

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ»

Кафедра теоретической физики

УТВЕРЖДАЮ

Декан физического факультета

____/Н.М. Буднев «31» августа 2021 г.

Рабочая программа дисциплины

Наименование дисциплины: Б1.В.04 Интегральные уравнения и вариационное исчисление

Направление подготовки: 03.03.02 Физика

Направленность (профиль) подготовки: Фундаментальная физика

Квалификация (степень) выпускника: Бакалавр

Форма обучения: Очная

Согласовано с УМК физического факультета

Протокол №<u>30</u> от «<u>31</u>» <u>августа 2021</u> г.

Председатель

Н.М.Буднев

Рекомендовано кафедрой:

Протокол №1

Физический факультет

От «30» августа 2021 г.

И.о. зав. кафедрой

С.В. Ловцов

Содержание

I. Цели и задачи дисциплины (модуля)
II. Место дисциплины в структуре ОПОП
III. Требования к результатам освоения дисциплины (модуля)
IV. Содержание и структура дисциплины (модуля)
4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных за-
нятий и отведенного на них количества академических часов
4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине5
4.3. Содержание учебного материала5
4.3.1. Перечень семинарских, практических занятий и лабораторных работ6
4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в
рамках самостоятельной работы (СРС)7
4.4. Методические указания по организации самостоятельной работы студентов9
4.5. Примерная тематика курсовых работ (проектов) (при наличии)9
V. Учебно-методическое и информационное обеспечение дисциплины (модуля)9
а) список литературы9
б) периодические издания10
в) список авторских методических разработок10
г) базы данных, информационно-справочные и поисковые системы10
VI. Материально-техническое обеспечение дисциплины (модуля)
VII. Образовательные технологии:
VIII. Оценочные материалы для текущего контроля и промежуточной аттестации11
Приложение: фонд оценочных средств

І. Цели и задачи дисциплины (модуля)

При изучении дисциплины «Интегральные уравнения и вариационное исчисление» студенты осваивают математический аппарат, необходимый для изучения важнейших разделов физики, таких как теоретическая механика, электродинамика, квантовая механика, термодинамика, физическая кинетика. Знания, полученные при изучении курса, формируют математическую культуру и составляют основу естественнонаучного подхода к исследованию природных явлений.

Цели курса

Целью курса «Интегральные уравнения и вариационное исчисление» является изучение однородных и неоднородных линейных интегральных уравнений и их свойств, на основе которых создаются математические модели физических явлений и законов в линейном приближении; изучение понятия функционала и его свойств, представляющих собой математическую основу фундаментальных физических законов.

Задачи курса

- изучение и овладение методами решения интегральных уравнений;
- изучение понятия функционала;
- овладение навыками варьирования функционалов;
- изучение методов и приемов математических доказательств теорем и утверждений;
- формирование у студентов умений и навыков самостоятельного приобретения и применения знаний при исследовании и построении математических моделей;
- овладение студентами знаний по применению интегральных уравнений и вариационного исчисления в различных разделах физики при исследовании физических явлений.

II. Место дисциплины в структуре ОПОП

Дисциплина «Интегральные уравнения и вариационное исчисление» относится к дисциплинам, формируемым участниками образовательного процесса. «Интегральные уравнения и вариационное исчисление» является продолжением цикла математических дисциплин и предполагает знание математического анализа, векторного и тензорного анализа, линейной алгебры и дифференциальных уравнений. Кроме того, данный курс содержит множество примеров из области физики, т.е. студент должен обладать знаниями не только по высшей математике, но и по общей физике. Таким образом, для освоения данной дисциплины студент должен обладать знаниями по следующим дисциплинам: «Математический анализ», «Линейная алгебра», «Векторный и тензорный анализ», «Дифференциальные уравнения», «Теоретическая механика».

III. Требования к результатам освоения дисциплины (модуля)

Процесс изучения дисциплины (модуля) направлен на формирование следующих компетенций:

- Способен использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1).

