, 2013. ISBN 978-5-9624-0822-4. Ч. 1. 2013. 177 с. ISBN 978-5-9624-0822-4. 51 экз. +
- 10. Фалалеев, Михаил Валентинович. Математический анализ : учеб.пособие для студ. вузов. обуч. по напр. подгот. "Математика", "Прикладная математика и информатика", "Информационная безопасность": в 4 ч. / М. В. Фалалеев ; рец.: Н. А. Сидоров, А. А. Щеглова ; Иркутский гос. ун-т, Ин-т мат., эконом.иинформ. Иркутск : Изд-во ИГУ, 2013. ISBN 978-5-9624-0822-4. Ч. 2. 2013. 139 с. ISBN 978-5-9624-0824-8. 51 экз. +
- 11. Фалалеев, Михаил Валентинович. Математический анализ : учеб.пособие для студ. вузов. обуч. по напр. подгот. "Математика", "Прикладная математика и информатика", "Информационная безопасность": в 4 ч. / М. В. Фалалеев ; рец.: Н. А. Сидоров, А. А. Щеглова ; Иркутский гос. ун-т, Ин-т мат., эконом.иинформ. Иркутск : Изд-во ИГУ, 2013. ISBN 978-5-9624-0822-4. Ч. 3. 2013. 154 с. ISBN 978-5-9624-0825-5. 51 экз. +
- 12. Фалалеев, Михаил Валентинович. Математический анализ: учеб.пособие для студ. вузов. обуч. по напр. подгот. "Математика", "Прикладная математика и информатика", "Информационная безопасность": в 4 ч. / М. В. Фалалеев; рец.: Н. А.

Сидоров, А. А. Щеглова ; Иркутский гос. ун-т, Ин-т мат., эконом.иинформ. - Иркутск : Изд-во ИГУ, 2013. - ISBN 978-5-9624-0822-4. Ч. 4. - 2013. - 113 с. - ISBN 978-5-9624-0826-2. 51 экз. +

13. **Гражданцева Е.Ю.** Интегральное исчисление функции одной переменной : учеб.пособие / Е.Ю. Гражданцева. – Иркутск : Изд-во ИГУ, 2012. – 114 с. +70 экз.

в) базы данных, информационно-справочные и поисковые системы

https://isu.bibliotech.ru/

http://e.lanbook.com

http://rucont.ru/

http://ibooks.ru/

http://e-library.ru/

http://educa.isu.ru/

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Учебно-лабораторное оборудование

ЭТОТ РАЗДЕЛ НЕ ЗАПОЛНЯТЬ

6.2. Программное обеспечение

Программное обеспечение не требуется.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

7.1. Оценочные средства текущего контроля

№	Вид контроля	Контролируемые	Компетенции,
п\п	(текущие контрольные работы)	темы (разделы)	компетенции
1	KP № 1	Раздел 2.	УК-1, УК-6, ОПК-1
2	KP № 2	Раздел 3	
3	KP № 3, 4	Раздел 4	
4	KP № 5, 6	Раздел 5	
5	KP № 7, 8	Раздел 6	
6	KP № 9	Раздел 7	
7	KP № 9	Раздел 8	
8	KP № 10	Раздел 9.	

Примеры оценочных средств текущего контроля

Примерные варианты контрольных работ

Контрольная работа №1

- 1. Найти предел числовой последовательности $\{a_n\}$, где $a_n = \frac{3n+1}{n-7}$ и доказать правильность используя определение.
- 2. Вычислить $\lim_{n\to\infty} \frac{n^2 + 7n 9}{n^2 2n + 5}$.
- 3. вычислить $\lim_{n\to\infty} (\sqrt{2n^2 + n} \sqrt{2n^2 + 1})$.
- 4. Вычислить $\lim_{n\to\infty} \frac{\frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots + \frac{4}{3^n}}{\frac{5}{-2} + \frac{5}{4} + \frac{5}{-8} + \dots + \frac{5}{(-2)^n}}$.
- 5. Вычислить $\lim_{n\to\infty} \frac{(1+(-1)^n)(n+1)}{n^2}$.
- 6. Вычислить $\lim_{n\to\infty} \left(\frac{2n+3}{2n-4}\right)^n$.
- 7. Доказать, что $\lim_{n\to\infty} \left(\frac{1}{n} + \sin\frac{\pi n}{3}\right) \neq 0$.

