

# Министерство науки и высшего образования Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

# «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра полезных ископаемых

кан геологического факультей П. Примина

## Рабочая программа дисциплины

# Б1.Б.07 Кристаллография

Специальность: 21.05.02 «Прикладная геология»

Специализации: «Геология нефти и газа»; «Геологическая съемка, поиски и разведка

твердых полезных ископаемых»

Квалификация выпускника – горный инженер-геолог

Формы обучения: очная, заочная

Согласовано с УМК геологического факультета

Протокол №6 от «23»

А.Ф. Летникова Председатель

от «26\_»\_

Зав. кафедрой

Протокол №

ископаемых

доцент С.А. Сасим

Рекомендовано кафедрой полезных

Иркутск 2020 г.

# Содержание

|     |                                                                |    | стр. |
|-----|----------------------------------------------------------------|----|------|
|     |                                                                |    |      |
| 1.  | Цели и задачи дисциплины                                       | 3  |      |
| 2.  | Место дисциплины в структуре ОПОП                              | 3  |      |
| 3.  | Требования к результатам освоения дисциплины                   | 4  |      |
| 4.  | Объем дисциплины и виды учебной работы                         | 5  |      |
| 5.  | Содержание дисциплины                                          | 6  |      |
|     | 5.1 Содержание разделов и тем дисциплины                       | 6  |      |
|     | 5.2 Разделы дисциплины и междисциплинарные                     |    |      |
|     | связи с последующими дисциплинами                              | 7  |      |
|     | 5.3 Разделы и темы дисциплины и виды занятий                   | 8  |      |
| 6.  | Перечень лабораторных занятий , методические указания          |    |      |
|     | по организации самостоятельной работы студентов                | 8  |      |
|     | 6.1 План самостоятельной работы студентов                      |    |      |
|     | 6.2 Методические указания по организации                       |    |      |
|     | самостоятельной работы студентов                               |    |      |
| 7.  | Учебно-методическое и информационное обеспечение дисциплины: 9 |    |      |
|     | а) основная литература;                                        | 9  |      |
|     | б) дополнительная литература;                                  |    | 9    |
|     | в) программное обеспечение;                                    | 10 |      |
|     | г) базы данных, поисково-справочные и информационные           |    |      |
|     | системы                                                        |    | 10   |
| 8.  | Материально-техническое обеспечение дисциплины                 | 11 |      |
| 9.  | Образовательные технологии                                     | 11 |      |
| 10. | Оценочные средства                                             | 12 |      |
|     | 10.1 Оценочные средства для входящего контроля                 | 12 |      |
|     | 10.2 Оценочные средства текущего контроля                      | 13 |      |
|     | 10.3 Оценочные средства для промежугочной аттестации           | 14 |      |

#### 1. Цели и задачи дисциплины

<u>Цель</u>: научить студентов анализировать связь свойств кристаллов (минералов) с их структурой и химическим составом, интерпретировать кристаллическую сущность минералов. Подготовить студентов к анализу данных полевых и лабораторных исследований кристаллического вещества, изучению специальных геологических дисциплин (минералогия, петрография, геохимия, литология, кристаллохимия, геохимические поиски месторождений полезных ископаемых).

Задачи курса: изучить проявления кристаллической сущности минералов и вытекающих из этого особенностей их физических и физико-химических свойств; обучить студентов навыкам практического анализа внешнего и внутреннего строения кристаллов; разбираться в симметрии и морфологии кристаллов; сформировать навыки по диагностике минералов, представления о главных процессах минералообразования; создать основу для правильной интерпретации результатов самостоятельной научной работы; обеспечить необходимую терминологическую базу для понимания специальной литературы.

# 2. Место дисциплины в структуре ОПОП

Дисциплина относится к дисциплинам базовой части профессионального цикла учебного плана по специальности 21.05.02 Прикладная геология.

Для освоения дисциплины «Кристаллография» студенты должны знать основы:

- Математики (геометрия)
- Химии (типы химической связи; периодическая система химических элементов; эффективные радиусы атомов и ионов)
- Физики (фазовые состояния вещества; оптика; плавление; растворение; кристаллизация).

