

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Иркутский государственный университет» (ФГБОУ ВПО «ИГУ»)

Рабочая программа дисциплины

Индекс дисциплины по УП: Б1.В.ОД.2

Наименование дисциплины Основы математического моделирования

Направление подготовки научно-педагогических кадров в аспирантуре **39.06.01— Социологические науки**

Направленность программы подготовки кадров высшей квалификации (программы аспирантуры):

Социальная структура, социальные институты и процессы

Форма обучения очная, заочная

Согласовано с УМК ИМЭИ

протокол № 1 о¬ «22» сентября 2014 г.

Председатель УМК

Содержание

1. Цели и задачи дисциплины	3
2. Место дисциплины в структуре ООП	3
3. Требования к результатам освоения дисциплины	3
4. Объем дисциплины и виды учебной работы	4
5. Содержание дисциплины	5
5.1. Содержание разделов и тем дисциплины	5
5.2. Разделы, темы дисциплин и виды занятий	8
6. Примерная тематика курсовых работ (проектов)	9
7. Учебно-методическое и информационное обеспечение дисциплины	9
а) основная литература	9
б) дополнительная литература	9
в) программное обеспечение	9
г) базы данных, информационно-справочные и поисковые системы	9
8. Материально-техническое обеспечение дисциплины	9
9. Образовательные технологии	10
10. Фонд оценочных средств (ФОС)	10
10.1. Оценочные средства текущего контроля	10
10.2. Оценочные средства для промежуточной аттестации (в форме зачета)	12
5a461a/	

1. Цели и задачи дисциплины

Основной целью дисциплины является изучение принципов построения математических моделей при проведении научных исследований с использованием современных аналитических и вычислительных методов.

Основные задачи:

- изучение основных типов моделей и математических методов исследования систем различных классов;
- разработка моделей реальных систем различных классов с использованием современных методов исследования;
- обработка и анализ результатов моделирования реальных систем при помощи прикладного программного обеспечения.

2. Место дисциплины в структуре ООП

Дисциплина «Основы математического моделирования» входит в обязательные дисциплины вариативной части учебного плана, индекс Б1.В.ОД.2.

3. Требования к результатам освоения дисциплины

Изучение дисциплины направлено на формирование у аспирантов следующих универсальных компетенций:

- способность к критическому анализу и оценке современных научных достижений, генерирование новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность планировать и решать задачи собственного профессионального и личностного развития (УК-6).

Изучение дисциплины направлено на формирование у аспирантов следующих общепрофессиональных компетенций:

- способность определять, транслировать общие цели в профессиональной и социальной деятельности (ОПК-2);
- способность к самостоятельному обучению новым методам исследования и к их развитию, к совершенствованию информационных технологий при решении задач профессиональной деятельности (ОПК-3);
- способность самостоятельно проводить научные социологические исследования с использованием современных методов моделирования процессов, явлений и объектов, математических методов и инструментальных средств (ОПК-5);
- готовность к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-7).

Изучение дисциплины направлено на формирование у аспирантов следующих профессиональных компетенций:

• способность самостоятельно формулировать цели, ставить конкретные задачи научных исследований в различных областях социологии и решать их с помощью современных исследовательских методов с использованием новейшего отечественного и зарубежного опыта и с применением современной аппаратуры, оборудования, информационных технологий (ПК-2).

В результате изучения дисциплины аспиранты должны знать:

- основные типы моделей, задачи и методы моделирования систем различных классов;
 - принципы построения моделей;
- методы формализации, алгоритмизации и реализации моделей на персональных ЭВМ.

В результате изучения дисциплины аспиранты должны уметь:

- разрабатывать модели реальных систем;
- анализировать результаты и выявлять свойства и закономерности, присущие процессам, протекающим в системах;
- интерпретировать информацию представленную в виде схем, диаграмм, графов, графиков, таблиц с учетом предметной области;
- представлять информацию соответствующую области профессиональной деятельности в виде схем, диаграмм, графов, графиков, таблиц;
- осуществлять первичную статистическую обработку данных,
 реализовывать отдельные этапы метода математического моделирования;
 - уметь ставить и решать задачи оптимизации систем.