Контрольная работа №2

Не используя правила Лопиталя, найти указанные пределы

1.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 12x + 20}$$
; 2.
$$\lim_{x \to -3} \frac{2x^2 + 11x + 15}{3x^2 + 5x - 12}$$
;

3.
$$\lim_{x \to \infty} \frac{3x^3 - 5x^2 + 2}{2x^3 + 5x^2 - x}; 4. \lim_{x \to -\infty} \frac{x^5 - 2x + 4}{2x^4 + 3x^2 + 1};$$

5.
$$\lim_{x \to \infty} \frac{2x^2 + 3x - 5}{7x^3 - 2x^2 + 1}$$
; 6. $\lim_{x \to 3} \frac{x^2 + x - 12}{\sqrt{x - 2} - \sqrt{4 - x}}$;

7.
$$\lim_{x\to\infty} \left(\frac{x+4}{x+8}\right)^{-3x}$$
; 8. $\lim_{x\to\infty} \left(\frac{2x+3}{5x+7}\right)^{x+1}$;

9.
$$\lim_{x \to 0} \frac{1 - \cos 8x}{3x^2}$$
; 10. $\lim_{x \to 0} \frac{\ln(1 + 3x^2)}{x^3 - 5x^2}$;

- 11. Доказать, что функции f(x) и $\varphi(x)$ при $x \to 0$ являются бесконечно малыми одного порядка малости $f(x) = tg2x, \varphi(x) = \arcsin x;$
- 12. Исследовать данную функцию на непрерывность в указанных точках

$$f(x) = 2^{\frac{1}{(x-3)}} + 1, x_1 = 3, x_2 = 4.$$

Контрольная работа №3

Продифференцировать функции:

1.
$$y = 2x^5 - \frac{4}{x^3} + \frac{1}{x} + 3\sqrt{x}$$
; 2. $y = \sqrt[3]{3x^4 + 2x - 5} + \frac{4}{(x - 2)^5}$; 3. $y = \sin^3 2x \cos 8x^5$;

4.
$$y = arcctg^5 2x \ln(x-4)$$
; 5. $y = tg^4 3x \arcsin 2x^3$; 6. $y = (x-3)^4 \arccos 5x^3$;

7.
$$y = \frac{e^{\arccos^3 x}}{\sqrt{x+5}}$$
; 8. $y = \frac{\log_5(3x-7)}{ctg(7x^3)}$; 9. $y = \frac{arcctg^4 5x}{sh\sqrt{x}}$; 10. $y = \frac{9arctg(x+7)}{(x-1)^2}$; 11. $y = \sqrt{\frac{2x+1}{2x-1}}\log_2(x-3x^2)$; 12. $y = (cth3x)^{\arcsin x}$; 13. $y = (\arccos(x+2))^{tg3x}$; 14. $y = \frac{\sqrt{x+7}(x-3)^4}{(x+2)^5}$; 15. $y = (\frac{2}{27x} - \frac{1}{9x^2})\sqrt{3x+x^2}$; 16. $y = 3^{arctg^2(4x+1)}$. Найти y' и y'' 17. $y^2 = 8x$; 18. $\begin{cases} x = (2t+3)\cos t \\ y = 3t^3 \end{cases}$; 19. $\begin{cases} x = t + \ln\cos t \\ y = t - \ln\sin t \end{cases}$; 20. $y = \frac{x-1}{x+1}e^{-x}$; 21. $y = \sin^2 x$, $y'''(\frac{\pi}{2}) = ?$; 22. $y = \ln x$, $y^{(n)} = ?$.

Контрольная работа №4

Исследовать функцию и посторить её график.