Дисциплина формирует представления о кристаллическом состоянии вещества и является основой для изучения дисциплин «Минералогия», «Петрография», «Литология», «Геохимия», поэтому в учебном плане он представлен на 1 курсе в 1 семестре, перед изучением вышеперечисленных дисциплин.

#### 3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций: способностью к абстрактному мышлению, анализу, синтезу (ОК-1);

способностью организовывать свой труд, самостоятельно оценивать результаты своей деятельности, владением навыками самостоятельной работы, в том числе в сфере проведения научных исследований (ОПК-5);

В результате изучения дисциплины студент должен:

#### Знать:

закономерности взаимосвязи состава, структуры и свойств кристалла;

специальную терминологию дисциплины;

основные закономерности, характеризующие внешнее и внутреннее строение кристаллов, кристаллогенезис.

#### Уметь:

определить элементы симметрии кристалла и провести его классификацию;

установить кристалл в системе координат, вычислить кристаллографические символы единичной грани, назвать простую форму;

определить в комбинациях простые формы;

охарактеризовать внешние формы и внутреннее строение кристаллов.

#### Владеть:

приёмами описания различных кристаллических структур;

# 4. Объем дисциплины и виды учебной работы

Очная форма обучения

| Вид учебной работы                                    | Всего                         | Семестр |
|-------------------------------------------------------|-------------------------------|---------|
|                                                       | часов /<br>зачетных<br>единиц | 1       |
| Аудиторные занятия (всего)                            | 54                            | 54      |
| В том числе:                                          |                               |         |
| Лекции                                                |                               | 36      |
| Лабораторные работы (ЛР)                              |                               | 18      |
| Самостоятельная работа (всего)                        | 44                            | 44      |
| В том числе:                                          |                               |         |
| Реферат                                               |                               | 6       |
| Работа над вопросами для самоподготовки по дисциплине |                               | 35      |
| Подготовка доклада                                    |                               | 3       |
| КО                                                    |                               | 8       |
| Контактная работа                                     | 64                            |         |
| Вид промежуточной аттестации                          |                               | зачёт   |
| Общая трудоемкость,<br>часы                           | 108                           | 108     |
| зачетные единицы                                      | 3                             | 3       |

# Заочная форма обучения

| Вид учебной работы | Всего | Курс |
|--------------------|-------|------|
|--------------------|-------|------|

|                                                       | часов /<br>зачетных<br>единиц | 1     |
|-------------------------------------------------------|-------------------------------|-------|
| Аудиторные занятия (всего)                            | 16                            | 16    |
| В том числе:                                          |                               |       |
| Лекции                                                |                               | 10    |
| Практические занятия (ПЗ)                             |                               | 6     |
| Самостоятельная работа (всего)                        | 88                            | 88    |
| В том числе:                                          |                               |       |
| Реферат                                               |                               | 8     |
| Работа над вопросами для самоподготовки по дисциплине |                               | 62    |
| Подготовка доклада                                    |                               | 6     |
| КО                                                    |                               | 3     |
| Вид промежуточной аттестации                          |                               | зачёт |
| Контактная работа (всего)                             |                               | 19    |
| Общая трудоемкость,<br>часы                           | 108                           | 108   |
| зачетные единицы                                      | 3                             | 3     |

#### 5. Содержание дисциплины

## 5.1. Содержание разделов и тем дисциплины

# **ТЕМА 1. ВВЕДЕНИЕ. ОСНОВНЫЕ СВОЙСТВА КРИСТАЛЛОВ**

Предмет и задачи кристаллографии, её место среди других естественных наук, связь с ними. Основные этапы становления и развития науки о кристаллах. Роль кристаллографии при исследованиях минералов и геологических процессов.

Агрегатные состояния вещества. Понятие о ближнем и дальнем порядке в твёрдом теле. Кристалл и кристаллическое вещество. Общие свойства кристаллов: однородность, анизотропия, симметричность, способность самоограняться. Поликристаллы и монокристаллы. Векторные и скалярные свойства кристаллов. Распространенность кристаллов в природе.