В результате изучения дисциплины аспиранты должны владеть:

- современными аналитическими, численными и имитационными методами исследования систем;
- методами оптимизации, направленными на решение задач обработки и анализа результатов эксперимента.

4. Объем дисциплины и виды учебной работы

Форма обучения – очная, заочная

	Всего	Семестры			
Вид учебной работы	часов очно / заоч				
Аудиторные занятия (всего)	36/164	36/16			
В том числе:					

Лекции		24/12	24/12		
Практические занятия (ПЗ)	Практические занятия (ПЗ)		12/4		
Семинары (С)					
Лабораторные работы (ЛР)					
Контроль самостоятельной работы					
Самостоятельная работа (всего)	36/56	36/56			
В том числе:					
Курсовой проект (работа)					
Расчетно-графические работы					
Реферат					
Другие виды самостоятельной работы					
Подготовка доклада					
Выполнение практического задания		36/56	36/56		
Вид промежуточной аттестации (зачет с оценкой)					
Общая трудоемкость	часы	72	72		
зачетнь	іе единицы	2	2		

5. Содержание дисциплины

5.1. Содержание разделов и тем дисциплины.

Тема 1. Классификация математических моделей.

Вопросы:

- 1.1. Основные этапы математического моделирования.
- 1.2. Понятие математической модели и ее свойства.
- 1.3. Классификация моделей.

Вопросы и задания самоконтроля:

- 1. Понятие модели.
- 2. Объекты, цели и методы моделирования.
- 3. Классификационные признаки моделей.
- 4. Классификация математических моделей в зависимости от сложности объекта моделирования; от оператора модели; от параметров модели; от целей моделирования; от методов реализации.

Тема 2. Математические модели экономических процессов.

Вопросы:

- 2.1. Математическая теория потребления.
- 2.2. Классические и неоклассические модели поведения фирмы.
- 2.3. Спрос и предложение. Модели рынка одного товара.
- 2.4. Модель межотраслевого баланса Леонтьева.
- 2.5. Транспортная задача.
- 2.6. Задача о коммивояжере.
- 2.7. Модель оптимального портфеля ценных бумаг.

Вопросы и задания самоконтроля:

- 1. Теория потребления.
- 2. Модели поведения фирмы.
- 3. Паутинообразная модель рынка.
- 4. Модель Леонтьева.
- 5. Математическая модель транспортной задачи.
- 6. Математическая модель задачи о выпуске продукции.
- 7. Математическая модель задачи о портфеле ценных бумаг.
- 8. Случайные процессы и их классификация.
- 9. Математическая модель задачи о назначениях.
- 10. Предмет, задача и основные понятия математического программирования.
- 11. Классификация задач математического программирования.
- 12. Задача линейного программирования и ее общая форма.
- 13. Приведение задачи линейного программирования к канонической форме.
- 14. Геометрическая интерпретация задачи линейного программирования.
- 15. Возможные множества решений задачи линейного программирования.
- 16. Общая характеристика симплекс метода.
- 17. Заполнение начальной симплекс таблицы.
- 18. Критерий оптимальности плана задачи линейного программирования.
- 19. Метод построения нового плана в рамках симплекс метода.
- 20. Вспомогательная задача.
- 21. Модель транспортной задачи в форме таблицы.
- 22. Балансировка транспортной задачи.
- 23. Метод северо-западного угла.
- 24. Общая характеристика метода потенциалов.
- 25. Проверка плана транспортной задачи на оптимальность.
- 26. Построение нового плана в методе потенциалов.
- 27. Предмет, область применения и основные понятия теории графов.
- 28. Предмет и область применения системы сетевого планирования и управления.
- 29. Сетевой график и его элементы.

- 30. Параметры событий и работ.
- 31. Методика расчета параметров сетевого графика.
- 32. Критический путь и его содержательный смысл.
- 33. Постановка задачи о кратчайшем маршруте.
- 34. Метод решения задачи о кратчайшем маршруте.
- 35. Постановка задачи о максимальном потоке.
- 36. Разрез и его пропускная способность.
- 37. Теорема Форда Фалкерсона.
- 38. Методология метода ветвей и границ.
- 39. Постановка задачи коммивояжера.
- 40. Алгоритм приведения матрицы расходов в задаче коммивояжера.
- 41. Алгоритм деления множества маршрутов на части.