Контрольная работа №5

• Проинтегрировать

$$1. \int \frac{3 - 2x^4 + \sqrt[5]{x^2}}{\sqrt[5]{x}} dx; \ 2. \int \frac{dx}{\sqrt[5]{(4 - 8x)^2}}; \ 3. \int \frac{dx}{6 - 7x};$$

$$4. \int \cos(2 - 5x) dx; \ 5. \int \frac{3 dx}{\sqrt{4x^2 - 3}}; \ 6. \int \frac{7x dx}{3x^2 + 4};$$

$$7. \int \frac{dx}{\sqrt[5]{6 - 5x^2}}; \ 8. \int e^{5-4x} dx; \ 9. \int \frac{\sqrt[7]{\ln^2(x + 2)}}{x + 2} dx;$$

$$10. \int \frac{\cos 3x dx}{\sqrt[5]{\sin 3x - 4}}; \ 11. \int \frac{dx}{\sin^2 4x \sqrt[5]{\cot 2^4 4x}}; \ 12. \int \sqrt[5]{\sqrt[5]{arcctg^5 2x}} dx;$$

$$13. \int e^{3\cos x + 2} \sin x dx; \ 14. \int \frac{3x + 10}{6x^2 - 4} dx; \ 15. \int \frac{3 - 7x}{4x^2 + 5} dx;$$

$$16. \int \frac{dx}{e^{3x}(2 - e^{-3x})}; \ 17. \int \frac{3x^5 - 4x}{x^2 + 1} dx; \ 18. \int \cos^3(7x + 2) dx;$$

$$19. \int \cot y^4 5x dx; \ 20. \int \sin \frac{7}{2}x \sin \frac{3}{2}x dx; \ 21. \int \frac{dx}{6x^2 - 3x + 2};$$

$$22. \int \frac{3x - 6}{2 - 5x - x^2} dx; \ 23. \int \frac{dx}{\sqrt{5x^2 + 2x - 7}}; \ 24. \int \frac{2x - 7}{\sqrt{1 - 4x - 3x^2}} dx;$$

$$25. \int x^2 \sqrt{16 - x^2} dx; \ 26. \int \frac{dx}{x\sqrt{x^2 + 5x + 1}}; \ 27. \int (x - 7) \sin 5x dx;$$

$$28. \int arccos 4x dx; \ 29. \int xe^{x - 7} dx; \ 30. \int \frac{xarctgx}{\sqrt{1 + x^2}} dx;$$

$$31. \int (x^2 - 4x + 3)e^{-2x} dx; \ 32. \int \frac{\ln(\ln(x + 1)) \ln(x + 1)}{x + 1} dx;$$

$$33. \int \frac{7x - x^2 - 4}{(x + 1)(x^2 - 5x + 6)} dx; \ 34. \int \frac{15x - x^2 - 11}{(x - 1)(x^2 + x - 2)} dx;$$

$$35. \int \frac{x^4 - 8x^3 + 23x^2 - 43x + 27}{(x - 2)(x^2 - 2x + 5)} dx; \ 36. \int \frac{2x^3 - 5x^2 + 8x - 32}{x^4 + 9x^2 + 20} dx;$$

$$37. \int \frac{x + 1}{3 - \sqrt{x - 2}} dx; \ 38. \int \frac{4\sqrt{x - 2} + \sqrt[5]{x - 2}}{\sqrt{x - 2} + 2\sqrt[5]{x - 2}} dx; \ 39. \int \frac{\cos^3 4x}{\sqrt[5]{\sin 4x}} dx;$$

$$40. \int \frac{dx}{3\sin x - 2\cos x + 1} dx; \ 41. \int \frac{dx}{2\sin^2 x - \sin 2x + 3\cos^2 x} dx;$$

Контрольная работа №6

Вычислить (1-3): 1.
$$\int_{1}^{\sqrt{3}} \frac{(x^3+3)dx}{x^2\sqrt{4-x^2}}$$
, 2. $\int_{0}^{27} \frac{dx}{\sqrt[3]{x}}$, 3. $\int_{1}^{\infty} \frac{\ln x dx}{x^3}$.

- 4. Вычислить площадь, ограниченную линиями $\rho = 2\sqrt{3}\sin\varphi$, $\rho = 2\cos\varphi$.
- 5. Вычислить длину дуги кривой $x = 2\cos\frac{t}{3} + \cos\frac{2t}{3}$, $x = 2\sin\frac{t}{3} \sin\frac{2t}{3}$, $(0 \le t \le 2\pi)$.
- 6. Вычислить объем тела, образованного вращением фигуры $y^2 = (x+4)^3$, x=0 вокруг оси oY.

