

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВО «ИГУ»

Кафедра радиофизики и радиоэлектроники

Буднев Н.М.

«22» апреля 2020 г.

Рабочая программа дисциплины

Наименование дисциплины __Б1.Б.12.01 Математический анализ

Направление подготовки 10.03.01 Информационная безопасность

Направленность (профиль) подготовки №4 Безопасность автоматизированных систем (по отрасли или в сфере профессиональной дятельности)

Квалификация выпускника бакалавр

Форма обучения очная

Протокол № 25 от «21» апреля 2020 г.

Буднев Н.М. Председатель

Согласовано с УМК физического факультета Рекомендовано кафедрой радиофизики и

радиоэлектроники:

Протокол № 8

От «20» марта 2020 г.

И.О.Зав. кафедрой

Колесник С.Н.

Оглавление

I. Цели и задачи дисциплины	3
II. Место дисциплины в структуре ОПОП	3
Ш. Требования к результатам освоения дисциплины (модуля)	3
IV. Содержание и структура дисциплины	3
4.1. Содержание дисциплины, структурированное по темам, с указанием видов уч занятий и отведенного на них количества академических часов	
4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине	4
4.3. Содержание учебного материала	4
4.3.1. Перечень семинарских, практических занятий и лабораторных работ	6
4.3.2 Перечень тем (вопросов), выносимых на самостоятельное изучение студент рамках самостоятельной работы	
4.4. Методические указания по организации самостоятельной работы студентов	11
4.5. Примерная тематика курсовых работ	11
V. Учебно-методическое и информационное обеспечение дисциплины	11
а) список литературы	11
б) периодические издания	12
- нет	12
в) список авторских методических разработок	12
г) базы данных, информационно-справочные и поисковые системы	13
VI. Материально-техническое обеспечение дисциплины	13
VII. Образовательные технологии	13
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации	13

I. Цели и задачи дисциплины

Дисциплина «Математический анализ» имеет целью ознакомление студентов с основными понятиями и методами математического анализа, создание теоретической и практической базы подготовки обучаемых к деятельности, связанной с решением задач информационной безопасности в условиях угроз в информационный сфере.

При этом решаются следующие задачи:

- ознакомление с основными понятиями, определениями, теоремами, методами и приложениями математического анализа;
- ознакомление с общими идеями создания математических моделей и применения их вкупе с математическими методами для решения профессиональных задач;
- формирование практических навыков решения математических и профессиональных задач;
- формирование у студентов представления о связях и взаимодействии существующих разделов математики и математического анализа в частности;
- развитие логического мышления, воспитание математической культуры и расширение научного кругозора обучающихся.

II. Место дисциплины в структуре ОПОП

В структуре ОПОП дисциплина входит в обязательную часть программы и является первым и основным математическим курсом наряду с дисциплиной «Линейная алгебра и аналитическая геометрия». Изучение курса предполагает наличие основных знаний и уверенных навыков решения задач в рамках школьной программы алгебры и начал анализа, а также геометрии. Знания по математическому анализу будут использованы практически во всех курсах и дисциплинах, изучаемых в рамках учебного плана направления 10.03.01 «Информационная безопасность»: модули «Математика», «Физика», «Информатика»; дисциплины «Теория вероятности и математическая статистика».

Ш. Требования к результатам освоения дисциплины (модуля)

Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	ОПК-3: Способен использовать необходимые математические методы для решения задач профессиональной деятельности				
Индикаторы компетенции	ОПК 3.1 Выбирает математические методы для решения задач профессиональной деятельности	Знает: основополагающие принципы и понятия анализа. Умеет: применять знания к решению задач. Владеет: основными методами математического анализа.			

IV. Содержание и структура дисциплины

Объем дисциплины составляет 13 зачетных единицы, 468 часов, в том числе 257 часов контактной работы.