Тема 3. Моделирование динамических процессов.

Вопросы:

- 4.1. Понятие динамической модели. Основные методы исследования.
- 4.2. Математические модели популяций.

Вопросы и задания самоконтроля:

- 1. Процессы размножения и гибели популяций.
- 2. Модели биологических систем.
- 3. Модели роста колонии микроорганизмов.

Тема 4. Вычисления в MS Excel.

Вопросы:

- 4.1. Введение в систему MS Excel.
- 4.2. Вычислительное ядро системы.

Вопросы и задания самоконтроля:

- 1. Структура системы MS Excel.
- 2. Встроенные функции MS Excel.
- 3. Элементы программирования.

Тема 5. Моделирование систем.

Вопросы:

- 5.1. Разработка численного алгоритма в модели поведения потребителя.
- 5.2. Разработка численного алгоритма нахождения точки рыночного равновесия в паутинообразной модели рынка.

Вопросы и задания самоконтроля:

- 1. Основные этапы разработки численного алгоритма.
- 2. Виды погрешностей.

5.2. Разделы, темы дисциплин (модулей) и виды занятий

Наименование темы		Виды занятий в часах очно/ заочно			
	Лекц ии	Практ. зан.	СРС	Всего	
 Тема 1. Классификация математических моделей. 1.1. Основные этапы математического моделирования. 1.2. Понятие математической модели и ее свойства. 1.3. Классификация моделей. 	2/2	1/1	4/4	7/7	
 Тема 2. Математические модели экономических процессов. 2.1. Математическая теория потребления. 2.2. Классические и неоклассические модели поведения фирмы. 2.3. Спрос и предложение. Модели рынка одного товара. 2.4. Модель межотраслевого баланса Леонтьева. 2.5. Транспортная задача. 2.6. Задача о коммивояжере. 2.7. Модель оптимального портфеля ценных бумаг. 	10/4	5/1	10/14	25/19	
 Тема 3. Моделирование динамических процессов. 3.1. Понятие динамической модели. Основные методы исследования. 3.2. Математические модели популяций. 	4/2	2/1	6/10	12/13	
Тема 4. Вычисления в MS Excel. 4.1. Встроенные функции. 4.2. Элементы программирования.		2/1	6/10	12/13	
 Тема 5. Моделирование систем. 5.1. Разработка алгоритма в модели поведения потребителя. 5.2. Разработка алгоритма нахождения точки рыночного равновесия в паутинообразной модели рынка. 		2/0	4/8	10/10	

Итого	24/12	12/4	36/56	72
Зачет.			6/10	6/10

6. Примерная тематика курсовых работ - не предусмотрено

7. Учебно-методическое и информационное обеспечение дисциплины

- а) основная литература:
- 1. Голубева Н.В. Математическое моделирование систем и процессов [Электронный ресурс] / Н.В.Голубева. Москва: Лань, 2013. (ЭБС «Лань», неограниченный доступ)
- б) дополнительная литература:
- 1. Математическое моделирование [Электронный ресурс]: метод. указания к лаб. И контр. Работам по курсу «Математическое моделирование». ЭВК. Иркутск: [б. и.], 2013. Режим доступа: ЭЧЗ «Библиотех». Неогранич. доступ.
- 2. Бурмистрова Н.А. Математическое моделирование экономических процессов как средство формирования профессиональной компетентности будущих специалистов финансовой сферы при обучении математике / Н.А. Бурмистрова. М.: Логос, 2010. 227 с.
- в) программное обеспечение:

MS Excel, PowerPoint

г) базы данных, информационно-справочные и поисковые системы:

http://buratino.isu.ru – электронный образовательный портал ИГУ.

http://ellib.library.isu.ru – электронная библиотека ИГУ.

http://e.lanbook.com – электронная библиотека (ЭБС ИГУ).

https://isu.bibliotech.ru – электронная библиотека (ЭБС ИГУ).

http://elibrary.ru/ – российский информационный портал в области науки, технологии, медицины и образования, содержащий рефераты и полные тексты более 14 млн научных статей и публикаций.

http://www.edu.ru/ – федеральный образовательный портал.

http://www.exponenta.ru - образовательный математический сайт.

http://www.math.ru/ – математический портал. Бесплатная электронная

библиотека.

8. Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение включает в себя: компьютерный класс общего пользования с подключением к Интернет; учебные классы, оснащенные современной аудио- и видеотехникой; компьютерные мультимедийные проекторы; компьютерную систему.

9. Образовательные технологии

Дисциплина предполагает использование практических занятий с электронной презентацией материалов, выполнение заданий на персональном компьютере, работу в Интернет.

10. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации (ФОС)

10.1. Оценочные средства текущего контроля

Основными оценочными средствами для текущего контроля являются выступления аспирантов с докладом.

При оценке достигнутых уровней по докладу применяются следующие критерии:

Уровни	Показатели
пороговый	В докладе соблюдается культура речи. Доклад в основном
	правильный, но схематичный, обнаруживающий лишь
	умение поверхностно и с отклонениями от
	последовательности изложения раскрыть материал; научно-
	теоретический уровень доклада не достаточен; нет
	обобщений и выводов в полном объеме, имеются
	существенные ошибки в формулировке определений.
базовый	В докладе соблюдается культура речи. Присутствует
	хорошее знание и понимание материала, умение излагать
	свои мысли последовательно и грамотно. Может быть
	недостаточно полно развернута аргументация, возможны
	отдельные затруднения в формулировке выводов,
	иллюстративный материал может быть представлен
	недостаточно, приводимые примеры не точные, отдельные
	ошибки в формулировке понятий
повышенный	В докладе соблюдается культура речи. Доклад
	исчерпывающий, точный, проявлено умение пользоваться
	материалом текстов по предмету для аргументации и
	самостоятельных выводов, свободное владение
	соответствующей терминологией, навыками анализа,
	умение излагать свои мысли последовательно с
	необходимыми обобщениями и выводами, используя
	термины.

Список примерных тем докладов

1. Модели окружающего мира.

- 2. Физические модели.
- 3. Социальные модели.
- 4. Исторические модели.
- 5. Экономические модели.
- 6. Дискретные математические модели.
- 7. Непрерывные математические модели.
- 8. Вероятностные модели.
- 9. Случайные процессы в природе.
- 10. Марковские процессы и их приложения.
- 11. Алгоритмы и их реализации.
- 12. Сложность алгоритмов.
- 13. Вычислительные устройства.
- 14. Реализация математических моделей на вычислительных устройствах.
- 15. Вычислительные эксперименты и их интерпретации.
- 16. Критерии точности моделей.
- 17. Компьютеры и точность вычислений.
- 18. Модели теории графов.
- 19. Транспортная задача и ее математические модели.
- 20. Задача о нахождении кратчайшего маршрута.
- 21. Задача коммивояжера.
- 22. Математические модели развития популяций.
- 23. Генетические алгоритмы.
- 24. Эволюционные модели вычислений.
- 25. Метод ветвей и границ.

Критерии
 содержание ответа соответствует поставленному вопросу раскрываются наиболее значимые факты,
научные положения, • соблюдается логическую последовательность в
изложении материаласодержание ответа соответствует поставленному
вопросу
• раскрываются наиболее значимые факты, научные положения,
• соблюдается логическую последовательность в изложении материала

Шкала оценивания: 0 баллов – полное отсутствие критерия; 1 балл – частичное выполнение критерия; 2 балла – полное выполнение критерия *Оценка* проставляется по количеству набранных баллов:

60-75% от максимально возможного количества баллов - удовлетворительно,

76-85% от максимально возможного количества баллов - хорошо,

10.2. Оценочные средства для промежуточной аттестации (в форме зачета)

Зачет проводится в форме собеседования, в ходе которого аспиранты отвечают на вопросы.

