

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Иркутский государственный университет» (ФГБОУ ВО «ИГУ»)

Институт математики, экономики и информатики

УТВЕРЖДАЮ директор института Фалалеев М.В. 2016 г.

Рабочая программа дисциплины

Индекс дисциплины по УП: Б1.В.ДВ.2.1

Наименование дисциплины: Теория дифференциальных уравнений и приложения

Направление подготовки научно-педагогических кадров в аспирантуре 01.06.01 Математика и механика

Направленность программы подготовки кадров высшей квалификации (программы аспирантуры): Дифференциальные уравнения, динамические системы и оптимальное управление

Форма обучения: очная

Одобрена Советом института математики,

Программа рассмотрена на заседании кафедры экономики и информатики математического анализа и дифференциальны протокол № <u>7</u> от «22 » <u>06</u> 2016 г. уравнений «25 » <u>05</u> 201 <u>6</u> г. Протокол № <u>9</u> Директор ИМЭИ <u>Меректор ИМЭИ </u> <u>Лементического анализа и дифференциальны уравнений «25 » <u>05</u> 201 <u>6</u> г. Протокол № <u>9</u> Директор ИМЭИ <u>Меректор ИМЭИ </u> <u>Лементического анализа и дифференциальны уравнений «25 » <u>05</u> 201 <u>6</u> г. Протокол № <u>9</u></u></u> математического анализа и дифференциальных уравнений «25» <u>05</u> 201 <u>6</u> г. Протокол № <u>9</u>

Содержание

- 1. Цели и задачи дисциплины (модуля)
- 2. Место дисциплины (модуля) в структуре ОПОП.
- 3. Требования к результатам освоения дисциплины (модуля)
- 4. Объем дисциплины (модуля) и виды учебной работы
- **5.** Содержание дисциплины (модуля)
- 5.1 Содержание разделов и тем дисциплины (модуля)
- **5.2** Разделы дисциплины (модуля) и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами (модулями)
- 5.3 Разделы и темы дисциплин (модулей) и виды занятий
- 5.4 Перечень семинарских, практических занятий и лабораторных работ.
- 6. Примерная тематика рефератов (при наличии)
- 7. Учебно-методическое и информационное обеспечение дисциплины (модуля):
 - а) основная литература;
 - б) дополнительная литература;
 - в) программное обеспечение;
 - г)интернет-ресурсы, базы данных, информационно-справочные и поисковые системы
- 8. Материально-техническое обеспечение дисциплины (модуля).
- 9. Образовательные технологии
- 10. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации
 - 10.1 Оценочные средства текущего контроля
 - 10.2 Оценочные средства для промежуточной аттестации

1. Цели и задачи дисциплины:

В настоящее время математическое моделирование является одним из основных методов решения научных, инженерных, экономических проблем. Основой математических моделей, как правило, являются уравнения математической физики, опыт исследования которых представляет теоретический и практический интерес у специалистов самых разных профессиональных направлений.

Целью преподавания дисциплины «Теория дифференциальных уравнений и приложения» является формирование у аспирантов современных теоретических знаний в области методов решения задач математической физики, описывающих некоторые физические процессы, а также практических навыков в их использовании при решении конкретных задач в таких областях науки и деятельности общества, как энергетика, охрана окружающей среды, гидродинамика, теория упругости и др.

2. Место дисциплины в структуре ОПОП:

Дисциплина относится к циклу дисциплин по выбору вариативной части дисциплин. Для изучения и освоения дисциплины нужны первоначальные знания из курсов математического анализа, линейной алгебры, обыкновенных дифференциальных уравнений, теории функций комплексных переменных.

Знания и умения, приобретенные аспирантами в результате изучения дисциплины, будут использоваться при изучении курсов математического моделирования, при выполнении диссертационных работ, связанных с решением конкретных задач из механики, физики и т.п.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций: ПК-1, ПК-2, ПК-3.

В результате изучения дисциплины аспирант должен:

Знать: основные понятия, определения и методы решений дифференциальных уравнений, постановки задач и свойства их решений.