Занятия проводятся в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 128 часов. Форма промежуточной аттестации: экзамен.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

-						1				
	№ π/π	Раздел дисциплины/темы	Семестр	Всего часов	Из них практическая подготовка обучающихся	Виды учебной работы, включая самостоятельную работу обучающихся, практическую подготовку и трудоемкость (в часах)				Фо _ј ус
						Конта	ктная работа про обучающим		Самостоятельная работа	про : (no
						Лекции	Семинарские /практические /лабораторные занятия			(110
	1	1-6	1	216	68	50	68	2	61	Пран задал экзал биле
	2	1-3	2	252	60	40	60	1	116	Пран задал экзал биле
	Ито	ого:		468	128	90	128	3	177	

4.2 План внеаудиторной самостоятельной работы обучающихся по дисциплине

Семестр	Название	Самостоятельная работа обучающихся			Оценочное	Учебно-
	раздела, темы	Вид самостоятельной работы	Сроки выполнения	Трудоемксть (час.)	средство	методическое обеспечение самостоятельной работы
1	Тема 1-6	Решение задач домашней работы	После пройденных тем	61	Демонстрация готовых решений	Источники из основной и дополнительной литературы по теме
2	1-3	Решение задач домашней работы	После пройденных тем	116	Демонстрация готовых решений	практических занятий; Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ.

4.3. Содержание учебного материала

№	Тема	Краткое содержание				
	1 семестр					

1	Введение в математический анализ	Множества. Отображения множеств. Функции. Основные элементарные функции, их свойства и графики. Последовательности и пределы. Непрерывность и разрывы функции. Бесконечно малые, бесконечно большие и эквивалентные функции.
2	Дифференциальное исчисление	Производная, её геометрический и физический смысл. Дифференциал функции. Правила нахождения производной и дифференциала. Таблица производных и дифференциалов. Производные и дифференциалы высших порядков. Теорема о среднем. Правило Лопиталя. Условия монотонности функции. Необходимые и достаточные условия экстремума функции. Наибольшее и наименьшее значения функции на заданном отрезке. Исследование выпуклости функции. Точки перегиба. Асимптоты. Построение графика функции. Формула Тейлора.
3	Дифференциальное исчисление функций нескольких переменных	Частные производные, уравнения касательной плоскости и нормали. Дифференциал, его связь с частными производными. Производная по направлению. Градиент. Экстремум функции нескольких переменных.
4	Интегральное исчисление	Свойства первообразных и таблица интегралов. Основные приемы интегрирования. Метод неопределённых коэффициентов, интегрирование иррациональных и тригонометрических выражений. Понятие определенного интеграла. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Геометрические приложения определенных интегралов. Несобственные интегралы.
5	Кратные интегралы	Понятие о кратных интегралах. Двойные интегралы и их вычисление. Замена переменных в двойном интеграле. Двойные интегралы в полярных координатах. Приложения двойных интегралов. Тройной интеграл и его вычисление. Приложения тройных интегралов.
6	Криволинейные и поверхностные интегралы	Криволинейный интеграл I рода и его вычисление. Криволинейный интеграл II рода и его вычисление. Приложения криволинейных интегралов. Поверхностный интеграл I рода и его вычисление. Поверхностный интеграл II рода и его вычисление. Приложения поверхностных интегралов.
		2 семестр
1	Элементы теории поля	Скалярные и векторные поля. Поверхности и линии уровня скалярного поля. Векторные линии векторного поля. Дифференциальные операции над полями: производная по направлению и градиент скалярного поля; Дивергенция и ротор векторного поля. Поток поля. Циркуляция. Оператор Гамильтона. Основные классы полей
2	Обыкновенные дифференциальные уравнения	Дифференциальные уравнения 1-го порядка. Линейные дифференциальные уравнения высших порядков. Линейные однородные дифференциальные уравнения п-го порядка с постоянными коэффициентами. Линейные

		неоднородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Система линейных однородных дифференциальных уравнений 1-го порядка с постоянными коэффициентами
3	Теория рядов	Числовые ряды. Необходимое условие сходимости. Критерий Коши. Достаточные признаки сходимости знакопостоянных рядов. Признак Лейбница. Степенные ряды. Радиус сходимости. Ряды Тейлора и Маклорена. Приближенные вычисления с помощью рядов. Решение дифференциальных уравнений с помощью рядов. Тригонометрический ряд Фурье. Теорема Дирихле.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и темы дисциплины	Наименование семинаров, практических и лабораторных работ	Трудоемкость (часы)	Оценочные средства	Формируемые компетенции
		1 семес	етр		
1	Введение в математический анализ	Множества. Отображения множеств. Функции. Основные элементарные функции, их свойства и графики. Последовательности и пределы. Непрерывность и разрывы функции. Бесконечно малые, бесконечно большие и эквивалентные функции.	10	Контрольная работа	ОПК-3
2	Дифференциальное исчисление	Производная, её геометрический и физический смысл. Дифференциал функции. Правила нахождения производной и дифференциала. Таблица производных и дифференциалов. Производные и дифференциалы высших порядков. Теорема о среднем. Правило Лопиталя.	10	Контрольная работа	ОПК-3