# **ТЕМА 2. КРИСТАЛЛОГЕНЕЗИС**

Причины и условия образования кристаллов. Процессы зарождения, роста и разрушения кристаллов в газовой, жидкой и твёрдой фазах. Быстрорастущие и медленнорастущие грани. Правило «естественного отбора» при росте граней. РВС-цепочки, их виды. Понятие о стабильном, равновесном, метастабильном состоянии кристаллов и кристаллообразующей среды. Гомогенные и гетерогенные процессы зарождения кристаллов. Факторы, влияющие на самопроизвольное зарождение кристаллов в природе. Метасоматоз.

# ТЕМА 3. КРИСТАЛЛОМОРФОЛОГИЯ

Кристалл, его грани, ребра и вершины. Морфология. Гониометрия. Связь внешней формы и внутреннего строения кристаллов. Форма кристаллов. Закон постоянства

двугранных углов. Простые и комбинационные формы граней, ребер и вершин. Внешние формы и анатомия кристаллов. Скелетные формы кристаллов. Кристаллические двойники.

#### ТЕМА 4. ОПИСАНИЕ СИММЕТРИИ КРИСТАЛЛОВ

Элементы симметрии кристаллов: центр, плоскости и оси (поворотные и инверсионные) симметрии. Виды симметрии, сингонии, категории и их классификация. 32 кристаллографические группы. Формула симметрии кристалла, Правила составления формулы симметрии. Символика Шенфлиса, международная символика, символика формулы симметрии. Пространственные группы симметрии. Обозначение пространственных групп симметрии.

# ТЕМА 5. СИМВОЛЫ ГРАНЕЙ И РЁБЕР КРИСТАЛЛОВ

Понятие «символ грани кристалла». Способы определения символов граней кристаллов. Четвертый индекс в символах граней кристаллов гексагональной сингонии. Параметры граней. Закон Гаюи — закон рациональных параметров. Единичная грань. Символы рёбер кристаллов, их определение.

#### ТЕМА 6. ПРОСТЫЕ ФОРМЫ КРИСТАЛЛОВ

Понятие "простая форма кристаллов". Общая и частные простые формы кристаллов различных классов. Полиэдр как совокупность простых форм. Открытые и закрытые простые формы. Простые формы низших, средних и высшей сингоний.

# ТЕМА 7. ОПИСАНИЕ ВНУТРЕННЕГО СТРОЕНИЯ КРИСТАЛЛОВ

кристаллов. Структурные единицы. Структура Координационные координационные многогранники. Число формульных единиц. Геометрические пределы устойчивости ионных структур Структурные мотивы: координационный, островной, цепочечный, слоистый и каркасный. Пространственная кристаллическая решетка и её элементы: узлы, ряды, плоские сетки и элементарные ячейки. Угловые и линейные параметры кристаллических решеток. Типы кристаллических решеток Бравэ. Теория плотнейших упаковок и её использование при описании структур минералов. Гексагональная упаковка. Кубическая плотнейшая упаковка. Плотность упаковки кристаллической структуры.

# ТЕМА 8. ТИПЫ ХИМИЧЕСКИХ СВЯЗЕЙ В КРИСТАЛЛАХ

Типы химической связи в кристаллах. Кристаллохимические радиусы. Гомодесмические и гетеродесмические структуры. Связь состава минерала с кристаллической структурой.

# <u>ТЕМА 9.</u> КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ СТРУКТУРЫ МИНЕРАЛОВ

Полиморфизм. Особенности полиморфных переходов. Полиморфные модификации. Политипизм. Изоморфизм. Виды и типы изоморфизма, условия его проявления. Практическое значение изоморфизма. Морфотропия. Закономерности морфотропии и их кристаллохимическая природа. Особенности структуры силикатов. Определение типа и формулы кремнекислородного мотива в структурах силикатов. Модификации SiO<sub>2</sub>. Классификация силикатов по их кремнекислородным мотивам. Энергия кристаллической решётки минерала – как характеристика его устойчивости.