Список вопросов к зачету

- 1. Понятие модели, свойства модели.
- 2. Классификация моделей.
- 3. Математическая модель.
- 4. Основные этапы математического моделирования.
- 5. Математическая модель транспортной задачи.
- 6. Математическая модель задачи о выпуске продукции.
- 7. Математическая модель задачи о ранце.
- 8. Случайные процессы и их классификация.
- 9. Математическая модель задачи о назначениях.
- 10. Предмет, задача и основные понятия математического программирования.
- 11. Классификация задач математического программирования.
- 12. Задача линейного программирования и ее общая форма.
- 13. Приведение задачи линейного программирования к канонической форме.
- 14. Геометрическая интерпретация задачи линейного программирования.
- 15. Возможные множества решений задачи линейного программирования.
- 16. Общая характеристика симплекс метода.
- 17. Заполнение начальной симплекс таблицы.
- 18. Критерий оптимальности плана задачи линейного программирования.
- 19. Метод построения нового плана в рамках симплекс метода.
- 20. Вспомогательная задача.
- 21. Модель транспортной задачи в форме таблицы.
- 22. Балансировка транспортной задачи.
- 23. Метод северо-западного угла.
- 24. Общая характеристика метода потенциалов.
- 25. Проверка плана транспортной задачи на оптимальность.
- 26. Построение нового плана в методе потенциалов.
- 27. Предмет, область применения и основные понятия теории графов.
- 28. Предмет и область применения системы сетевого планирования и управления.
- 29. Сетевой график и его элементы.
- 30. Параметры событий и работ.
- 31. Методика расчета параметров сетевого графика.
- 32. Критический путь и его содержательный смысл.
- 33. Постановка задачи о кратчайшем маршруте.
- 34. Метод решения задачи о кратчайшем маршруте.

- 35. Постановка задачи о максимальном потоке.
- 36. Разрез и его пропускная способность.
- 37. Теорема Форда Фалкерсона.
- 38. Методология метода ветвей и границ.
- 39. Постановка задачи коммивояжера.
- 40. Алгоритм приведения матрицы расходов в задаче коммивояжера.
- 41. Алгоритм деления множества маршрутов на части.
- 42. Процессы размножения и гибели.
- 43. Процесс Маркова и его свойства.

Результат	Показатели	Критерии
диагностики		
сформированности		
компетенций УК-1,		
УК-6,ОПК-2, ОПК-3,		
ОПК-5, ОПК-7, ПК-2		
знать: основные типы	Ответы по вопросам	• содержание ответа соответствует
моделей, задачи и		поставленному вопросу
методы		• раскрываются наиболее значимые
моделирования		факты, научные положения,
систем различных		• соблюдается логическую
классов;		последовательность в изложении
принципы построения		материала
моделей;		
методы		
формализации,		
алгоритмизации и		
реализации моделей		
на персональных		
ЭВМ.		
уметь:	Ответы по вопросам	• содержание ответа соответствует
разрабатывать модели		поставленному вопросу
реальных систем;		• раскрываются наиболее значимые
анализировать		факты, научные положения,
результаты и		• соблюдается логическую
выявлять свойства и		последовательность в изложении
закономерности,		материала
присущие процессам,		
протекающим в		
системах;		
интерпретировать		
информацию		
представленную в		
виде схем, диаграмм,		
графов, графиков,		
таблиц с учетом		
предметной области;		
представлять		
информацию		
соответствующую		
области		

профессиональной деятельности в виде схем, диаграмм, графов, графиков, таблиц; осуществлять первичную статистическую обработку данных, реализовывать отдельные этапы метода математического моделирования; ставить и решать задачи оптимизации систем.		
владеть:	Ответы по вопросам	• содержание ответа соответствует
современными		поставленному вопросу
аналитическими, численными и		• раскрываются наиболее значимые
имитационными		факты, научные положения,
методами		• соблюдается логическую
исследования систем;		последовательность в изложении
методами		материала
оптимизации,		
направленными на		
решение задач		
обработки и анализа		
результатов		
эксперимента.		

Шкала оценивания: 0 баллов – полное отсутствие критерия; 1 балл – частичное выполнение критерия; 2 балла – полное выполнение критерия *Оценка* проставляется по количеству набранных баллов:

60-75% от максимально возможного количества баллов - удовлетворительно,

76-85% от максимально возможного количества баллов - хорошо,

86-100% от максимально возможного количества баллов – отлично.

Процедура оценивания результатов промежуточной аттестации:

Зачет проводится в форме собеседования, в ходе которого аспиранты отвечают на вопросы. В спорных случаях учитываются результаты текущего контроля.

Составитель:

к.ф-м.н., доцент кафедры методов оптимизации Деренко Николай Васильевич

Программа рассмотрена на заседании кафедры методов оптимизации (протокол № 🛭 « 19 » ____06 ___ 2014 г.)