		Условия монотонности функции. Необходимые и достаточные условия экстремума функции. Наибольшее и наименьшее значения функции на заданном отрезке. Исследование выпуклости функции. Точки перегиба. Асимптоты. Построение графика функции. Формула Тейлора.			
3	Дифференциальное исчисление функций нескольких переменных	Частные производные, уравнения касательной плоскости и нормали. Дифференциал, его связь с частными производными. Производная по направлению. Градиент. Экстремум функции нескольких переменных.	12	Контрольная работа	ОПК-3
4	Интегральное исчисление	Свойства первообразных и таблица интегралов. Основные приемы интегрирования. Метод неопределённых коэффициентов, интегрирование иррациональных и тригонометрических выражений. Понятие определенного интеграла. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в	12	Контрольная работа	ОПК-3

		определенном интеграле. Геометрические приложения определенных интегралов. Несобственные интегралы.			
5	Кратные интегралы	Понятие о кратных интегралах. Двойные интегралы и их вычисление. Замена переменных в двойном интеграле. Двойные интегралы в полярных координатах. Приложения двойных интегралов. Тройной интеграл и его вычисление. Приложения тройных интегралов.	12	Контрольная работа	ОПК-3
6	Криволинейные и поверхностные интегралы	Криволинейный интеграл I рода и его вычисление. Криволинейный интеграл II рода и его вычисление. Приложения криволинейных интегралов. Поверхностный интеграл I рода и его вычисление. Поверхностный интеграл II рода и его вычисление. Поверхностный интеграл II рода и его вычисление. Приложения поверхностных интегралов.	12	Контрольная работа	ОПК-3
	2 семестр Скалярные и 12 Контрольная ОПК-3				
1	Элементы теории поля	Скалярные и векторные поля. Поверхности и линии уровня скалярного поля. Векторные линии векторного поля. Дифференциальные	12	работа	ome J

		операции над полями: производная по направлению и градиент скалярного поля; Дивергенция и ротор векторного поля. Поток поля. Циркуляция. Оператор Гамильтона. Основные классы полей			
2	Обыкновенные дифференциальные уравнения	Дифференциальные уравнения 1-го порядка. Линейные дифференциальные уравнения высших порядков. Линейные однородные дифференциальные уравнения п-го порядка с постоянными коэффициентами. Линейные неоднородные дифференциальные уравнения п-го порядка с постоянными коэффициентами. Система линейных однородных дифференциальных уравнений 1-го порядка с постоянными коэффициентами. Система линейных однородных дифференциальных уравнений 1-го порядка с постоянными коэффициентами	24	Контрольная работа	ОПК-3
3	Теория рядов	Числовые ряды. Необходимое условие сходимости. Критерий Коши. Достаточные признаки сходимости знакопостоянных рядов. Признак Лейбница. Степенные ряды. Радиус сходимости. Ряды Тейлора и	24	Контрольная работа	ОПК-3

	Маклорена. Приближенные		
	вычисления с		
	помощью рядов.		
	Решение		
,	дифференциальных		
	уравнений с		
	помощью рядов.		
- 1	Тригонометрический		
	ряд Фурье. Теорема		
1 3	Дирихле.		