# 5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

| No  | Наименование обеспечиваемых (последую- | № № |   |   |   |   | еобход<br>ующих) |   | ля изуч<br>плин | нения |
|-----|----------------------------------------|-----|---|---|---|---|------------------|---|-----------------|-------|
| п/п | щих) дисциплин                         | 1   | 2 | 3 | 4 | 5 | 6                | 7 | 8               | 9     |
| 1.  | Минералогия                            | X   | X | X | X | X | X                | X | X               | X     |
| 2.  | Петрография                            | X   |   |   |   | X |                  | X | X               | X     |
| 3.  | Литология                              | X   |   |   |   | X |                  |   | X               |       |

|  | 4. | Геохимия | X | X |  |  |  |  | X | X | X |
|--|----|----------|---|---|--|--|--|--|---|---|---|
|--|----|----------|---|---|--|--|--|--|---|---|---|

# **5.3. Темы дисциплины** и виды занятий

| <b>№</b><br>п/п | Наименование темы дисциплины                        | Лекции | Лаб.<br>занятия | CPC | Всего |
|-----------------|-----------------------------------------------------|--------|-----------------|-----|-------|
| 1.              | Введение. Основные свойства кристаллов              | 2      | 2               | 3   | 7     |
| 2.              | Кристаллогенезис                                    |        | 4               | 6   | 10    |
| 3.              | Кристалломорфология                                 | 2      | 4               | 9   | 15    |
| 4.              | Описание симметрии кристаллов                       | 4      | 8               | 15  | 27    |
| 5.              | Символы граней и рёбер кристаллов                   | 2      | 2               | 3   | 7     |
| 6.              | Простые формы кристаллов                            | 2      | 2               | 4   | 8     |
| 7.              | Описание внутреннего строения кристаллов            | 2      | 6               | 18  | 26    |
| 8.              | Типы химических связей в кристаллах                 | 2      | 2               | 6   | 10    |
| 9.              | Кристаллохимические особенности структуры минералов | 2      | 8               | 24  | 34    |

# 6. Перечень лабораторных занятий

| <b>№</b><br>п/п | № темы<br>дисциплины | Наименование лабораторных работ                                                             | Трудоемкость<br>(часы) | Оценочные<br>средства* | Формируемые компетенции |
|-----------------|----------------------|---------------------------------------------------------------------------------------------|------------------------|------------------------|-------------------------|
| 1               | 2                    | 3                                                                                           | 4                      | 5                      | 6                       |
| 1.              | 1                    | Основные свойства кристаллического вещества «Кристаллографический симпозиум»                | 4                      | 3,4                    | ОК-1<br>ОПК-5,          |
| 2.              | 3                    | Определение симметрии<br>кристаллов                                                         | 6                      | 1,4                    | ОК-1<br>ОПК-5,          |
| 3.              | 4                    | Определение морфологических характеристик внешних форм кристаллов. Простые формы кристаллов | 6                      | 4                      | ОК-1<br>ОПК-5,          |
| 4.              | 1,2,3,4              | Промежуточная аттестация студентов: контрольная работа                                      | 2                      | 5                      | ОК-1<br>ОПК-5,          |
| 5.              | 5                    | Приёмы определения символов граней кристаллов                                               | 2                      | 1,4                    | ОК-1<br>ОПК-5,          |

| 6. | 6 | Изучение простых форм кристаллов                                                             | 4 | 1,4 | ОК-1<br>ОПК-5, |
|----|---|----------------------------------------------------------------------------------------------|---|-----|----------------|
| 7. | 7 | Плотнейшие упаковки. Число формульных единиц. Координационное число, координационный полиэдр | 6 | 4   | ОК-1<br>ОПК-5, |
| 8. | 8 | Пространственные кристаллические решетки и структуры. Определение типа решётки Браве         | 4 | 2,4 | ОК-1<br>ОПК-5, |
| 9. | 9 | Изоморфизм. Определение энергии кристаллической решётки кристаллов.                          | 4 | 1,4 | ОК-1<br>ОПК-5, |

<sup>\* 1-</sup>проверка задания; 2- заслушивание и обсуждение доклада, презентации; 3 — устный опрос в виде коллоквиума; 4 — письменный опрос по вопросам для самостоятельной работы студентов; 5 - контрольная работа.