Перечень планируемых результатов обучения по дисциплине , соотнесенных с индикаторами достижения компетенций

Компетенция	ПК-1
Индикаторы компе- тенции	$\rm ИДK_{ пк 1.1}$ знает основополагающие принципы, понятия интегральных уравнений и вариационного исчисления.
Результаты обучения	Знает: существующие виды интегральных уравнений; методы решения интегральных уравнений различных видов; основные принципы вариационного исчисления; физические примеры, приводящие к необходимости решения интегрального уравнения или поиска экстремума функционала. Умеет: решать однородные и неоднородные линейные интегральные уравнения; варьировать функционалы; находить экстремум функционала. Владеет: приемами и методами доказательства математических теорем; методами решения соответствующих уравнений в требуемом приближении; методами поиска экстремума и условного экстремума функционала.

IV. Содержание и структура дисциплины (модуля)

Объем дисциплины составляет 2 зачетных еденицы, 72 часа, в том числе 51 час контактной работы.

Занятия проводятся только в очной форме обучения с применением дистанционного контроля самостоятельной работы студентов через ЭИОС факультета. Электронной и дистанционной форм обучения не предусматривается.

На практическую подготовку отводится 18 аудиторных часов.

Форма промежуточной аттестации: зачет.

4.1. Содержание дисциплины, структурированное по темам, с указанием видов учебных занятий и отведенного на них количества академических часов

Nº п/п	Разде л дис- ципл ины/ темы	С е м е с т р	Вс е- го ча со в	Из них прак- тиче- ская подго товка обу- чающ ихся	(Виды учебн остоятельную раб скую подготовку (в ча бота преподавате мися Семинарские /практические /лабораторные занятия	боту обучающих и трудоемкость cax)	<u>-</u>	Формы теку- щего контроля успеваемости; Форма промежуточ- ной аттеста- ции (по семест- рам)
1	1-18	6	72	18	18	18	1	21	Практиче-

								ское зада- ние; вопро- сы и задачи к зачету	.
Итого:	:	72	18	18	18	1	21		

4.2. План внеаудиторной самостоятельной работы обучающихся по дисциплине

Семестр	Название раздела, темы	Самостоятель Вид само- стоятельной работы	ьная работа об Сроки вы- полнения	бучающихся Трудо- емксть (час.)	Оценочное средство	Учебно- методиче- ское обеспе- чение само- стоятельной работы
1	Тема 1-18	Задание в виде задачи	После пройденных тем	21	Демонстра- ция готовых решений	Источники из основной и дополнительной литературы по теме практических занятий; Образовательные ресурсы, до-ступные пологину и паролю, предоставляемым Научной библиотекой ИГУ.

4.3. Содержание учебного материала

Содержание разделов и тем дисциплины (модуля)

Раздел 1 Введение в теорию интегральных уравнений

- Тема 1. Определение интегрального уравнения (ИУ), линейного ИУ, классификация линейных интегральных уравнений (уравнения Фредгольма и Вольтерра первого и второго рода, однородные, неоднородные). Ядро, свободный член ИУ, требования к ядру и свободному члену. Примеры физических задач, приводящих к интегральным уравнениям (к уравнению Вольтерра и уравнению Фредгольма). Сведение задачи Коши для обыкновенного дифференциального уравнения п-порядка к уравнению Вольтерра II рода.
- Тема 2. Интегральное уравнение Фредгольма II рода. Определение собственного значения и собственной функции ядра интегрального уравнения. Операторная форма интегрального уравнения. Аналогия между линейным интегральным уравнением и системой линейных алгебраических уравнений.
- Тема 3. Однородное уравнение Фредгольма II рода с вырожденным ядром. Сведение его решения к решению системы алгебраических уравнений. Теорема о конечном числе собственных значений вырожденного ядра (с доказательством). Неоднород-