4.3.2 Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы

No	Тема	Вид	Задание	Рекомендуемая	Количество
		самостоятель-		литература	часов
		ной работы			
1.1	Введение в	Домашняя	Решение	Источники из	
	математический	работа	задач,	основной и	
	анализ		аналогичных	дополнительной	
			тем, что были	литературы по	10
			на	теме	
			практических	практических	
			занятиях.	занятий.	
1.2	Дифференциальное	Домашняя	Решение	Образовательные	
	исчисление	работа	задач,	ресурсы,	
			аналогичных	доступные по	
			тем, что были	логину и паролю,	10
			на	предоставляемым	
			практических	Научной	
			занятиях.	библиотекой	
1.3	Дифференциальное	Домашняя	Решение		
	исчисление	работа	задач,		
	функций		аналогичных		
	нескольких		тем, что были		10
	переменных		на		
			практических		
			занятиях.		
1.4	Интегральное	Домашняя	Решение		
	исчисление	работа	задач,		
			аналогичных		
			тем, что были		10
			на		
			практических		
			занятиях.		
1.5	Кратные интегралы	Домашняя	Решение		
		работа	задач,		
			аналогичных		10
			тем, что были		10
			на		
			практических		

			занятиях.	
1.6	Криволинейные и	Домашняя	Решение	
	поверхностные	работа	задач,	
	интегралы	F	аналогичных	
	1		тем, что были	11
			на	
			практических	
			занятиях.	
2.1	Элементы теории	Домашняя	Решение	
	поля	работа	задач,	
			аналогичных	
			тем, что были	36
			на	
			практических	
			занятиях.	
2.2	Обыкновенные	Домашняя	Решение	
	дифференциальные	работа	задач,	
	уравнения		аналогичных	
			тем, что были	40
			на	
			практических	
			занятиях.	
2.3	Теория рядов	Домашняя	Решение	
		работа	задач,	
			аналогичных	
			тем, что были	40
			на	
			практических	
			занятиях.	

4.4. Методические указания по организации самостоятельной работы студентов

Для закрепления материала, рассмотренного на лекциях и практических занятиях, студентам предлагаются задачи по изучаемым разделам и график их выполнения. Оценка самостоятельной работы студентов проводится в виде проверки домашней работы и устного зачета.

4.5. Примерная тематика курсовых работ

Написание курсовых работ или проектов не предусмотрена учебным планом.

V. Учебно-методическое и информационное обеспечение дисциплины

а) список литературы

основная литература

- 1. Письменный Д.Т. Конспект лекций по высшей математике [Текст] : в 2 ч. / Д. Т. Письменный. 16-е изд. М. : Айрис-пресс, 2018 . 24 см. ISBN 978-5-8112-4000-5. Ч. 1. 2018. 280 с. ISBN 978-5-8112-6617-3 (15 экз)
- 2. Письменный Д.Т. Конспект лекций по высшей математике [Текст] : в 2 ч. / Д. Т. Письменный. 12-е изд. М. : Айрис-пресс, 2017 . 24 см. ISBN 978-5-8112-4000-5. Ч. 2. 2017. 252 с. ISBN 978-5-8112-6044-7 (15 экз)
- 3. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления [Текст] : учеб.для студ. физ. и механико-математич. спец. вузов: В 3 т. / Г. М. Фихтенгольц. 8-е изд. М. : Физматлит, 2006 . Т.1. 679 с. : граф. Алф. указ.: с. 671-679. ISBN 5-9221-0436-5 :

185.00 р. (97 экз)

- 4. Фихтенгольц, Г.М. Основы математического анализа. В 2-х тт. Том 1 [Электронный ресурс]: учебник. Электрон. дан. СПб.: Лань, 2015. 441 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=65055. Неограниченный доступ.
- 5. Евграфов, М.А. Аналитические функции [Электронный ресурс] / М. А. Евграфов. Москва : Лань, 2008. 447 с. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-0809-2
- 6. Краснов, М. Л. Функции комплексного переменного: задачи и примеры с подробными решениями: учеб. пособие для студ. втузов / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. 4- е изд., испр. М.: КомКнига, 2006. 205 с. ISBN 5-484-00462-4 (96 экз.)
- 7. Эльсгольц Л.Э Дифференциальные уравнения / Л.Э Эльсгольц. 8-е изд. М. : Издво ЛКИ, 2014. 309 с. ISBN 978-5-382-01491-3 (50 экз.)
- 8. Дифференциальные и интегральные уравнени, вариационное исчисление в примерах и задачах : учеб. пособие / А.Б. Васильева [и др.]. 3-е изд., испр. Спб. : Лань, 2010. 429 с. ISBN 978-5-8114-0988-4 (50 экз.)
- 9. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям / А.Ф. Филиппов. 5-е изд. М.: Либроком, 2013. 237 с. ISBN 978-5-397-03637-5 (40 экз)