#### 7. Учебно-методическое и информационное обеспечение дисциплины:

#### а) основная литература:

- 1. Кристаллография и кристаллохимия [Электронный ресурс] : учеб. для студ. вузов, обуч. по спец. "Геология" / Ю. К. Егоров-Тисменко. 2-е изд. ЭВК. М. : Университет, 2010. 589 с. Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
- 2. Решение кристаллографических задач с помощью стереографических проекций [Текст] : учеб. пособие / В. А. Буланов ; Иркутский гос. ун-т. Иркутск : Изд-во ИГУ, 2006. 176 с. : ил. ; 21 см. Библиогр.: с.149 . (40 экз.)

#### б) дополнительная литература

- 1. Структура, изоморфизм, формулы, классификация минералов [Текст] / А. Г. Булах ; Санкт- Петербург. гос. ун-т. СПб. : Изд-во СПбГУ, 2014. 132 с. ; 29 см. (Минералогия). Библиогр.: с. 128-130. (1 экз.)
- 2. Рост кристаллов в расплаве. Кристаллографический анализ и эксперимент / М. Д. Любалин. СПб. : Наука, 2008. 390 с. : ил. ; 21 см. Библиогр.: с. 378-390. (1 экз.)
- 3. Кристаллографическая геометрия [Текст] / Р. В. Галиулин; Отв. ред. Д. К. Фаддеев. 2-е изд., стер. М.: КомКнига, 2005. 136 с.: ил.; 22 см. Библиогр.: с. 131-135. (1 экз.)
- 4. Кристаллография, минералогия и геология камнесамоцветного сырья / В. А. Ермолов, В. А. Дунаев, В. В. Мосейкин; ред. В. А. Ермолаев; Московский гос. горный ун-т. 2009. 407 с. (1 экз.)
- 5. Кристаллография и кристаллохимия [Текст] : учебник / Ю. К. Егоров-Тисменко ; Московский гос. ун-т им. М. В. Ломоносова, Геолог. фак. 2-е изд. М. : Университет, 2010. 587 с. : ил. ; 20 см. Предм. указ.: с. 559-582. Библиогр.: с. 583-585. (1 экз.)
- 6. Основы кристаллографии [Текст] : учебник / Е. В. Чупрунов, А. Ф. Хохлов, М. А. Фаддеев. М. : Физматлит, 2006. 500 с. : ил. ; 21 см. Библиогр.: с. 499-500. (1 экз.)

#### в) программное обеспечение:

имеется необходимый комплект лицензионного программного обеспечения;

г) базы данных, информационно-справочные и поисковые системы:

- 1. American mineralogist crystal structure database (Американская минералогическая база данных кристаллических структур). http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html
- 2. Научная библиотека Российского государственного университета нефти и газа им. И.М. Губкина <a href="https://www.gybkin.ru">www.gybkin.ru</a>
- 3. Информационный ресурс «Минералы. Горные породы. Шлифы. <a href="http://petrographica.ru/minerals-list.html">http://petrographica.ru/minerals-list.html</a>
- 4. Научная библиотека МГУ www.lib.msm.su
- 5. Электронная библиотека Московского государственного университета экономики, статистики и информатики (МГУЭСиИ) <a href="www.ibc.mesi.ru">www.ibc.mesi.ru</a>
- 6. Библиотека Санкт-Петербургского университета www.unilib.neva.ru
- 7. Научно-техническая библиотека СибГТУ www.lib.sibstru.kts.ru
- 8. Российская Государственная библиотека www.rsl.ru
- 9. Государственная публичная научно-техническая библиотека www.gpntb.ru
- 10. Библиотека естественных наук PAH <u>www.ben.irex.ru</u>
- 11. Всероссийская государственная библиотека иностранной литературы <u>www.libfl.ru</u>
- 12. Библиотека Академии наук www.spb.org.ru/ban
- 13. Национальная электронная библиотека <a href="www.nel.ru">www.nel.ru</a>
- 14. Библиотека ВНИИОЭНГ www.vniioeng.mcn.ru
- 15. Всероссийский институт научной информации по техническим наукам (ВИНИТИ) <a href="https://www.fuji.viniti.msk.su">www.fuji.viniti.msk.su</a>
- 16. Российская национальная библиотека, г. Санкт-Петербург <a href="www.nlr.ru">www.nlr.ru</a>
- **17.** Smorf: crystal models (Визуализация и 3-D моделирование кристаллических многогранников и база данных 3-D комбинаций простых форм распространенных минералов) <a href="http://smorf.nl">http://smorf.nl</a>