Уметь: формулировать и доказывать основные теоремы теории дифференциальных уравнений, применять методы решения дифференциальных уравнений и их систем.

Владеть: математическим аппаратом дифференциальных уравнений и применять его при исследовании математических моделей практических задач

4. Объем дисциплины и виды учебной работы

Вид учебной работы	Всего		Курсы		
	часов /		2		
	зачетных				
	единиц				
Аудиторные занятия (всего)	48		48		
В том числе:	-	-	-	-	-
Лекции	24		24		
Практические занятия (ПЗ)	24		24		
Самостоятельная работа (всего)	60		60		
В том числе:	-	-	-	-	-
Подготовка доклада	20		20		
Выполнение индивидуальных заданий, подготовка	40		40		
к зачету					
Контактная работа	54		54		
Вид промежуточной аттестации (зачет, экзамен и	Зачет с		Заче		
др.)	оценкой		тс		
			оце		
			нко		

			й	
Общая трудоемкость часы	108	108		
зачетны	ые единицы	3	3	

5. Содержание дисциплины5.1. Содержание разделов и тем дисциплины.

№	1. Содержание раздело Наименование	Содержание раздела дисциплины
	раздела	1
1	Дифференциальны е уравнения и их классификация	Тема 1.1 Основные понятия и определения. Дифференциальные уравнения и их классификация. Системы дифференциальных уравнений. Уравнения с частными производными. Тема 1.2. Прикладные задачи, приводящие к дифференциальным уравнениям. Радиоактивный распад. Движение материальной точки. Процесс теплопереноса.
2	Методы решения уравнений первого порядка	Тема 2.1. Предварительный анализ уравнений. Поле направлений и изоклины. Уравнения первого порядка. Общая характеристика. Геометрический смысл уравнения. Тема 2.2. Элементарные методы интегрирования Метод разделения переменных. Однородные уравнения и уравнения, приводящиеся к однородным. Линейные уравнения. Уравнения, приводящиеся к линейным. Тема 2.3. Уравнения в полных дифференциалах. Интегрирующий множитель. Уравнения в полных дифференциалах. Интегрирующий множитель. Тема 2.4. Нелинейные дифференциальные уравнения первого порядка и методы их решения. Общие замечания о нелинейных уравнениях. Уравнения, не содержащие одной из переменных. Общий метод введения параметра. Уравнения Лагранжа. Уравнения Клеро. Способы построения особого решения. Уравнение Риккати. Свойства решений уравнений Риккати.
3	Основы теории уравнений высших порядков	Тема 3.1. Уравнения высших порядков. Основные определения. Уравнения высших порядков. Основные определения. Уравнения, решаемые в квадратурах. Тема 3.2. Решение линейных однородных уравнений высших порядков. Общие свойства однородных уравнений. Решение линейных однородных уравнений с постоянными коэффициентами. Тема 3.3. Решение линейных неоднородных уравнений. Структура общего решения и построение частного решения. Неоднородные уравнения с постоянными коэффициентами. Уравнения, приводящиеся к уравнениям с постоянными коэффициентами.