- ное уравнение Фредгольма II рода с вырожденным ядром. Определитель Фредгольма, сопряженное к данному интегральное уравнение.
- Тема 4. Теорема Фредгольма об альтернативе (с доказательством). Вторая теорема Фредгольма (с доказательством). Третья теорема Фредгольма (с доказательством).
- Тема 5. Теорема о том, что однородное ИУ и сопряженное к нему ИУ имеют одно и то же число линейно независимых решений. Нахождение комплексного решения ИУ в случае комплексного ядра и свободного члена.
- Тема 6. Метод последовательных приближений для решения ИУ. Теорема о существовании и единственности решения ИУ в случае достаточной малости параметра λ (с доказательством на основании теоремы о неподвижной точке оператора).
- Тема 7. Резольвента. Свойства резольвенты. Выражение для резольвенты в случае вырожденного ядра. Случай ядра, близкого к вырожденному (сведение ИУ с таким ядром к уравнению с вырожденным ядром).
- Тема 8. Уравнение Вольтерра II рода. Теорема об отсутствии собственных значений уравнения Вольтерра II рода. Нахождение решения уравнения Вольтерра II рода методом последовательных приближений.
- Тема 9. Резольвента уравнения Вольтерра II рода, повторные ядра для этого случая. Интегральное уравнение Вольтерра I рода. Сведение его к уравнению II рода.
- Тема 10. Случай ИУ Фредгольма II рода с симметричным ядром. Свойства собственных значений и собственных функций такого ядра (ортогональность СФ, отвечающих различным СЗ; вещественность всех СЗ; возможность выбора ортонормированного набора СФ, соответствующих одному СЗ). Формула Шмидта для решения уравнения с симметричным ядром.
- Тема 11. Задача Штурма Лиувилля. Постановка, физические примеры; сведение задачи Штурма Лиувилля к интегральному уравнению.
- Тема 12. Интегральное уравнение Фредгольма I рода как некорректно поставленная задача. Определение корректно поставленной задачи. Доказательство, что ИУ Фредгольма II рода является корректной задачей.

Раздел 2. Введение в вариационное исчисление

- Тема 13. Понятие функционала. Понятия вариации аргумента функционала, непрерывности функционала, близости функций в разных порядках. Определение линейного функционала. Понятие вариации функционала как линейной части его приращения и как производной по параметру.
- Тема 14. Определение экстремума функционала. Сильный и слабый экстремум. Необходимое условие экстремума. Вывод уравнения Эйлера, понятие экстремали.
- Тема 15. Понятие поля экстремалей. Условие Якоби возможности включение экстремали в поле. Достаточное условие экстремума функционала (сильного и слабого).
- Тема 16. Условный экстремум функционала. Изопериметрическая задача: теорема Эйлера.
- Тема 17. Задача Лагранжа при наличии связей.
- Тема 18. Геодезические линии.

4.3.1. Перечень семинарских, практических занятий и лабораторных работ

No	№ раздела	Наименование семинаров, прак-	Tpy-	Оценочные	Форми-
	и темы дис-	тических и лабораторных работ	доем-	средства	руемые
	циплины		кость		компе-
	(модуля)		(ча-		тенции
			сы)		
1	2	3	4	5	6

1.	Раздел 1, Тема 1, 2, 3	Уравнения Фредгольма II рода с вырожденным ядром.	3	Задание на семинаре в виде задач	ПК-1
2.	Раздел 1, Тема 4, 5	Неоднородные уравнения Фредгольма с вырожденным ядром.	2	Задание на семинаре в виде задач	
3.	Раздел 1, Тема 6, 7	Метод последовательных при- ближений	2	Задание на семинаре в виде задач	
4.	Раздел 1, Тема 8, 9	Решение уравнений Вольтерра.	2	Задание на семинаре в виде задач	
5.	Раздел 1, Тема 10, 11, 12	Уравнения с симметричными ядрами.	3	Задание на семинаре в виде задач	
6.	Раздел 2, Тема 13, 14	Вариационное исчисление. Поиск экстремалей.	2	Задание на семинаре в виде задач	
7.	Раздел 2, Тема 15, 16	Условный экстремум функциона- ла. Изопериметрическая задача.	2	Задание на семинаре в виде задач	
8.	Раздел 2, Тема 17	Условный экстремум функциона- ла. Геодезическая задача.	1	Задание на семинаре в виде задач	
9.	Раздел 2, Тема 18	Условный экстремум функциона- ла. Задача Лагранжа	1	Задание на семинаре в виде задач	