#### 8. Материально-техническое обеспечение дисциплины:

Подобранные по разделам тестовые задания. Систематические кристалломорфологические коллекции и раздаточные коллекции моделей идеальных кристаллов. Образцы моно- и поликристаллов, выросших в природных условиях (учебный геологический музей факультета)

# 9. Образовательные технологии:

Занятия в интерактивной форме составляют 38 часов, т.е. не менее 30 % от общего количества аудиторных занятий обозначенных в  $\Phi\Gamma$ OC ВПО.

Программа дисциплины «Кристаллография» предусматривает лекционное изложение основных теоретических положений, лабораторные аудиторные занятия по подгруппам, а также самостоятельные занятия студентов с моделями кристаллов и пространственных кристаллических решеток с привлечением коллекционного материала из экспозиций учебного геологического музея факультета.

## 10. Оценочные средства (ОС):

# 10.1. Оценочные средства для входящего контроля

- 1. Какие агрегатные состояния вещества Вы знаете?
- 2. Поясните понятия «ближний порядок», «дальний порядок» в организации вещества?
- 3. Какой порядок взаимного расположения частиц существует в газах?
- 4. Какой порядок взаимного расположения частиц существует в жидкостях?
- 5. Какой порядок взаимного расположения частиц существует в твердом аморфном веществе?
- 6. Что общего в организации вещества между жидкостями и аморфными телами?
- 7.В чем заключается максимальная упорядоченность взаимного расположения частиц в кристаллах?
- 8. Что понимается под термином «кристаллическая решетка»?
- 9. Назовите элементы строения кристаллической решетки?.
- 10. Что такое «ретикулярная плотность» плоской сетки кристаллической решетки?
- 11. Перечислите особые свойства кристаллов, отличающие их от аморфных тел?
- 12.Поясните тезис: «Кристаллы однородны, но анизотропны»?
- 13. Что такое «анизотропия» и в чем она проявляется в кристаллах?
- 14. Что следует понимать под «однородностью внутреннего строения» в кристаллах?
- 15. Как связана огранка кристаллов с анизотропией их свойств?

#### 10.2. Оценочные средства текущего контроля

### Темы рефератов:

- 1. Скалярные и векторные свойства кристаллов.
- 2. Экспериментальные свидетельства существования кристаллической решётки
- 3. Кристаллогенезис возникновение, рост и разрушение кристаллов.
- 4. Современные методы выращивания кристаллов.
- 5. Симметрия физических свойств кристалла.
- 6. Реальные и идеальные кристаллы.
- 7. Кристаллография драгоценных камней.
- 8. Установка кристаллов по кристаллографическим осям для различных видов сингоний.
- 9. Стереографическая проекция кристаллов.
- 10. Гномостереографическая проекция и сетка Вульфа.
- 11. Принцип плотнейшей упаковки для кристаллов.
- 12. Простые формы кристаллов.
- 13. Виды симметрии триклинной и моноклинной сингоний. Примеры минералов.