дополнительная литература

- 1. Демидович Б.П. Сборник задач и упражнений по математическому анализу / Б.П. Демидович. 14-е изд.,испр. М.: Изд-во МГУ, 1998. 624 с. (51)
- 2. Основы математического анализа [Текст]: учеб.для студ.физ.спец.и спец."Прикл.математика":в 2-х ч. / В.А.Ильин, Э.Г.Позняк. М. : Физматлит. Ч.1. 2001. 648 с. (9)
- 3. Основы математического анализа [Текст]: учеб.для студ.физ.спец.и спец."Прикл.математика":в 2-х ч. / В.А.Ильин, Э.Г.Позняк. М. : Физматлит. Ч.2. 2001. 464 с. (9)
- 4. Основы математического анализа [Текст]: учеб.для студ.физ.спец.и спец."Прикл.математика":в 2-х ч. / В.А.Ильин, Э.Г.Позняк. М. : Физматлит. Ч.1. 2001. 648 с. (9)
- 5. Основы математического анализа [Текст]: учеб.для студ.физ.спец.и спец."Прикл.математика":в 2-х ч. / В.А.Ильин, Э.Г.Позняк. М. : Физматлит. Ч.2. 2001. 464 с. (9)
- 6. Лаврентьев, М. А. Методы теории функций комплексного переменного / М.А. Лаврентьев, Б.В. Шабат. 6-е изд., стер. М. : Лань, 2002. 688 с. ISBN 5-9511-0014-3 (2 экз.)
- 7. Сидоров, Ю. В. Лекции по теории функций комплексного переменного / Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин. 2-е изд., перераб. и доп. М. : Наука, 1982. 488 с (3)
- 8. Свешников, А. Г. Теория функций комплексной переменной / А. Г. Свешников, А. Н. Тихонов. 4-е изд., стер. М. : Наука, 1979. -319 с. (5)
- 9. Филиппов А.Ф. Введение в теорию дифференциальных уравнений / А.Ф. Филиппов. 2-е изд., испр. М. : КомКнига, 2007. 239 с. ISBN 5-484-00786-0. ISBN 978-5-484-0786-8 (нф А597203)

б) периодические издания

- нет.

в) список авторских методических разработок

- нет

г) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

- https://isu.bibliotech.ru/ ЭЧЗ «БиблиоТех»;
- http://e.lanbook.com ЭБС «Издательство «Лань»;
- http://rucont.ru ЭБС «Руконт» межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;
 - http://ibooks.ru/ ЭБС «Айбукс»- интернет ресурсы в свободном доступе.

VI. Материально-техническое обеспечение дисциплины

Для проведения занятий лекционного типа в качестве демонстрационного оборудования используется меловая доска, проектор, ноутбук. Наглядность обеспечивается путем изображения схем, диаграмм и формул с помощью мела. Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

Материалы: учебно-методические пособия, контрольные задания для аудиторной и самостоятельной работы студентов.

VII. Образовательные технологии

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

- ◆ лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;
- ◆ практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;
 - ◆ консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- ◆ текущий контроль за деятельностью студентов осуществляется на лекционных и практических занятиях в ходе самостоятельного решения задач, в том числе у доски.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

8.1. Оценочные средства для входного контроля (контрольная работа).