7. Вычислить площадь поверхности, образованной вращением дуги кривой $y^2 = 8 + x$, заключенной между точками x = -8, x = 3, вокруг оси oX.

Контрольная работа №7

- **1.** Вычислить значения первых частных производных функции f(x, y, z) = xz/(x y) в точке $M_0(3,1,1)$.
- 2. Найти первый и второй дифференциалы функций

$$\mathbf{a)} z = arcctg(x - y);$$

6)
$$z = \ln(5x^2 - 3y^4)$$
.

- **3.** Проверить, удовлетворяет ли уравнению $\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} = \frac{u}{y^2}$ функция $u = \frac{y}{(x^2 y^2)^5}$.
- **4.** Вычислить значения первых частных производных функции z = z(x, y), заданной неявно уравнением $x^3 + 3xyz z^3 = 27$, в точке $M_0(3,1,3)$.
- **5.** Исследовать на экстремум функцию $z = (x-1)^2 + 2y^2$.
- **6.** Найти наибольшее и наименьшее значения функции $z = 4 2x^2 y^2$ в области, ограниченной линиями $y = 0, \ y = \sqrt{1 x^2}$.

Контрольная работа №8

- 1. Исследовать на локальный экстремум функцию $z = x^3 2y^3 3x + 6y$.
- 2. Найти dz(x,y) и du(x,y) для функций z(x,y), u(x,y), заданных системой $\begin{cases} x+y+z+u=a\\ x^3+y^3+z^3+u^3=b \end{cases}.$
- 3. Исследовать на условный локальный экстремум функцию u = x + y + z, если $x^2 + z^2 = y$.
- 4. Написать уравнения касательной плоскости и нормали к поверхности $z = x^3 3xy + y^3$ в точке M(1; 1; -1).
- 5. $u = xz + \frac{x}{y}$. Найти $\frac{\partial u}{\partial l}$ (2,1,2), где l направление градиента функции v = xyz в точке M (2,1,2).

Контрольная работа №9

1. Найти сумму числового ряда. 1.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)(2n+3)}$$

2. Установить сходимость или расходимость числового ряда

1.
$$\sum_{n=1}^{\infty} \frac{\ln^2 n}{n}$$

$$2. \sum_{n=1}^{\infty} \frac{2n-1}{(\sqrt{2})^n}$$

 Исследовать знакочередующийся ряд на абсолютную и условную сходимость.

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{4n^2 + 3}$$

4.

Определить область сходимости функционального ряда.

1.
$$\sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)^2}$$
 2. $\sum_{n=1}^{\infty} \frac{n!}{x^n}$

- 5. Разложить функцию f(x) в ряд Тейлора в окрестности точки x_0 . 1. $f(x) = e^{3x}$, $x_0 = 1$
- 6. Разложить в ряд Фурье функцию f(x), периодическую с периодом T.

1.
$$f(x) = \begin{cases} \pi, & -\pi \le x < 0, \\ \pi - x, & 0 \le x \le \pi, \end{cases}$$
 $T = 2\pi$

Контрольная работа №10

1. Изменить порядок интегрирования. Построить область интегрирования.

$$\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x, y) dx.$$

2. Построить область интегрирования и вычислить

$$\iint\limits_{D} (12x^2y^2 + 16x^3y^3) dx dy, \qquad \text{где} \qquad \text{D} \qquad \text{ограничена} \qquad \text{линиями}$$
 $x=1, \ y=x^2, \ y=-\sqrt{x}$.

- 3. Построить область интегрирования и вычислить $\iiint_V 8y^2ze^{2xyz}dxdydz$, где V ограничена поверхностями $x=-1,\ x=0,\ y=2,\ y=0,\ z=1,\ z=0$
- 4. Построить область интегрирования и перейти к полярным координатам в $\int\limits_{0}^{1} dy \int\limits_{-\sqrt{4-y^2}}^{-\sqrt{1-y^2}} f(x,y) dx$
- 5. Найти площадь фигуры, ограниченной линиями xy = 6, y = x, x = 7. Сделать чертёж.
- 6. Вычислить криволинейный интеграл $\int_{AB} (x^2 y^2) dx + xy \, dy$ по прямой в направлении от точки A к точке B, если $A(1,1), \ B(3,4)$
- 7. С помощью формулы Остроградского вычислить поверхностный интеграл $\iint\limits_{S} x \ dy \ dz + y \ dz \ dx + z \ dx \ dy \; ; \; S$ внешняя сторона пирамиды, ограниченная

плоскостями x + y + z = 1, x = 0, y = 0, z = 0.