- 14. Виды симметрии ромбической сингонии. Примеры минералов.
- 15. Кристаллографические проекции.
- 16. Виды симметрии тригональной сингонии. Примеры минералов.
- 17. Виды симметрии тетрагональной сингонии. Примеры минералов.
- 18. Виды симметрии гексагональной сингонии. Примеры минералов.
- 19. Виды симметрии кубической сингонии. Примеры минералов.
- 20. Индексы грани. Символ грани.
- 21. Полногранные (голоэдрические) и неполногранные кристаллографические формы
- 22. Природная огранка кристаллов.
- 23. Решётки Бравэ.
- 24. Основные черты строения силикатов.
- 25. Классификация силикатов.
- 26. Полиморфизм.
- 27. Изоморфизм.
- 28. Радиусы химических элементов в кристаллах с различными типами связи: ионной, ковалентной, металлической.

# Задания для самоподготовки студентов:

- 1. Понятие о кристалле и кристаллических веществах.
- 2. Основные свойства кристаллов.
- з. Рост кристаллов из газовой, жидкой и твёрдой фазы.
- 4. Симметрия кристаллов, виды симметрии, сингонии, категории.
- 5. Пространственная кристаллическая решетка, ее элементы и параметры.
- 6. Понятие о простых и комбинационных формах, принципы их названия.
- 7. Установка кристаллов. Правила выбора осей и единичной грани. Индексы и символы граней и простых форм.
- 8. Закон рациональности отношений параметров закон Гаюи
- 9. Правила установки кубических и тетрагональных кристаллов.
- 10. Правила установки тригональных и гексагональных кристаллов.
- 11. Правила установки кристаллов низшей категории.
- 12. Закон постоянства углов.
- 13. Типы плотнейших шаровых упаковок.
- 14. Пространственная кристаллическая решетка, ее элементы и параметры.
- 15. Основные типы кристаллических решеток и типы решеток Браве.
- 16. Изоморфизм, типы изоморфизма по степени совершенства и характеру замещения.
- 17. Полиморфизм и политипизм.

#### 10.3. Оценочные средства для промежуточной аттестации (в форме зачета)

- 1. К какому веку относят становление кристаллографии как науки?
- 2. Что является предметом изучения кристаллографии?
- 3. Дайте определение кристаллической структуре.
- 4. Следствием чего является внешняя форма кристалла?
- 5. Как называют кристаллы, имеющие размеры порядка 0,001-10 мкм, сцепленные друг с другом межмолекулярными силами?
- 6. Как называется совокупность граней, рёбер, вершин кристалла?
- 7. Как называется учение о внешней форме кристаллов?
- 8. К какому выводу пришёл датский учёный Н.Стенон, изучив кристаллы кварца?
- 9. Какой метод использовали и используют для получения информации о морфологии кристаллов?
- 10. Какие грани называют соответственными?
- 11. Назовите две наиболее важные характеристики внешней формы кристаллов.
- 12. Могут ли кристаллы одного и того же минерала иметь разный облик?

- 13. До какой степени точности выдерживается постоянство углов для данного кристаллического вещества при стабильных термодинамических условиях?
- 14. Какого значение закона постоянства углов?
- 15. В чём заключается «естественный отбор» происходящий в процессе роста граней кристалла?
- 16. Из какого закона вытекает существование трёхмерной периодичной кристаллической решётки?
- 17. Что из себя представляет единичная грань?
- 18. Согласны ли Вы с утверждением, что разные физические и химические свойства могут наблюдаться у кристаллов одинакового состава? Почему?
- 19. Как влияет на постоянство углов данного минерального вида отклонение от стехиометрии?
- 20. Можно ли отличить разные кристаллические вещества по углам между гранями, образуемых ими многогранников?
- 21. Какие быстрорастущие или медленнорастущие грани формируют в конечном итоге внешний облик кристалла?
- 22. Меняются ли физические и химические свойства кристалла при изменении его состава?
- 23. В каком направлении развиваются при росте кристалла важнейшие габитусные грани?
- 24. Что меняется при изменении структуры кристалла?
- 25. Какие величины в кристаллографии называют единичными параметрами?
- 26. Какой из приведённых ниже оксидов будет самым устойчивым, если энергии кристаллической решётки составляют:

| 1. | MgO | 3938 кДж/моль |
|----|-----|---------------|
| 2. | CaO | 3566 кДж/моль |
| 3. | SrO | 3369 кДж/моль |
| 4. | BaO | 3202 кДж/моль |