4.3.2. Перечень тем (вопросов), выносимых на самостоятельное изучение студентами в рамках самостоятельной работы (СРС)

N₂	Тема	Вид само-	Задание	Рекоменду-	Часы
нед		стоятель-		емая литера-	
1100		ной работы		тура	
1	Определение ин-	Внеауди-	Решение дополнитель-	Источники из	1
	тегрального уравне-	торная,	ных интегральных	основной и	
	ния, линейного ИУ,	решение за-	уравнений Фредгольма II	дополнитель-	
	классификация ли-	дач	рода.	ной литера-	
	нейных интегральных			туры по теме	
	уравнений			практических	
2	Операторная форма	Внеауди-	Сведение задачи Коши n-	занятий;	1
	интегрального	торная,	порядка к интегральному	Образо-	
	уравнения.	решение за-	уравнению	вательные	
		дач		ресурсы, до-	
3	Однородное уравне-	Внеауди-	Решение дополнитель-	ступные по	1
	ние Фредгольма II	торная,	ных интегральных	логину и па-	
	рода с вырожденным	решение за-	уравнений Фредгольма II	ролю, предо-	
	ядром.	дач	рода с вырожденным яд-	ставляемым	
			ром.	Научной биб-	

	T	_		1	
4	Теорема Фредгольма об альтернативе	Внеауди- торная, решение за-	Решение дополнитель- ных интегральных уравнений Фредгольма II		1
		дач	рода с вырожденным и невырожденным ядром.		
5	Теорема о том, что однородное ИУ и сопряженное к нему ИУ имеют одно и то же число линейно независимых решений.	Внеауди- торная, решение за- дач	Решение комплексных интегральных уравнений Фредгольма	лиотекой ИГУ и Сто- ронние сайты	1
6	Метод последовательных приближений для решения ИУ.	Внеауди- торная, решение за- дач	Решение дополнитель- ных интегральных уравнений методом по- следовательных при- ближений.	Источники из основной и дополнительной литературы по теме	1
7	Резольвента.	Внеауди- торная, решение за- дач	Решение дополнительных интегральных уравнений методом нахождения резольвенты.	практических занятий; Образо- вательные	1
8	Уравнение Вольтерра II рода.	Внеауди- торная, решение за- дач	Сведение интегрального уравнения Вольтера к интегральному уравнению Фредгольма.	ресурсы, до- ступные по логину и па- ролю, предо-	1
9	Резольвента уравнения Вольтерра II рода.	Внеауди- торная, решение за- дач	Решение дополнительных интегральных уравнений Вольтера методом нахождения резольвенты.	ставляемым Научной биб- лиотекой ИГУ и Сто- ронние сайты	2
10	Случай ИУ Фредгольма II рода с симметричным яд- ром.	Внеауди- торная, решение за- дач	Решение дополнитель- ных интегральных уравнений с симметрич- ным ядром.		1
11	Задача Штурма – Лиувилля.	Внеауди- торная, решение за- дач	Сведение задачи Штурма – Лиувилля к интеграль- ному уравнению.		1
12	Интегральное уравнение Фредгольма I рода как некорректно поставленная задача.	Внеауди- торная, решение за- дач	Изучить регуляризующий алгоритм Тихонова.		2
13	Понятие функциона- ла.	Внеауди- торная, решение за- дач	Найти физические примеры, в которых фигурируют функционалы		1
14	Определение экс- тремума функциона- ла. Сильный и слабый экстремум.	Внеауди- торная, решение за- дач	Решение дополнительных примеров по поиску экстремума функционала.		1