8. С помощью формулы Стокса вычислить криволинейный интеграл $\oint\limits_{L} x^2 y^3 \ dx + dy + z \ dz; \ L - окружность, заданная уравнениями <math>x^2 + y^2 = 1, \ z = 0, \ S - L$ верхняя сторона полусферы $x^2 + y^2 + z^2 = 1 \ (z > 0).$

7.2. Оценочные средства для промежуточной аттестации

Список вопросов для промежуточной аттестации:

Программа экзамена за 1-ый семестр

- 1. Понятие минимума (максимума) числового множества.
- 2. Леммы о единственности минимального элемента и принцип минимального элемента.
- 3. Принцип математической индукции.
- 4. Неравенство Бернулли.
- 5. Бином Ньютона.
- 6. Определения модуля вещественного числа, целой и дробной частей числа.
- 7. Теоремы о плотности Q в R и $R \setminus Q$ в R.
- 8. Определения точной верхней и точной нижней граней числового множества.
- 9. Определения биекции и равномощности множеств. Определение счетного множества.
- 10. Определение предела числовой последовательности.
- 11. Теорема о единственности предела числовой последовательности.
- 12. Арифметические свойства предела числовой последовательности.
- 13. Свойства предела числовой последовательности, связанные с неравенствами.
- 14. Определение ограниченной последовательности.
- 15. Необходимый признак сходимости последовательности.
- 16. Теорема Вейерштрасса о пределе монотонной и ограниченной последовательности.
- 17. Теорема о пределе подпоследовательности.
- 18. Теорема Больцано-Вейерштрасса.
- 19. Определение фундаментальной последовательности.
- 20. Критерий Коши сходимости числовой последовательности.
- 21. Критерий Коши расходимости числовой последовательности.
- 22. Определения неограниченной, бесконечно большой и бесконечно малой последовательности.
- 23. Теорема о пределе произведения ограниченной и бесконечно малой последовательностей.
- 24. Теорема о специальном представлении членов сходящейся последовательности.
- 25. Связь между бесконечно малой и бесконечно большой последовательностями.
- 26. Ряд сравнения бесконечно больших.
- 27. Определения предела функции по Гейне и по Коши.
- 28. Определения односторонних пределов.
- 29. Свойства предела функции.
- 30. Критерий Коши существования предела функции.
- 31. Первый и второй замечательные пределы.
- 32. Определение бесконечно малой и бесконечно большой функции.
- 33. Теорема о специальном представлении функции, имеющей предел.
- 34. О-символика и сравнение функций.
- 35. Ряд эквивалентных функций при $x \rightarrow 0$.
- 36. Определения непрерывности функции по Гейне и по Коши.
- 37. Определение непрерывности на языке приращений.
- 38. Свойства непрерывных функций.
- 39. Определение точки разрыва функции. Классификация точек разрыва.
- 40. Теорема о точках разрыва монотонной на отрезке функции.
- 41. Глобальные свойства функций непрерывных на отрезке (теоремы Вейерштрасса и Больцано-Коши).
- 42. Определение равномерно непрерывной функции.
- 43. Теорема Кантора.
- 44. Определение предельной точки множества.
- 45. Определения открытого и замкнутого множеств и связь между ними.

- 46. Свойства замкнутых и открытых множеств.
- 47. Определение компактного множества в R.
- 48. Определение открытого покрытия.
- 49. Лемма Бореля.
- 50. Обобщенная теорема Кантора.
- 51. Определение производной функции в точке.
- 52. Определение дифференцируемости функции в точке.
- 53. Теорема о связи дифференцируемости и непрерывности функции.
- 54. Уравнение касательной к графику функции.
- 55. Геометрический смысл производной и дифференциала.
- 56. Дифференцирование сложной и обратной функций.
- 57. Правила дифференцирования.
- 58. Формула Лейбница.
- 59. Основные теоремы дифференциального исчисления (теоремы Ролля, Лагранжа и Коши о среднем).
- 60. Достаточное условие монотонности.
- 61. Необходимое условие экстремума.
- 62. Первое и второе достаточные условия экстремума.
- 63. Достаточное условие выпуклости графика функции.
- 64. Необходимое условие перегиба.
- 65. Первое и второе достаточные условия перегиба.
- 66. Определения вертикальной и наклонной асимптот графика функции.
- 67. Первое и второе правила Лопиталя.
- 68. Формула Тейлора с остаточным членом в форме Пеано.
- 69. Свойство единственности многочлена Тейлора.
- 70. Третье достаточное условие экстремума и перегиба.