1) Решить уравнение:
$$\left\| \frac{4a - 9a^{-1}}{2a^{1/2} - 3a^{-1/2}} + \frac{a - 4 + 3a^{-1}}{a^{1/2} - a^{-1/2}} \right\|^2 = 1$$

2) Доказать тождество:
$$\frac{\sin 2\alpha}{1 + \cos 2\alpha} = tg \alpha$$

3) Решить неравенство:
$$|2x + 3| \le 4x$$

4) Построить график функции:
$$y = \frac{x}{x-1}$$

5) Решить уравнение:
$$\sin 3x - 7 \sin x = 0$$

6) Построить график функции:
$$y = 2 - \sqrt{|1 - x|}$$

$$[x(x+y+z)=7]$$
7) Решить систему уравнений: $[y(x+y+z)=14]$
 $[z(x+y+z)=28]$

8.2. Оценочные средства текущего контроля

Материалы для проведения текущего и промежуточного контроля знаний студентов:

$N_{\underline{0}}$	Вид контроля Контролируемые темы (разделы)		Компетенции,
			компоненты которых
			контролируются
1	Контрольная работа	1-6 (1 семестр)	ОПК-3
2	Контрольная работа	1-3 (2 семестр)	ОПК-3

Демонстрационный вариант контрольной работы:

Вариант 1

- 1. Запишите формулу вычисления поверхностного интеграла II рода. В чем его смысл? (0.1 балла)
- 2. Записать интеграл $\iint_{C} f(x; y) dx dy$ в виде повторных

интегралов с различным порядком интегрирования, если область G задана неравенством $x^2+y^2 \le 2ax$ (0.2 балла)

3. Вычислить интеграл $\iint \sin \pi (x-y) dx dy$, если G -

треугольник с вершинами (-4; 1); (-1;-0.5) и (3.5; 8.5)(0.2 балла)

Вопросы к экзамену

1 семестр

1. Элементарные функции, их графики.

- 2. Четность, нечетность, периодичность функции.
- 3. Предел последовательности и функции. Свойства пределов. I и II замечательные пределы.
- 4. Бесконечно малые и бесконечно большие. Сравнение бесконечно малых. Таблица эквивалентных функций.
- 5. Непрерывность и виды разрывов функции. Свойства непрерывных функций.
- 6. Производная, ее геометрический и механический смысл. Производная произведения, частного и сложной функции.
- 7. Логарифмическое дифференцирование. Дифференцирование функций, заданных параметрически. Формула Лейбница.
- 8. Дифференциал, его применение к приближенным вычислениям. Теоремы о среднем (Ролля, Лагранжа, Коши). Правило Лопиталя.
- 9. Вывод формул для нахождения производных.
- 10. Исследование функций: асимптоты, монотонность, экстремум. Выпуклость, точки перегиба. Общая схема исследования функций.
- 11. Свойства неопределенного интеграла, интегрирование подстановкой и по частям.
- 12. Интегрирование простейших дробей.
- 13. Интегрирование рациональных дробей.
- 14. Интегрирование тригонометрических функций.
- 15. Интегрирование алгебраических иррациональностей.
- 16. Понятие определенного интеграла, его свойства.
- 17. Вычисление площади криволинейной трапеции и длины дуги с помощью определенного интеграла.
- 18. Вычисление объема и площади поверхности вращения с помощью определенного интеграла.
- 19. Несобственные интегралы, теоремы сравнения.
- 20. Предел и непрерывность функции двух переменных.
- 21. Полный дифференциал функции многих переменных.
- 22. Приближенные вычисления с помощью полного дифференциала.
- 23. Частные производные высших порядков.
- 24. Касательная плоскость и нормаль к поверхности
- 25. Дифференцирование сложных и неявных функций многих переменных.
- 26. Экстремум в точке и в области.
- 27. Определение двойного интеграла, его свойства и методы вычисления.
- 28. Определение тройного интеграла, его свойства и методы вычисления.
- 29. Двойной интеграл в полярной системе координат. Якобиан преобразования.
- 30. Цилиндрические и сферические координаты. Тройной интеграл в цилиндрических и сферических координатах.
- 31. Приложения кратных интегралов.
- 32. Определение криволинейного интеграла 1-го рода. Свойства и методы вычисления криволинейного интеграла 1-го рода.
- 33. Определение криволинейного интеграла 2-го рода. Свойства и методы вычисления.
- 34. Приложения криволинейных интегралов.
- 35. Формула Остроградского-Грина. Независимость криволинейного интеграла 2-го рода от пути интегрирования.
- 36. Определение поверхностных интегралов 1-го рода, свойства и методы вычисления.
- 37. Определение поверхностных интегралов 2-го рода, свойства и методы вычисления.
- 38. Теорема Остроградского Гаусса.
- 39. Теорема Стокса.