15	Понятие поля экс-	Внеауди-	Графическое представле-	2
	тремалей. Условие	торная,	ние поля экстремалей.	
	Якоби возможности	решение за-		
	включение экстрема-	дач		
	ли в поле.			
16	Условный экстремум	Внеауди-	Решение дополнитель-	1
	функционала. Изопе-	торная,	ных изопериметрических	
	риметрическая задача	решение за-	задач	
		дач		
17	Задача Лагранжа при	Внеауди-	Решение дополнитель-	1
	наличии связей.	торная,	ных задач по поиску	
		решение за-	условного экстремума в	
		дач	задаче Лагранжа.	
18	Геодезические линии.	Внеауди-	Решение дополнитель-	1
		торная,	ных геодезических задач.	
		решение за-		
		дач		

4.4. Методические указания по организации самостоятельной работы студентов

В разделе 4.3.2 студентам для самостоятельного углубленного изучения дисциплины (параллельно с лекциями) предлагаются задачи по изучаемым разделам и график их изучения. Предполагается, что студент самостоятельно изучит дополнительные параграфы по пройденной теме, представленные в литературе из п. 5, а затем решит предложенные геометрические задачи. Оценка самостоятельной работы студентов проводится в виде контрольных опросов на практических занятиях.

4.5. Примерная тематика курсовых работ (проектов) (при наличии)

Учебным планом не предусмотрено написание курсовых работ (проектов).

V. Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) список литературы

основная литература

- 1. Краснов М. Л. Вариационное исчисление. Задачи и примеры с подробными решениями: учеб. пособие для студ. втузов / М. Л. Краснов, Г. И. Макаренко, А. И. Киселев. 3-е изд., испр. М. : Либроком, 2010. 168 с. ISBN 978-5-397-01274-4 нф А625989; физмат 32323(25 экз.); физмат 32323(40 экз.)
- 2. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах : учеб. пособие / А. Б. Васильева [и др.]. 3-е изд., испр. СПб. : Лань, 2010. 429 с. ISBN 978-5-8114-0988-4 нф А625474; физмат 31398(50 экз.)

дополнительная литература

- 1. Краснов М. Л. Интегральные уравнения. Введение в теорию : учеб. пособие для студ. втузов / М. Л. Краснов. 2-е изд., стер. М. : КомКнига, 2006. 303 с. (нф А602396, 1 экз.)
- 2. Краснов М. Л. Вариационное исчисление : учеб. пособие для втузов / М. Л. Краснов, Г. И. Макаренко, А. И. Киселев. М. : Наука, 1973. 191 с. (нф 959201; нф 203057пф, 2 экз.)
- 3. Васильева А. Б. Интегральные уравнения : учеб. для студ. физич. спец. и спец. "Приклад. математика" / А. Б. Васильева, Н.А. Тихонов. 2-е изд. М. : Физматлит, 2004. 159 с. физмат 19123(24 экз.); физмат 19123(5 экз.)
- 4. Краснов М. Л. Интегральные уравнения: задачи и примеры с подробными решениями: Учеб. пособие для студ. втузов / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. 3-е изд., испр. . М.: Едиториал УРСС, 2003. 190 с. нф А581448; физмат 19183(18 экз.); физмат 19183(20 экз.)
- 5. Эльсгольц Л. Э. Вариационное исчисление : учеб. для физ. и физ.-мат. фак. ун-тов / Л. Э. Эльсгольц. 6-е изд. М. : КомКнига, 2006. 205 с. (нф А602349, 1 экз.)
- б) периодические издания
 - нет.
- в) список авторских методических разработок
 - нет.
- г) базы данных, информационно-справочные и поисковые системы

http://library.isu.ru/ - Научная библиотека ИГУ;

Образовательные ресурсы, доступные по логину и паролю, предоставляемым Научной библиотекой ИГУ:

https://isu.bibliotech.ru/ - ЭЧЗ «БиблиоТех»;

http://e.lanbook.com - ЭБС «Издательство «Лань»;

http://rucont.ru - ЭБС «Руконт» - межотраслевая научная библиотека, содержащая оцифрованные книги, периодические издания и отдельные статьи по всем отраслям знаний, а также аудио-, видео-, мультимедиа софт и многое другое;

http://ibooks.ru/ - ЭБС «Айбукс»- интернет ресурсы в свободном доступе.