		Тема 3.4. Уравнения второго порядка. Функция Грина. Краевая задача и функция Грина. Краевая задача для неоднородного уравнения. Проблема собственных значений и интегральные уравнения. Тема 3.5. Аналитические решения уравнения второго порядка. Уравнения с колеблющимися решениями. Интегрирование уравнения с помощью степенных рядов. Тема 3.6. Уравнения, допускающие понижение порядка.
4	Системы дифференциальны х уравнений	Тема 4.1. Системы линейных уравнений. Основные понятия и определения. Системы линейных однородных уравнений. Системы линейных однородных уравнений с постоянными коэффициентами. Системы линейных неоднородных уравнений. Тема 4.2. Теорема существования и единственности решения. Теорема Коши. Зависимость решения от параметров. Тема 4.3. Нелинейные системы уравнений первого порядка. Основные свойства системы в нормальной форме. Фазовое пространство и фазовые траектории. Понижение порядка системы с помощью первых интегралов. Симметричная форма системы уравнений. Точки покоя системы второго порядка. Классификация особых точек.
5	Матричные дифференциальны е уравнения	Тема 5.1. Матричные уравнения. Перестановочные матрицы. Решение линейного неоднородного уравнения. Скалярное уравнение. Полиномиальное уравнение. Уравнение с жордановой особенной матрицей. Линейное дифференциальное уравнение. Матричное дифференциальное уравнение Риккати. Тема. 5.2. Уравнение Риккати в методе прогонки. Краевая задача для скалярного дифференциального уравнения. Краевая задача для векторного дифференциального уравнения. Тема 5.3. Уравнение Риккати в теории управления. Задача об аналитическом конструировании регуляторов и об оптимальной стабилизации. Оптимальный фильтр Каллмана-Бьюси.
6	Периодические решения нелинейных систем дифференциальны х уравнений	Тема 6.1. Периодические решения автономных нелинейных систем. Периодические решения квазилинейных автономных систем. Метод А.Н. Крылова. Метод гармонической линеаризации. Тема 6.2. Вынужденные колебания нелинейных систем. Метод Пуанкаре. Особый случай.
7	Уравнения с разрывной правой частью	Тема 7.1 Уравнения с правой частью, разрывной по t. Уравнения Каратеодори. Свойства решений. Линейные уравнения.

		Тема 7.2. Уравнения с разрывной правой частью.						
8	Устойчивость	Тема 8.1. Устойчивость по Ляпунову. Устойчивость линейных систем. Основные определения. Общие теоремы об устойчивости линейных стационарных и нестационарных систем. Тема 8.2. Критерий устойчивости. Критерий Гурвица. Область устойчивости. Критерий Михайлова. Тема 8.3. Устойчивость нелинейных систем. Функции Ляпунова. Теоремы Ляпунова. Обобщение теорем Ляпунова. Устойчивость по первому приближению.						
9	Уравнения с частными производными первого порядка	Тема 9.1. Линейные однородные уравнения первого порядка. Общее решение. Задача Коши. Тема 9.2. Квазилинейные уравнения. Здача Коши для уравнения с двумя независимыми переменными. Тема 9.3. Системы двух уравнений первого порядка. Условия разрешимости. Построение решения. Тема 9.4. Уравнение Пфаффа.						

5.2. Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

No	Наименование	№ № разделов и тем данной дисциплины, необходимых
п/п	обеспечиваемых	для изучения обеспечиваемых (последующих) дисциплин
	(последующих)	(вписываются разработчиком)
	дисциплин	
1.	Подготовка	1 – 9
	диссертационной	
	работы	

5.3. Разделы и темы дисциплин и виды занятий

	з.з. газделы и темы дисциплин и биды занятии							
$N_{\underline{0}}$	Наименование	Наименование		Виды занятий в часах				
п/п	раздела	темы	Лекц.	Практ. зан.	Семин	Лаб. зан.	CPC	Всего
1.	Раздел 1	Раздел 1	1	1			4	6
2.	Раздел 2	2.1 – 2.4	1	1			4	6
3.	Раздел 3	3.1 – 3.3	2	2			4	8
4.	Раздел 3	3.4 – 3.6	2	2			4	8
5.	Раздел 4	4.1, 4.2	2	2			6	10
6.	Раздел 4	4.3	2	2			6	10
7.	Раздел 5	5.1, 5.2, 5.3	4	4			5	13
8.	Раздел 6	6.1, 6.2	2	2			5	9
9.	Раздел 7	7.1, 7.2	2	2			6	10

10.	Раздел 8	8.1, 8.2, 8.3	2	2		6	10
11.	Раздел 9	9.1, 9.2, 9.3	2	2		5	9
12.	Раздел 9	9.4	2	2		5	9