Пример экзаменационного билета

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №19

по дисциплине "Математический анализ", 1 курс 1 семестр

- 1. Определение функции одной и нескольких переменных. Область определения функции. Способы задания функции: аналитический (явный, параметрический, неявный), графический, табличный.
- 2. Точка локального экстремума. Формула конечных приращений Лагранжа (доказательство).
- 3. Интегрирование простейших рациональных дробей. Разложение рациональной дроби на простейшие (без доказательства). Интегрирование рациональных дробей.

2 семестр

- 1. Скалярное поле. Поверхности и линии уровня.
- 2. Производная по направлению. Градиент скалярного поля, его свойства. Связь производной по направлению и градиента.
- 3. Понятие векторного поля. Векторные линии.
- 4. Поток поля. Дивергенция, ее свойства.
- 5. Формула Остроградского-Гаусса в векторной форме.
- 6. Ротор векторного поля. Циркуляция, ее свойства. Формула Стокса в векторной форме.
- 7. Оператор Гамильтона. Векторные операции 1 и 2 порядка.
- 8. Основные классы векторных полей: соленоидальное, потенциальное, гармоническое.
- 9. Понятие дифференциального уравнения первого порядка. Общее решение дифференциального уравнения первого порядка.
- 10. Задача Коши для дифференциального уравнения первого порядка
- 11. Геометрический смысл дифференциального уравнения первого порядка. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- 12. Однородные дифференциальные уравнения первого порядка.
- 13. Линейные дифференциальные уравнения первого порядка, формула Бернулли.
- 14. Уравнение Бернулли и его решение.
- 15. Дифференциальные уравнения 2-го порядка, допускающие понижение порядка.
- 16. Линейные дифференциальные уравнения высших порядков. Общие понятия. Задача Коши.
- 17. Линейные однородные дифференциальные уравнения и свойства их решений.
- 18. Линейная независимость функций. Определитель Вронского. Условие линейной независимости решений линейного однородного дифференциального уравнения.
- 19. Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- 20. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение.
- 21. Определение фундаментальной системы решений в зависимости от типа корней характеристического уравнения.
- 22. Метод вариации (Лагранжа) произвольных постоянных.
- 23. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами со специальной правой частью, метод подбора частного решения.
- 24. Системы линейных дифференциальных уравнений с постоянными коэффициентами, методы их решений.
- 25. Определение числового ряда. Определение частичной суммы ряда.
- 26. Определение сходящегося числового ряда. Критерий Коши.
- 27. Необходимый признак сходимости ряда. Гармонический, геометрический ряд.
- 28. Признак сравнения. Предельная форма признака сравнения.
- 29. Признак Даламбера. Радикальный признак Коши. Интегральный признак Коши.
- 30. Понятие знакопеременных и знакочередующихся рядов.
- 31. Теорема Лейбница. Абсолютная и условная сходимость знакочередующихся рядов.
- 32. Функциональный ряд. Равномерная сходимость. Критерий Вейерштрасса. Построение мажорирующего ряда.

- 33. Степенной ряд. Теорема Абеля. Область сходимости степенного ряда. Правило нахождения радиуса сходимости.
- 34. Ряд Тейлора, Маклорена. Разложения основных элементарных функций.
- 35. Применение степенных рядов к решению дифференциальных уравнений, к вычислению интегралов.
- 36. Тригонометрический ряд Фурье. Нахождение коэффициентов ряда с периодом 2π и с произвольным периодом.
- 37. Теорема Дирихле.

Пример экзаменационного билета

- 1. Дать определение потока векторного поля, пояснить его физический смысл.
- 2. Линейная независимость решений ЛОДУ, определитель Вронского.
- 3. Необходимый признак сходимости числовых рядов.

Разработчики:

доцент кафедры теоретической физики Синицкая А.В.

Программа составлена в соответствии с требованиями ФГОС ВО и учитывает рекомендации ПООП по направлению и профилю подготовки **10.03.01 Информационная безопасность**.

Программа рассмотрена на заседании кафедры радиофизики и радиоэлектроники «20» 03 2020 г. Протокол № 8

И.о.зав. кафедрой

Колесник С.Н.

Настоящая программа, не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.