Программа экзамена за 2-ой семестр

- 1. Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла.
- 2. Основные методы интегрирования неопределенного интеграла.
- 3. Понятие определенного интеграла Римана. Необходимое условие интегрируемости. Геометрический смысл определенного интеграла.
- 4. Верхние и нижние интегральные суммы Дарбу и их свойства.
- 5. Понятие верхнего и нижнего интегралов Дарбу. Критерий Римана интегрируемости функции.
- 6. Классы функций интегрируемых по Риману.
- 7. Свойства определенного интеграла.
- 8. Понятие множества Лебеговской меры нуль и их свойства.
- 9. Критерий непрерывности функции в точке в терминах колеба-ния функции в точке.
- 10. Интегрируемость сложной и монотонной функций.
- 11. Интеграл с переменным верхним пределом и его свойства. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница.
- 12. Основные методы интегрирования определенного интеграла.
- 13. Первая теорема о среднем для определенного интеграла и следствия из нее.
- 14. Вторая теорема о среднем для определенного интеграла и следствия из нее.
- 15. Формула Тейлора с остаточным членом в интегральной форме.
- 16. Неравенства содержащие интегралы (неравенства Гельдера, Минковского, Коши-Буняковского).
- 17. Понятие несобственного интеграла первого и второго рода. Критерий Коши сходимости несобственных интегралов.

- 18. Признак сравнения сходимости несобственных интегралов в форме неравенств и в предельной форме.
- 19. Признак Дирихле-Абеля.
- 20. Основные методы интегрирования несобственных интегралов.
- 21. Абсолютная и условная сходимость несобственных интегралов.
- 22. Понятие дифференцируемости функции многих переменных. Необходимое условие дифференцируемости.
- 23. Понятие частной производной. Первое достаточное условие дифференцируемости.
- 24. Теорема о дифференцировании сложной функции. Инвариантность формы первого дифференциала. Правила дифференцирования.
- 25. Производная по направлению. Градиент функции и его свойства.
- 26. Геометрический смысл дифференциала функции. Касательные и нормальный векторы поверхности.
- 27. Частные производные высших порядков. Теоремы Шварца и Юнга. Второе достаточное условие дифференцируемости.
- 28. Дифференциалы высших порядков. Формула Тейлора для функций многих переменных с остаточным членом в форме Пеано.
- 29. Формула Тейлора для функций многих переменных с остаточным членом в форме Лагранжа.
- 30. Понятие локального экстремума функции многих переменных. Необходимое и достаточное условия экстремума функции многих переменных.
- 31. Теорема о неявной функции.
- 32. Теорема о системе неявных функций и следствие из нее.
- 33. Понятие условного экстремума функции многих переменных и методы его нахождения: метод исключения (прямой метод), метод множителей Лагранжа. Экстремум функции на множестве.

Программа экзамена за 3-й семестр

- 1. Понятие числового ряда, сходимости и расходимости числового ряда. Простейшие свойства сходящихся рядов.
- 2. Критерий Коши сходимости числового ряда. Необходимый признак сходимости (в двух формах).
 - 3. Признак сравнения (в двух формах).
- 4. Достаточные признаки сходимости числовых рядов с неотрицательными членами:
 - признак Даламбера;
 - корневой признак Коши;
 - интегральный признак Коши;
 - 5. Знакочередующиеся числовые ряды. Признак Лейбница.
- 6. Абсолютная и условная сходимость числовых рядов. Достаточные признаки абсолютной сходимости числовых рядов.
 - 7. Свойства абсолютно и условно сходящихся числовых рядов. Теорема Римана.
 - 8. Признаки Дирихле и Абеля сходимости числовых рядов. Преобразование Абеля.
- 9. Понятие степенного ряда. Теорема Абеля. Область сходимости и радиус сходимости степенного ряда.
- 10. Свойства сходящихся степенных рядов. Ряды Тейлора и Маклорена. Единственность разложения функции в степенной ряд.
 - 11. Теорема Вейерштрасса для степенных рядов.
 - 12. Понятие двойного интеграла для прямоугольной области. Необходимое условие интегрируемости.
 - 13. Верхняя и нижняя интегральные суммы Дарбу и их свойства.