- 27. Какой катион в этих оксидах самый маленький по размеру?
- 28. Что такое сингония?
- 29. Что такое формула симметрии кристалла? По каким правилам её составляют?
- 30. Единственным элементом симметрии голубых кристаллов пентагидрата сульфата меди является центр инверсии. К какой кристаллографической системе и к какой категории они принадлежат?
- 31. Кристаллы сахарозы имеют ось 2-го порядка в качестве единственного элемента симметрии. К какой кристаллографической системе они принадлежат?
- 32. При внешнем изучении обнаружено, что кристаллы каменной соли имеют 3 оси 4-го порядка, 4 оси 3-го порядка, шесть осей 2-го порядка, 3 плоскости симметрии и центр инверсии. Напишите формулу симметрии для кристаллов хлорида натрия и определите к какой системе и к какому классу симметрии принадлежат такие кристаллы.
- 33. Какая из приведённых ниже формул симметрии принадлежит кубической сингонии:
  - 1. L<sub>6</sub>6L<sub>2</sub>7PC
  - 2. 3L<sub>2</sub>3PC
  - 3. 3L<sub>4</sub>4L<sub>3</sub>6P.

Почему?

- 34. В чём заключается отличие кристаллических веществ от аморфных?
- 35. Что такое икосаэдр?
- 36. По каким признакам кристалл относят к низшей, средней или высшей сингонии?
- 37. Сколько всего существует типов элементарных ячеек? Кто первым из исследователей их описал?
- 38. Какие существуют 4 типа центровки элементарных ячеек?
- 39. Сколько существует кристаллографических видов симметрии кристаллов?
- 40. Что такое простая форма?
- 41. Как выглядит моноэдр?

- 38. Какие существуют 4 типа центровки элементарных ячеек?
- 39. Сколько существует кристаллографических видов симметрии кристаллов?
- 40. Что такое простая форма?
- 41. Как выглядит моноэдр?
- 42. Как выглядит пинакоид?
- 43. Как выглядит диэдр осевой?
- 44. Сколько простых форм существует в низших сингониях?
- 45. Сколько простых форм существует в средних сингониях?
- 46. Сколько простых форм существует в кубической сингонии?
- 47. Какая особенность простых форм в кубической сингонии?
- 48. Сколько всего имеется различных простых форм кристаллов?
- 49. Каких 2 вида простых форм бывает?
- 50. Что представляют собой грани гексагональной пирамиды?
- 51. Охарактеризуйте отношения координатных осей и углов в кристаллах различных
- 52. Что означают символы граней: (100), (111), (110)? Изобразите их расположение на
- 53. Что такое пространственная решётка?
- 54. В чём разница между плотными упаковками гексагональной и кубической?
- 55. Каких пустот больше тетраэдрических или октаэдрических в кубической плотнейшей
- 56. Дайте определение понятию «плотность упаковки».
- 57. Между минералами магнезитом MgCO<sub>3</sub> и сидеритом FeCO<sub>3</sub> в природе имеются все промежуточные разновидности. Какие химические формулы отражают постепенный переход из магнезита в сидерит путём изоморфного замещения. Какова схема изоморфного замещения? Каков тип изоморфизма по валентности, числу атомов,
- 58. Какое условие должно выполняться для образования непрерывного ряда твёрдых
- 59. Оксид титана имеет 3 полиморфные модификации анатаз, брукит, рутил. Как Вы считаете, будут ли они отличаться друг от друга по температурам плавления и
- 60. Приведите примеры изоструктурных соединений.

**Разработчики** 

доцент А.Ф. Летникова

Программа рассмотрена на заседании кафедры полезных ископаемых (26) 03 2020 r.

Протокол № 6 Зав. кафедрой доцент

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.