5.4. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров,	Труд	Оценочные	Форм
п/п	темы дисциплины	практических и лабораторных работ	оемк ость (часы	средства	форм ируем ые компе тенци и
1	2	3	4	5	6
1.	Раздел 1 Тема 1.2	Прикладные задачи, приводящие к дифференциальным уравнениям.	1	Текущ. контроль, тестировани е	ПК-1 ПК-3
2.	Раздел 2. Тема 2.4	Способы построения особого решения. Уравнение Риккати.	1		ПК-1 ПК-3
3.	Раздел 3. Тема 3.3	Неоднородные уравнения с постоянными коэффициентами. Уравнения, приводящиеся к уравнениям с постоянными коэффициентами.	2		ПК-1 ПК-3
4	Раздел 3 Тема 3.4	Краевая задача и функция Грина. Краевая задача для неоднородного уравнения. Проблема собственных значений и интегральные уравнения.	2		ПК-1 ПК-3
5	Раздел 4 Тема 4.2	Теорема Коши. Зависимость решения от параметров.	2		ПК-1 ПК-2
6	Раздел 4 Тема 4.3	Точки покоя системы второго порядка. Классификация особых точек.	2		ПК-1 ПК-3
7	Раздел 5 Тема 5.3	Задача об аналитическом конструировании регуляторов и об оптимальной стабилизации. Оптимальный фильтр Каллмана-Бьюси.	4		ПК-1 ПК-2
8	Раздел 6 Тема 6.1	Метод гармонической линеаризации.	2		ПК-1 ПК-2

9	Раздел 7	Уравнения с разрывной правой	2	ПК-1
	Тема 7.2	частью.		ПК-2
10	Раздел 8	Функции Ляпунова. Устойчивость	2	ПК-1
	Тема 8.3	по первому приближению.		ПК-2
11	Раздел 9	Общее решение. Задача Коши.	2	ПК-1
	Тема 9.1			ПК-3
12	Раздел 9	Уравнение Пфаффа.	2	ПК-1
	Тема 9.4			ПК-3

6. Примерная тематика рефератов, докладов, проектов (при наличии); перечень вопросов к зачетам, экзаменам и т.п.:

Темы докладов:

- 1. Прикладные задачи, приводящие к дифференциальным уравнениям.
- 2. Точки покоя системы второго порядка. Классификация особых точек.
- 3. Задача об аналитическом конструировании регуляторов и об оптимальной стабилизации. Оптимальный фильтр Каллмана-Бьюси.
 - 4. Метод гармонической линеаризации.

Вопросы к зачету:

- 1. Дифференциальные уравнения и их классификация. Системы дифференциальных уравнений. Уравнения с частными производными.
 - 2. Прикладные задачи, приводящие к дифференциальным уравнениям.
 - 3. Предварительный анализ уравнений. Поле направлений и изоклины.
- 4. Структура общего решения и построение частного решения. Неоднородные уравнения с постоянными коэффициентами. Уравнения, приводящиеся к уравнениям с постоянными коэффициентами.
- 5. Уравнения с колеблющимися решениями. Интегрирование уравнения с помощью степенных рядов.
- 6. Основные свойства системы в нормальной форме. Фазовое пространство и фазовые траектории. Понижение порядка системы с помощью первых интегралов. Симметричная форма системы уравнений. Точки покоя системы второго порядка. Классификация особых точек.
 - 7. Матричные уравнения.
 - 8. Уравнение Риккати в методе прогонки.

Краевая задача для скалярного дифференциального уравнения. Краевая задача для векторного дифференциального уравнения.

- 9. Уравнение Риккати в теории управления.
- 10. Задача об аналитическом конструировании регуляторов и об оптимальной стабилизации. Оптимальный фильтр Каллмана-Бьюси.
 - 11. Периодические решения автономных нелинейных систем.
- 12. Периодические решения квазилинейных автономных систем. Метод А.Н. Крылова. Метод гармонической линеаризации.
 - 13. Вынужденные колебания нелинейных систем.
 - 14. Метод Пуанкаре. Особый случай.
 - 15. Уравнения с правой частью, разрывной по t.
 - 16. Устойчивость по Ляпунову. Устойчивость линейных систем.
 - 17. Устойчивость нелинейных систем.