VI. Материально-техническое обеспечение дисциплины (модуля)

Учебная аудитория для проведения занятий. Для проведения занятий лекционного типа в качестве демонстрационного оборудования используется меловая доска. Наглядность обеспечивается путем изображения схем, диаграмм и формул с помощью мела. Использование глобальной компьютерной сети позволяет обеспечить доступность Интернет-ресурсов и реализовать самостоятельную работу студентов. На лекциях могут использоваться мультимедийные средства: проектор, переносной экран, ноутбук. На факультете имеется компьютеризированная аудитория, предназначенная для самостоятельной работы, с неограниченным доступом в Интернет.

VII. Образовательные технологии:

Задачи изложения и изучения дисциплины реализуются в следующих формах деятельности:

лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;

практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и проблемных задач;

консультации –еженедельно для всех желающих студентов;

самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;

текущий контроль за деятельностью студентов осуществляется на лекционных и практических занятиях в ходе самостоятельного решения задач, в том числе у доски.

VIII. Оценочные материалы для текущего контроля и промежуточной аттестации

Фонд оценочных средств представлен в приложении.

- 8.1. Оценочные средства для входного контроля: не требуются.
- 8.2. Оценочные средства текущего контроля

Примеры контрольных задач для проведения текущего контроля:

1. Методом дифференцирования решить интегральное уравнение:

$$\varphi(x) = x - \int_{0}^{x} e^{x-t} \varphi(t) dt$$

2. С помощью резольвенты найти решение интегрального уравнения:

$$\varphi(x) = \sin x + 2 \int_{0}^{x} e^{x-t} \varphi(t) dt$$

4. Найти экстремали в изопериметрической задаче:

$$J[y] = \int_{0}^{1} (x^2 + y'^2(x)) dx;$$
 $y(0) = 0$, $y(1) = 0$, при условии $\int_{0}^{1} y^2(x) dx = 2$

8.3. Оценочные средства для промежуточной аттестации

Форма проведения промежуточной аттестации — зачет.

Примерный перечень вопросов и заданий к зачету

Теоретические вопросы:

- 1. Определение интегрального уравнения (ИУ), линейного ИУ, классификация линейных интегральных уравнений. Ядро, свободный член ИУ, требования к ядру и свободному члену. Примеры физических задач, приводящих к интегральным уравнениям (к уравнению Вольтерра и уравнению Фредгольма).
- 2. Сведение задачи Коши для обыкновенного дифференциального уравнения п-порядка к уравнению Вольтерра II рода.
- 3. Интегральное уравнение Фредгольма II рода. Собственные значения и собственные функции ядра интегрального уравнения. Операторная форма интегрального уравнения. Аналогия между линейным интегральным уравнением и системой линейных алгебраических уравнений.