- 14. Понятие верхнего и нижнего интегралов Дарбу. Лемма Дарбу.
- 15. Критерий интегрируемости Дарбу.
- 16. Критерий интегрируемости Римана. Классы функций интегрируемых по Риману.
- 17. Определение двойного интеграла для произвольной области. Геометрический смысл двойного интеграла.
- 18. Свойства двойного интеграла (уметь доказывать три из них по выбору студента).
- 19. Сведение двойного интеграла к повторному.
- 20. Замена переменных в двукратном интеграле (вопрос будет разбит на три билета: линейный случай, лемма о площади образа, нелинейный случай, в каждом из которых надо дать формулировку теоремы, изложить общую схему доказательства и привести развернутое доказательство одного из этапов).
- 21. Понятие тройного интеграла для прямоугольной области. Необходимое условие интегрируемости.
- 22. Определение тройного интеграла для произвольной области. Геометрический смысл тройного интеграла.
- 23. Свойства тройного интеграла (уметь доказывать три из них по выбору студента).
- 24. Сведение тройного интеграла к повторному.
- 25. Замена переменных в тройном интеграле (цилиндрическая и сферическиая системы координат).
- 26. Понятие криволинейного интеграла первого и второго рода, их физический смысл и зависимость от ориентации кривой.
- 27. Свойства криволинейных интегралов и теорема о их вычислении. Формула связи интегралов 1-го и 2-го рода.
- 28. Понятие поверхностного интеграла первого и второго рода, их физический смысл и зависимость от ориентации поверхности.

Примеры оценочных средств для промежуточной аттестации:

Образец билета к экзамену за 1-ый семестр

Билет №1

- 1. Принцип математической индукции. Неравенство Бернулли. Бином Ньютона.
- 2. Третье достаточное условие экстремума.
- 3. Пусть в некоторой окрестности точки a лежит бесконечно много членов последовательности x_n . Следует ли из этого условия, что $\lim_{n\to\infty} x_n = 0$.
- 4. При различных значениях параметра a исследовать на непрерывность функцию

$$f(x) = \begin{cases} x \cdot \sin \frac{1}{x}, & x \neq 0, \\ a, & x = 0. \end{cases}$$

Образец билета к экзамену за 2-ой семестр

Билет №1

- 3. Понятие определенного интеграла Римана. Необходимое условие интегрируемости. Геометрический смысл определенного интеграла.
- 4. Частные производные высших порядков. Теоремы Шварца.

3. Вычислить предел
$$\lim_{x\to +\infty} \frac{\int\limits_0^x e^{t^2}dt}{\int\limits_0^x e^{2t^2}dt}$$
.

2. Исследовать на непрерывность в точке (0; 0) функцию

$$f(x, y) = \begin{cases} x^2 \cdot \sin \frac{1}{x} + y^2, & x \neq 0, \\ y^2, & x = 0. \end{cases}$$

Образец билета к экзамену за 3-й семестр

Билет №1

- 1. Понятие числового ряда, сходимости и расходимости числового ряда. Простейшие свойства сходящихся рядов.
- 2. Понятие двойного интеграла для прямоугольной области. Необходимое условие интегрируемости.
- 3. Доказать, что если $a_n \ge 0, b_n > 0$ при всех $n \ge n_0$, ряд $\sum_{n=1}^\infty b_n$ сходятся и $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, то ряд $\sum_{n=1}^\infty a_n$ сходятся.
- 4. Определить область существования функции $f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^{5/2}}$ и исследовать ее на дифференцируемость.

Разработчик: Гражданцева Е.Ю., к.ф.-м.н., доцент, доцент кафедры математического анализа и дифференциальных уравнений