18. Уравнения с частными производными первого порядка.

7. Учебно-методическое и информационное обеспечение дисциплины:

- а) основная литература
- 1. **Филиппов, Алексей Федорович.** Введение в теорию дифференциальных уравнений [Текст]: учеб. для студ. вузов по группе физ.-мат. напр. и спец. / А. Ф. Филиппов. Изд. стер. М.: Ленанд, 2015. 239 с. **ISBN** 978-5-9710-1499-7. 50 экз.
 - б) дополнительная литература
- 1. **Краснов, Михаил Леонтьевич.** Обыкновенные дифференциальные уравнения [Текст] : задачи и примеры с подробными решениями: Учеб. пособие для студ. втузов / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. 5-е изд., испр. М. : КомКнига, 2005. 253 с. **ISBN** 5-484-00193-5. 40 экз.
- 2. **Треногин, Владилен Александрович.** Обыкновенные дифференциальные уравнения: учебник / В. А. Треногин. М.: Физматлит, 2009. 311 с. **ISBN** 978-5-9221-1063-1. 50 экз.
- 3. **Филиппов, Алексей Федорович.** Сборник задач по дифференциальным уравнениям [Текст] : учеб. пособие / А. Ф. Филиппов. 4-е изд. М. : Либроком, 2011. 237 с. **ISBN** 978-5-397-02914-8. 29 экз.
 - в) программное обеспечение
 - 1. MS Excel (версия 2007 или выше)
 - 2. Python (версия 2.7 или 3.x)
 - г) базы данных, информационно-справочные и поисковые системы
 - 1. https://isu.bibliotech.ru электронно-библиотечная система ИГУ
 - 2. http://e.lanbook.com электронно-библиотечная система ЛАНЬ
 - 3. http://rucont.ru электронная библиотека РУКОНТ
 - 4. http://ibooks.ru электронно-библиотечная система ibooks
 - 5. http://e-library.ru научная электронная библиотека eLIBRARY
 - 6. http://educa.isu.ru образовательный портал ИГУ

8. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения занятий лекционного и семинарского типа на 40 рабочих мест, оборудованная специализированной (учебной) мебелью; доска для мела, оборудованием для презентации учебного материала: стационарный проектор Casio XJ-V1, XGA1024*768; ноутбук ASUS X51L Intel Celeron 560, 2.13 GHz.

9. Образовательные технологии:

- 1. Научная электронная библиотека eLIBRARY.RU, более 20 полнотекстовых версий журналов по тематике курса. Доступ с любого компьютера, подключенного через прокси-сервер Иркутского государственного университета.
- 2. Электронная библиотека "Труды ученых ИГУ" (http://ellib.library.isu.ru). Доступ к полным текстам учебных пособий, монографий и статей сотрудников университета, осуществляемый с любого компьютера сети Иркутского государственного университета.
- 3. Общероссийский математический портал информационная система Math-Net.Ru доступ к российским математическим журналам и обзорам ВИНИТИ РАН
- 4. Журнал "Известия Иркутского университета. Серия Математика". Свободный доступ к электронным полнотекстовым версиям с 2007 г. осуществляется с сайта университета http://www.isu.ru/izvestia

5. Архив научных журналов JSTOR (http://www.jstor.org). Доступ с любого компьютера, подключенного через прокси-сервер Иркутского государственного университета.

10. Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации

10.1 Оценочные средства текущего контроля:

Формы текущего контроля успеваемости студентов – доклад на выбранную тему. **Примеры индивидуальных заданий:**

Критерии оценивания:

Оценка «зачтено» выставляется если аспирант написал доклад в установленные для этого сроки, в котором полностью и правильно раскрыл выбранную им тему и сделал сообщение.

Оценка «незачтено» выставляется если аспирант не сделал доклада.