Зав. кафедрой методов оптимизации

De

В.А.Дыхта

Лист согласования, дополнений и изменений на 2015/2016 учебный год

К рабочей программе дисциплины Б1.В.ОД.2 Основы математического моделирования по направлению подготовки научно-педагогических кадров в аспирантуре: 39.06.01 – Социологические науки

- 1. В рабочую программу дисциплины вносятся следующие дополнения: Нет дополнений
- 2. В рабочую программу дисциплины вносятся следующие изменения: Нет изменений

Изменения одобрены УМК ИМЭИ, протокол № $\underline{1}$ от $\underline{21.09}$ 2015 г.

Зав. кафедрой методов оптимизации

be

В.А.Дыхта

Лист согласования, дополнений и изменений на 2016/2017 учебный год

К рабочей программе дисциплины Б1.В.ОД.2 Основы математического моделирования по направлению подготовки научно-педагогических кадров в аспирантуре: 39.06.01 – Социологические науки

- 1. В соответствии с приказом Минобрнауки России №1455 от 07.12.2015 г. о переименовании федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Иркутский государственный университет» (ФГБОУ ВПО «ИГУ») в федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский государственный университет» (ФГБОУ ВО «ИГУ») читать наименование вуза в новой редакции.
- 2. В рабочую программу дисциплины вносятся следующие дополнения и изменения:
- п.7. Учебно-методическое и информационное обеспечение дисциплины (модуля) читать в следующей редакции:
- а) основная литература:
- 1. Рейзлин, Валерий Израилевич. Математическое моделирование [Текст]: учеб. пособие для магистратуры / В. И. Рейзлин ; Нац. исслед. Томский политехн. ун-т. 2-е изд., перераб. и доп. М.: Юрайт, 2016. 126 с.; 24 см. (Университеты России). Библиогр.: с. 123-124. ISBN 978-5-9916-7059-3: 20 экз.
- 2. Голубева, Нина Викторовна. Математическое моделирование систем и процессов [Электронный ресурс] / Н. В. Голубева. Москва: Лань", 2016. 191 с.: ил. (Учебники для вузов. Специальная литература). Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=76825. Режим доступа: ЭБС "Издательство Лань". Неогранич. доступ. ISBN 978-5-8114-1424-6
- 3. Микони, С. В. Теория принятия управленческих решений [Электронный ресурс] / С. В. Микони. Москва: Лань", 2015. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=65957. Режим доступа: ЭБС "Издательство "Лань". Неогранич. доступ. ISBN 978-5-8114-1875-6

б) дополнительная литература:

- 1. Бурмистрова Н.А.Математическое моделирование экономических процессов как средство формирования профессиональной компетентности будущих специалистов финансовой сферы при обучении математике [Текст]: научное издание / Н. А. Бурмистрова. М.: Логос, 2010. 227 с.: ил.; 21 см. Библиогр.: с. 156-162. ISBN 978-5-98704-503-9 1 экз.
- 2. Математическое моделирование [Электронный ресурс]: метод. указания к лаб. и контр. рабогам по курсу "Математическое муделирование" для магистрантов по напр. "Прикладная информатика"/ сост. Краковский Ю.М.

- ЭВК. Иркутск: [б. и.], 2013. Режим доступа: Режим доступа: ЭЧЗ "Библиотех". Неогранич. доступ.
- 2. Колбин, В. В. Методы принятия решений [Электронный ресурс] / В. В. Колбин. Москва: Лань", 2016. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=71785. Режим доступа: ЭБС "Издательство Лань". Неогранич. доступ. ISBN 978-5-8114-2029-2

Зав. кафедрой вычислительной математики и оптимизации

B. *A*

Лист согласования, дополнений и изменений на 2017/2018 учебный год

К рабочей программе дисциплины Б1.В.ОД.2 Основы математического моделирования по направлению подготовки научно-педагогических кадров в аспирантуре: 39.06.01 — Социологические науки

- 1. В рабочую программу дисциплины вносятся следующие дополнения: Нет дополнений
- 2. В рабочую программу дисциплины вносятся следующие изменения: Нет изменений

Зав. кафедрой вычислительной математики и оптимизации

be

В.А.Дыхта