- 4. Однородное уравнение Фредгольма II рода с вырожденным ядром. Сведение его решения к решению системы алгебраических уравнений.
- 5. Теорема о конечном числе собственных значений вырожденного ядра (с доказательством).
- 6. Неоднородное уравнение Фредгольма II рода с вырожденным ядром. Сведение такого уравнения к системе алгебраических уравнений. Определитель Фредгольма, сопряженное к данному интегральное уравнение.
- 7. Теорема Фредгольма об альтернативе (с доказательством).
- 8. Вторая теорема Фредгольма (случай, когда однородное уравнение имеет только тривиальное решение) (с доказательством).
- 9. Третья теорема Фредгольма (случай, когда однородное уравнение имеет нетривиальное решение) (с доказательством).
- 10. Теорема об одинаковом числе линейно независимых решений однородного и сопряженного к нему интегральных уравнений (с доказательством). Нахождение комплексного решения интегрального уравнения в случае комплексного ядра и свободного члена.
- 11. Метод последовательных приближений для решения интегрального уравнения.
- 12. Теорема о существовании и единственности решения интегрального уравнения в случае достаточной малости параметра λ (с доказательством на основании теоремы о неподвижной точке оператора).
- 13. Резольвента интегрального уравнения. Свойства резольвенты.
- 14. Резольвента интегрального уравнения в случае вырожденного ядра.
- 15. Случай ядра интегрального уравнения, близкого к вырожденному. Сведение интегрального уравнения с таким ядром к уравнению с вырожденным ядром.
- 16. Уравнение Вольтерра II рода. Теорема об отсутствии собственных значений уравнения Вольтерра II рода.
- 17. Нахождение решения уравнения Вольтерра II рода методом последовательных приближений.
- 18. Резольвента уравнения Вольтерра II рода, повторные ядра для этого случая.
- 19. Интегральные уравнения Вольтерра I и II рода. Связь между ними.
- 20. Интегральное уравнение Фредгольма II рода с симметричным ядром. Свойства собственных значений и собственных функций такого ядра. Формула Шмидта для решения уравнения с симметричным ядром.
- 21. Задача Штурма Лиувилля. Сведение задачи Штурма Лиувилля к интегральному уравнению.
- 22. Интегральное уравнение Фредгольма I рода как некорректно поставленная задача.
- 23. Интегральное уравнение Фредгольма II рода с точки зрения корректности постановки математической задачи.
- 24. Функционал. Вариация аргумента функционала. Непрерывность функционала, близость функций в разных порядках. Вариация функционала (два определения).
- 25. Экстремум функционала. Сильный и слабый экстремум. Необходимое условие экстремума.
- 26. Уравнение Эйлера для вариационной задачи. Экстремаль. Поле экстремалей.
- 27. Достаточное условие экстремума функционала (сильного и слабого).
- 28. Условный экстремум функционала. Изопериметрическая задача.

Примеры практических заданий:

1. Составить интегральное уравнение, соответствующее следующему дифференциальному уравнению с заданными начальными условиями:

$$y''+y=0$$
; $y(0)=0$, $y'(0)=1$

2. Методом дифференцирования решить интегральное уравнение:

$$\varphi(x) = x - \int_{0}^{x} e^{x-t} \varphi(t) dt$$

3. С помощью резольвенты найти решение интегрального уравнения:

$$\varphi(x) = e^{x} + \int_{0}^{x} e^{x-t} \varphi(t) dt$$

4. Решить интегральное уравнение с вырожденным ядром:

$$\varphi(x) - \lambda \int_{0}^{\pi/2} \sin x \cos t \varphi(t) dt = \sin x$$

5. Найти характеристические числа и собственные функции для интегрального уравнения с вырожденным ядром:

$$\varphi(x) - \lambda \int_{0}^{\pi/4} \sin^2 x \, \varphi(t) \, dt = 0$$

6. Исследовать на разрешимость при различных значениях параметра λ :

$$\varphi(x) - \lambda \int_{-1}^{1} x e^{t} \varphi(t) dt = x$$

7. Решить методом последовательных приближений:

$$y(x) + \int_{0}^{x} y(s) ds = x + \frac{x^{2}}{2}$$

Разработчики:

доцент кафедры теоретической физики

Перевалова И.А.

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению подготовки 03.03.02 Φ изика.

Программа рассмотрена на заседании кафедры теоретической физики

«30» августа 2021 г.

Протокол № 1 И.о. зав. кафедрой

С.В. Ловиов

Настоящая программа не может быть воспроизведена ни в какой форме без предварительного письменного разрешения кафедры-разработчика программы.