10.2. Оценочные средства для промежуточной аттестации:

Дисциплина завершается зачетом с оценкой, на котором проверяется усвоение студентами основных понятий и свойств, а также их применение в решении поставленных математических задач в письменно – устной форме с решением задач.

Примерные практические задания:

1. Построить решение начально-краевой задачи при $t \ge 0, 0 \le x \le b$:

$$\begin{cases} u_{tt} = a u_{xx}, \\ u|_{t=0} = f(x), u|_{x=0} = g(t), u|_{x=b} = h(t), \\ f(0) = g(0), f(b) = h(0). \end{cases}$$

2. Построить решение начально-краевой задачи при $t \ge 0, x \ge 0$:

$$\begin{cases} u_t + u_x = 0, \\ u|_{t=0} = 1, u|_{x=0} = g(t), \\ g(0) = 1. \end{cases}$$

3. Построить решение начально-краевой задачи при $t \ge 0, x \ge 0$:

$$\begin{cases} u_t + uu_x = 0, \\ u|_{t=0} = 1, u|_{x=0} = g(t), \\ g(0) = 1. \end{cases}$$

Критерии оценивания:

Оценка «отлично» выставляется если экзаменуемый знает основную терминологию по теме дисциплины, основные понятия и определения, основные уравнения математической физики и классические задачи для них, владеет изученными методами решения задач и умеет решать задачи по дисциплине изученными методами и приводить анализ полученного решения; ставить задачи в обобщенной постановке для дифференциальных уравнений, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «зачтено» в текущем контроле.

Оценка «хорошо» выставляется если экзаменуемый знает основную терминологию по теме дисциплины, основные понятия и определения, и умеет решать задачи по дисциплине изученными методами и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «зачтено» в текущем контроле.

Оценка «удовлетворительно» выставляется если экзаменуемый знает основные понятия и определения, умеет понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «зачтено» в текущем контроле.

Оценка «неудовлетворительно» выставляется если экзаменуемый не знает основную терминологию по теме дисциплины, основные понятия и определения, основные уравнения математической физики и классические задачи для них, понятие обобщенного решения задачи для уравнения с частными производными, не владеет изученными методами решения задач и не умеет решать задачи по дисциплине изученными методами и приводить анализ полученного решения; ставить задачи в обобщенной постановке для дифференциальных уравнений, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с изучаемыми проблемами, а также имеет «незачтено» в текущем контроле.

Разработчики:

Профессор кафедры математического анализа и дифференциальных уравнений М.В.Фалалеев

Доцент кафедры математического анализа и дифференциальных уравнений Е.А. Головко

Лист согласования, дополнений и изменений на 2017/2018 учебный год

К рабочей программе дисциплины Б1.В.ДВ.2.1 Теория дифференциальных уравнений и приложения

по направленности программы подготовки кадров высшей квалификации (программы аспирантуры): Дифференциальные уравнения, динамические системы и оптимальное управление

В рабочую программу дисциплины вносятся следующие дополнения:

Нет дополнений

В рабочую программу дисциплины вносятся следующие изменения:

Нет изменений

Изменения одобрены Ученым советом института математики, экономики и информатики, протокол № 6 от 28.06.2017

Зав. кафедрой математического анализа и дифференциальных уравнений

М.В. Фалалеев

Лист согласования, дополнений и изменений на 2018/2019 учебный год

К рабочей программе дисциплины Б1.В.ДВ.2.1 Теория дифференциальных уравнений и приложения

по направленности программы подготовки кадров высшей квалификации (программы аспирантуры): Дифференциальные уравнения, динамические системы и оптимальное управление

В рабочую программу дисциплины вносятся следующие дополнения:

Нет дополнений

В рабочую программу дисциплины вносятся следующие изменения: Нет изменений

Изменения одобрены Ученым советом института математики, экономики и информатики, протокол № 3 от 28.02.2018

Зав. кафедрой математического анализа и дифференциальных уравнений

М.В. Фалалеев